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ABSTRACT 

We describe methods of computing reliability acceleration for 
realistic temperature/humidity use-condition models.  We extract 
outdoor temperature/humidity models based on NOAA [1] data, and 
indoor and automotive interior models by using the NOAA data 
combined with additional data which characterizes thermal and 
human behavior (thermostat settings).  We compare predictions of 
these models with traditional reliability assessments, and provide 
useful models to represent the results. 

INTRODUCTION 

Reliability assessment of a population of units of an electronic 
component depends on a model of the failure mechanisms, which 
includes models of acceleration and lifetime statistics, and on a 
model of the “use condition”.  Much work has been done to derive 
accurate models for different failure mechanisms, but little has been 
published on the use conditions to which those reliability models 
should be extrapolated.  The use condition assumed is often a steady-
state ambient set to be worse than all ambients.  This approach is 
easy, but may be too conservative, forcing unnecessary constraints 
on technologies, designs, etc.  As a result, there is increased interest 
in knowledge-based reliability assessment [2] which combines 
models for reliability models and use conditions.   

This paper shows how to compute acceleration factors from use-
condition data.  Part of the “use-condition” is the temperature-
humidity (Tair/hair) of the ambient air surrounding the electronic 
equipment in which the component is installed, and another part is 
the temperature rise (Trise) at the device due to local heating.  We 
generate models for outdoor and indoor temperature-humidity use 
conditions, and for vehicle-interior temperature use conditions.  We 
then calculate the statistics of reliability acceleration for the 
Arrhenius/Peck [3,4] moisture reliability acceleration model in each 
of these environments, for a range of activation energies and 
humidity-related acceleration parameters.  Then we express the 
results of these calculations as useful regression models.  Finally, we 
show how to take arbitrary models of Trise into account, although we 
don’t consider any specific (except trivial) models. 

AF FOR TIME-VARYING USE CONDITIONS 

The parameter which relates laboratory-derived reliability models 
to “use conditions” is the acceleration factor (AF) of the use 
condition relative to a “reference” condition which is defined as 
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where the right hand side of (1) is the ratio of the time at the 
reference condition to the time in “use” for which the same “effect” 
is observed.  The effect might be a particular percentile of the 

population failing.  One particular case of this is the mean time to 
failure (MTTF). 

For the usual treatment of use-conditions, the acceleration in Eq. 
(1) would be computed by substituting constant values of use-
condition environmental variables into a formula for the acceleration.  
However, when the use-condition varies with time, the more general 
expression for the effective acceleration is: 
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where we specialize to the case of temperature-humidity 
acceleration, and show the time variation through the time variation 
of the “use” temperature, Tuse , and humidity, huse. 

It is unnecessary (and impractical) to do this integration directly 
because a simpler statistical method is available.  The key is to 
recognize the equivalence of Eq. (2) and the following: 
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where ρ(T,h) is a joint probability density function (PDF) of 
temperature and humidity, and 〈 〉 denotes a time average.  Eqs (2) 
and (3) may be understood to be equivalent by the following 
argument:  As time t increases, the environmental condition, 
expressed as a point in (Tuse, huse)-space, traces out a trajectory.  
Because environmental conditions are quasi-cyclical (revisiting the 
same region many times), this trajectory will define a density 
function ρ(T,h) in this space.  Notice that this equivalence is possible 
because, in this model, the sequence of environmental conditions 
does not affect the accumulation of degradation – it is merely the 
fraction of the overall use time spent at each distinct condition which 
matters.  Also, Eqs. (2) and (3) assume that the temperature at the 
point of action of the reliability mechanism tracks the externally 
applied temperature profile – a quasi static assumption.  This is valid 
for slow (eg. diurnal) temperature variation and small device thermal 
mass.  Mathematically, Eq. (3) is the expectation value, 〈〉, of the 
acceleration function taken over the joint probability distribution in 
time of the temperature and humidity. 

In Eq. (2), Tuse and huse are defined as the temperature and 
humidity at the point of action of the mechanism in the device.  We 
assume a model in which Tuse(t) is the time-varying ambient 
temperature Tair(t) offset by a local time-varying temperature rise, 
Trise(t), uncorrelated in time.  So, 
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and Eq. (3) becomes 
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where, for compactness, we associate 

xTrise → , , . yTair → zhair →

and where we have factorized the PDF as follows: 

),()()(),,( zyyxzyx μλκρ =  (6) 

This factorization has used the assumption that Trise and Tair are 
uncorrelated in time.  The factorization of the ambient air PDF into 
the two functions, λ(Tair) and μ(Tair, hair) is made for convenience, 
and no further loss of generality occurs by doing this.  If the function 
μ were independent of Tair then temperature and relative humidity 
would also be uncorrelated, but we are not assuming this. 

The Arrhenius/Peck temperature/humidity acceleration model in 
Eq. (5), taking into account the effect of Trise, is written: 
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where Psat(T) is the saturated vapor pressure of water vapor.  This 
assumes that the partial pressure of water vapor at the point of action 
of the mechanism is the same as in the surrounding ambient, which is 
an ideally non-hermetic case (quasi-static with respect to moisture 
diffusion).  A fitted formula for Psat(T) is available [5].  If we use the 
leading order approximation 
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where W is the latent heat of vaporization of water (0.42 eV), then 
Eq. (7) becomes 
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Since Trise is always small compared to Tair when measured in ºK it is 
often a good approximation to write 
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Parametric forms for the distributions κ, λ, and μ  were defined as 
given in the Appendix.  Because the environmental PDF in Eq. (6) is 
defined at each of many locations, the parameters of each of these 
distributions will be a function of location.  Numerical integration of 
Eq. (5) using the parametric forms for κ, λ, and μ and the AF model 
of Eq. (7) was done using the method given in the Appendix. 

EXTRACTION OF USE CONDITION PARAMETERS 

We describe in this section how a very large amount of climatic 
data was distilled into a manageable dataset of use-condition model 
parameters defining the PDFs λ(y), and μ(y,z) as in the Appendix, 
while preserving accuracy sufficient for reliability calculations. 

We do not have a specific model for the Trise PDF, κ(x), to 
consider in this paper, so we did model calculations assuming that 
κ(x) is a delta function in time (Trise is constant in time) at each 
location.  Later, we will show how to relax this assumption. 

For the climatic data, we purchased hourly data from the National 
Oceanographic and Atmospheric Administration (NOAA) weather 
database [1].  NOAA monitors 26 dynamic climatic weather datums 
including temperature (dry bulb and wet bulb), wind velocity, cloud 
cover, etc. and provides static data on state, country, altitude, 
latitude, and longitude.  Data is reported by city and is grouped by 
country.  The data spanned more than 1400 weather stations 
worldwide, except Antarctica. NOAA collected data evenly 
throughout the day every one to three hours from 1982 through 1997.  
The NOAA database therefore provides for each of the 1400 
locations a temperature/humidity time series which could, in 
principle, be directly integrated in Eq. (2).  In practise this is 
unfeasible because of the large size of the time-series dataset (260 
GB).  However, the density function formulation described above 
makes it possible to distill this dataset  into a compact set of location-
specific CDFs, manageable in Excel, from which distribution 
parameters described in the Appendix can be extracted. 

Outdoor Environment 

As an example of the outdoor environment, we show the fit of 
NOAA climate data for one of the 1441 stations, Phoenix, to the 
model Eq. (A3) in Fig. 1 (top) and Eq. (A6) in Fig. 1 (bottom).  This 
is a fit of the cumulative density function (CDF) of daily average 
data, which does not include the within-day variation.  Systems 
exposed directly to outdoor ambients will also be subjected to diurnal 
(day/night) temperature variation, so the variances in the final model 
parameters were modified slightly to take this into account as 
follows: 

riancediurnal_va1var1var TTT +←       riancediurnal_va2var2var TTT +←

It is apparent from Fig. 1 that a bimodal distribution fits the 
temperature CDF of Phoenix well, whereas a simple normal 
distribution would not be a good fit, and the humidity distribution 
varies with temperature.  Phoenix was one of 1441 stations for which 
distribution parameters were extracted.  Although some stations did 
not require as many parameters as shown in Fig. 1, the 
parameterization in Fig. 1 was sufficient for all stations. 

Indoor Environment 

The indoor environment is important, since this is the “climate” 
where most electronic equipment is used.  An empirical study was 
performed, in a hot climate, to determine how to estimate indoor 
temperature data from the outdoor data available in the NOAA 
database.  For twelve weeks in the summer of 2000 forty students 
from St. Stephen’s College in New Delhi, India measured the 
temperature inside and outside their non-air-conditioned homes four 
times daily (at mid-morning, early afternoon, early evening, and late 
evening).  Results indicated that home thermal-mass effects caused 
indoor temperature to lag outdoor temperature changes, similar to the 
effect of a low-pass filter in electronics.  Indoor temperatures were 



stable enough from hour to hour that only the average for the day 
was needed to accurately estimate reliability impact.  We see in Fig. 
2 that this daily average Tair_indoor could be accurately predicted from 
the outdoor average temperature, Tair , for the day in question (“n”), 
and the previous two days (“n-1” and “n-2”): 
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where temperatures are in °C and the term in brackets is a weighted 
three-day average of the outdoor temperature.  This formula was 
checked for one additional home, in Northern California in 
November 2000 and found accurate to 1 oC (Fig. 2).  We extended 
this by computing the corresponding indoor RH as: 
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The model fitted for one of 1367 stations, Phoenix, is shown in Fig. 
3, which may be compared to Fig. 1.  Note that this model is for 
uncontrolled indoor environments, so that a model for a controlled 
indoor environment would also include values for heating and 
cooling limits, Tmin and Tmax.  Models for these limits, which may   
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FIG. 1.  OUTDOOR ENVIRONMENT IN PHOENIX, ARIZONA (NOAA 
STATION 722780).  TOP:  CDF PLOTS OF NOAA DATA OF DAILY 
TEMPERATURES AND FITTED DISTRIBUTION, EQ. (A3). BOTTOM: 
HUMIDITY DISTRIBUTION PARAMETERS, EQS. (A6), FOR EACH VALUE OF 
TAIR. 

10

15

20

25

30

35

40

0 10 20 30 4
Outdoor Temperature, Tair

In
do

or
 T

em
pe

ra
tu

re
, T

ai
r_

in
do

or

0

New Delhi
California
Model

 

FIG. 2.  INDOOR VS. OUTDOOR AMBIENT TEMPERATURE.  INDOOR 
DAILY-AVERAGE TEMPERATURE FOR EACH HOME IS LINEARLY RELATED 
TO A THREE-DAY WEIGHTED AVERAGE OF THE OUTDOOR TEMPERATURE. 

vary from location to location might, for example, be obtained by 
surveys of building thermostat settings.  Since we did not have this 
data, we chose a reasonable heating limit of Tmin = 22.2 °C for every 
location to represent the “Indoor Controlled” environment. 
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FIG. 3.  INDOOR UNCONTROLLED ENVIRONMENT IN PHOENIX, (NOAA 
STATION 722780).  TOP:  CDF PLOTS OF DAILY TEMPERATURES AND 
FITTED DISTRIBUTION, EQ. (A1).  BOTTOM:   HUMIDITY DISTRIBUTION 
PARAMETER, EQS. (A6), VS TAIR. 



Vehicle Dashboard Temperature Environment 

Portable electronic devices are often placed in the interiors of 
motor vehicles, which can become hot when parked and unoccupied, 
especially when exposed to solar radiation on sunny days.  We 
develop a model of solar heating of directly exposed dashboard 
surface inside a car.  The model does not consider scenarios in which 
users may place a device in a location not directly exposed to solar 
radiation.  The dashboard surface is generally the hottest location for 
a portable electronic device in a car. 

We measured dashboard temperature with small temperature 
sensors [6] at 7 geographical locations between 21° and 43° north 
latitude in 21 closed cars of different sizes and colors over 16 
different days between February and November, 2004.  The 
observers were asked to position their cars south-facing on a sunny 
day, put sensors on the dashboard and under the vehicle (to measure 
Tair), close the windows, and take data during daylight hours.  Fig. 7 
shows the results for one location, and a model fit. 
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FIG. 7  EXTERNAL AIR TEMPERATURE, DASHBOARD TEMPERATURE AND 
MODEL FIT DURING ONE SUNNY DAY IN PHOENIX, AZ. 

The temperature of components in a device on a dashboard, Tdash,  
depends on the air temperature external to the vehicle, Tair, a 
contribution due to the solar energy impinging on the dashboard, 
Tsolar, and a contribution from heating of the air in the enclosed 
vehicle.  We model the local temperature rise on the dashboard above 
the ambient temperature external to the car as entirely due to direct 
solar radiation.  Although this ignores the temperature rise of air 
inside the vehicle, it covers the main effect, and we expect that the 
effect of interior air temperature rise will be absorbed into some of 
the parameters of the solar model when fitted to data.  We also 
ignore the local self-heating temperature rise, Trise, inside any device 
that may be running.  For portable devices, this is expected to be 
negligible compared to the solar-induced temperature rise of 50 – 60 
ºC (Figs. 7 and 8).  So we write 

solarairdash TTT +=  (13) 

where Tair comes from the NOAA database [1], and the solar 
component is expressed as [7] 

CFDFMT dashsolar ××=  (14) 

where 
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and where 

5.11/1 cloudFCF −= . (16) 

In Eq. (14), Mdash is a constant representing the maximum 
temperature rise due to solar exposure, DF is a derating factor 
depending on the angle of the sun measured from the zenith, θsun, at 
a particular latitude and time of day, and CF is a derating factor for a 
reduction in radiation due to average cloud cover.  In the expression 
for DF, the term involving τ gives the optical transmittance of the 
atmosphere (0.7 corresponds to a clear day), and n is the effective 
refractive index of the atmosphere.  In the expression for CF, the 
value of Fcloud is obtained from the “Total Sky Coverage” parameter 
in the NOAA database.  Fcloud = 0 corresponds to no cloud coverage, 
and Fcloud = 10 corresponds to complete cloud coverage. 

We fitted the model of Eqs. (13-16) to the data using Mdash and n 
as fitting parameters. Fig. 8 shows the actual vs. predicted daily 
maximum temperature for each car.  In Fig. 8, the actual maximum 
temperatures tend to be cooler than predicted because the model 
values (x-axis) were computed with Fcloud set to 0.  Although the 
data were taken on substantially sunny days, in some locations there 
was non-zero cloud cover, which reduced the actual daily maximum 
temperature (y-axis). 

30

50

70

90

110

30 50 70 90 110
Model: Max Tdashboard (C)

D
at

a:
 M

ax
 T

da
sh

bo
ar

d 
(C

)

 
FIG. 8  DASHBOARD MAXIMUM DAILY TEMPERATURE MODEL VERSUS 
DATA FOR 21 VEHICLES OVER 16 DAYS IN 7 LOCATIONS AROUND THE 
WORLD.   

DISCUSSION 

In Fig. 9 we show correlation plots of the time-average 
temperature and time-average humidity at each of many locations for 
the outdoor environment.  While the time-averages of environment in 
Fig. 9 give a good idea of the climate, they are not, in general, 
sufficient to compute the AFs.  Computation of AFs requires 
averaging the AF over the correlated temperature humidity profiles 
using the methods described above.  To quantify this, we compare 
the following AF estimators: 
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FIG. 9  TIME-AVERAGE RELATIVE HUMIDITY VS TIME-AVERAGE 

TEMPERATURE FOR OUTDOOR ENVIRONMENT. 

Fig. 10 shows this comparison for a reference condition of 25/85 
and for a Peck acceleration model with Q = 0.9 eV, and C = 3.  We 
chose this acceleration model because it has been recommended as 
the basis for a moisture reliability standard [4].  We see that the 
simple method of using average temperatures and humidities in Eq. 
(7) to compute AFs never overestimates the AFs, and can 
underestimate the AFs  by 3x to 10x.  Note, however, that for 
locations with lnAF > -0.4, that is, AF > 0.7, relative to 25/85, for  
Q = 0.9 eV, and C = 3 the errors are small.  The same observations 
(not shown) are true for the indoor uncontrolled ambient, and the 
indoor controlled ambient.  In the important case of the indoor 
controlled environment for thermal-only mechanisms (C = 0), this 
amounts to all locations. 
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FIG. 10  AF AT TIME-AVERAGE TEMPERATURE AND RH (Y AXIS), VS AF 
AVERAGED OVER CORRELATED TEMPERATURE/RH PROFILES (AFEFF).  
FOR OUTDOOR ENVIRONMENT.  NATURAL LOGS OF AFS RELATIVE TO 

25/85 WITH Q = 0.9 EV, AND C = 3 ARE PLOTTED. 

Distributions of AF were obtained for each of the use conditions 
for acceleration model parameters in the ranges 0 ≤ Q ≤ 1.2 eV, and 
0 ≤ C ≤ 4, and for constant-in-time values of Trise in the range  
0 ≤ Trise ≤ 10 °C, except for the dashboard use condition for which 
only Trise = 0 was considered.  This was done by integrating AF over 
the time variation of Tuse/huse at each location.  For the dashboard 
model, the parameters determined by model regression at 21 
locations were used to compute AF relative to 25 °C at 1111 
locations, taking into account the time variation of the solar 
contribution to temperature at each location through θsun, and 
through Fcloud (from the NOAA database) which varied from 

location to location.  In Fig. 11 we show an example of the AF 
distributions obtained for the dashboard  model.  Similar sets of 
distributions were obtained for the outdoor ambient, the indoor 
uncontrolled ambient, and the indoor controlled ambient.  For each 
distribution, values of AF at the standard 50th, 60th, 90th, 95th, and 
99th percentiles were extracted. These are given in Table I.  For all 
except the dashboard model, the analysis was also done, but results 
aren’t shown, for Trise > 0. 
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FIG. 11  DASHBOARD MODEL AF DISTRIBUTIONS, RELATIVE TO 25 C 
FOR THREE ACTIVATION ENERGIES.  PERCENTILES WERE EXTRACTED AT 
50, 60, 90, 95, AND 99 PERCENTILES (HORIZONTAL DASHED LINES). 

TABLE I  ACCELERATION FACTORS RELATIVE TO 25/85 AT VARIOUS 
PERCENTILES OF THE AF DISTRIBUTIONS FOR OUTDOOR, INDOOR 
UNCONTROLLED, INDOOR CONTROLLED, AND DASHBOARD 
ENVIRONMENTS, FOR TRISE = 0.  THE LAST 3 ROWS COME FROM FIG. 12. 

Q (eV) C 50 60 90 95 99
0.20 0 0.721 0.766 0.971 1.044 1.080
0.70 0 0.410 0.487 0.983 1.202 1.376
1.20 0 0.297 0.371 1.058 1.430 2.062
0.20 2 0.497 0.526 0.698 0.792 0.986
0.70 2 0.239 0.277 0.619 0.785 1.119
1.20 2 0.152 0.202 0.649 0.886 1.266
0.20 4 0.394 0.435 0.614 0.694 0.960
0.70 4 0.179 0.212 0.497 0.665 1.104
1.20 4 0.103 0.134 0.482 0.718 1.250
0.20 0 0.864 0.899 1.061 1.087 1.112
0.70 0 0.662 0.744 1.268 1.356 1.461
1.20 0 0.572 0.686 1.563 1.720 2.052
0.20 2 0.262 0.291 0.544 0.691 0.854
0.70 2 0.206 0.248 0.618 0.836 1.067
1.20 2 0.188 0.234 0.729 1.025 1.342
0.20 4 0.108 0.129 0.341 0.492 0.715
0.70 4 0.087 0.114 0.387 0.595 0.894
1.20 4 0.077 0.107 0.459 0.724 1.116
0.20 0 0.959 0.968 1.063 1.085 1.106
0.70 0 0.873 0.909 1.260 1.352 1.465
1.20 0 0.808 0.875 1.521 1.710 2.006
0.20 2 0.367 0.389 0.577 0.712 0.884
0.70 2 0.331 0.358 0.648 0.849 1.084
1.20 2 0.302 0.333 0.774 1.026 1.354
0.20 4 0.169 0.188 0.375 0.504 0.770
0.70 4 0.153 0.174 0.424 0.625 0.944
1.20 4 0.140 0.164 0.495 0.739 1.152
0.20 0 1.009 1.081 1.338 1.425 1.530
0.70 0 4.564 5.371 9.009 10.820 15.792
1.20 0 63.503 80.952 166.972 233.589 438.116D
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It is useful to represent the results of this study by a regression 
model for each percentile, p, of the AF distributions for each of the 
use condition models, u.  For each use condition and percentile in 
Table I, the natural logarithm of the AF was fitted to a polynomial in 
Q and C.  A linear fit was not sufficient to represent the results, but a 
biquadratic fit was adequate over the range of interest.  We also 



explored the sensitivity to a constant-in-time Trise in the range  
0 ≤ Trise ≤ 10 ºC, except for the dashboard model.  The fitted equation 
is 
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where a, w, and bmn are regression parameters. 

The first term in Eq. (18) represents the effect of Trise.  We found 
that this term does not depend on the specific model of environment 
(u), or on the percentile of the population (p).  For the outdoor, 
indoor uncontrolled, and indoor controlled environments the 
regression gave a = 0.1276, and w = 0.45 eV.  The second term 
involving bmn is a regression fit to accelerations obtained by 
integrating the various climates over the Arrhenius/Peck 
temperature/relative humidity acceleration model, using a reference 
condition of 25/85.  Note that b00 = 0 for all u and p.  Values of bmn 
are given in Table II.  The final terms in Eq. (18) translate the 
reference condition from 25/85 at which the bmn coefficients were 
determined, to any reference condition, Tref/href. 

It is interesting to compare Eq. (18) with Eq. (10).  If Trise, Tair, 
and hair (aka x, y, and z) are constant in time, then 
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The values of bmn in Table II deviate from these values because 
of the effect of time variation of Tair.  The fitted value of a 
corresponds to Tair = 28.6 ºC. 

TABLE II.  REGRESSION COEFFICIENTS BBMN FOR EQ. (18).  B00B  = 0. 

b01 b02 b10 b11 b12 b20 b21 b22
50 -0.1936 0.0134 -1.6309 -0.1991 0.0327 0.5314 0.0216 -0.0130
60 -0.1655 0.0123 -1.3199 -0.4253 0.0694 0.4412 0.2152 -0.0474
90 -0.0766 0.0090 -0.0576 -0.4375 0.0474 0.1247 0.2301 -0.0302
95 -0.0530 0.0075 0.2124 -0.2363 0.0099 0.0754 0.0968 -0.0016
99 -0.0141 0.0062 0.3823 -0.1845 0.0208 0.1099 -0.0031 0.0037
50 -0.6699 0.0350 -0.7871 -0.0014 0.0143 0.2680 0.0225 -0.0123
60 -0.6295 0.0337 -0.5716 -0.0139 0.0078 0.2040 0.0234 -0.0038
90 -0.3786 0.0207 0.1853 -0.0938 0.0179 0.0834 0.0540 -0.0105
95 -0.2634 0.0117 0.3950 -0.0440 0.0127 0.0339 0.0114 -0.0051
99 -0.1362 0.0087 0.4883 -0.0666 0.0117 0.0693 -0.0168 0.0009
50 -0.5273 0.0218 -0.2248 -0.0210 0.0039 0.0329 -0.0062 0.0020
60 -0.5006 0.0218 -0.1673 -0.0320 0.0060 0.0466 -0.0092 0.0017
90 -0.3219 0.0141 0.2445 -0.1593 0.0344 0.0561 0.0935 -0.0218
95 -0.2611 0.0150 0.3835 0.0570 -0.0189 0.0531 -0.0771 0.0215
99 -0.1345 0.0083 0.4654 -0.0488 0.0089 0.0752 -0.0259 0.0027
50 0.0974 2.8157
60 0.3984 2.7321
90 1.3877 2.4073
95 1.6467 2.4233
99 2.1453 2.4480
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Although the method described in this paper covers arbitrary 
models of time- and location-dependence of Trise and Tair/hair, the 
models of Trise tend have a narrow device-specific scope, whereas 
models of Tair/hair have a broad scope of application.  It is convenient 
to have a method to compute the AF of a device without redoing the 
numerical integrations over Tair/hair for every new Trise model.  It 
can be shown that in the usual case when the (time-varying) Trise (ie. 
x) is sufficiently small compared to the time-average value of Tair 
(measured in ºK), then we can replace Tair (i.e. y) by its time average, 
〈y〉 in the last term of Eq. (10).  This gives 
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When Eq. (19) is substituted into Eq. (5), the terms involving x 
factorize to produce a separately integrable Trise-related acceleration 
factor which will multiply the AFs given in Table I or computed 
using Eq. (18) with coefficients from Table II (with Trise = 0).  Note 
that we also need to use the already-invoked “perfect time-
uncorrelation” between Trise and Tair.  So we get  
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where the Trise device-specific AF is 
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Eq. (20) is the Trise time-PDF, κ(x), integrated over an Arrhenius 
acceleration function, relative to 〈Tair〉, with activation energy  
Q – WC.  The integral can be evaluated for any specific model of 
Trise using the methods in the Appendix.  This AF is then multiplied 
by the AF in Table I (or computed from Eq. (18) with Trise = 0) to 
give the final AF relative to some reference condition Tref/href. We 
have performed exact calculations for time-varying Trise, using the 
general form of the model derived in this paper, and have found the 
approximation to be quite accurate in most circumstances. 

SUMMARY 

We derived four models of temperature/humidity use conditions 
for which summary statistics are shown in Table III.  Although these 
statistics are interesting, they should be used cautiously for reliability 
assessments.  Reliability assessments require computation of 
acceleration factors by averaging over time-varying use conditions at 
each of many locations.  We have described the theoretical 
formulation of the problem, and computational methods for doing 
this. 

We noticed a simplification for the outdoor and indoor models for 
locations with AF > 0.7, relative to 25/85,  In this case, only a small 
error relative to integration of the AF is incurred by using the time-



average temperature and time-average humidity in the standard 
Arrhenius/Peck acceleration model. 

We have provided a convenient regression model, Eq. (18) for 
computing the AF at several standard percentiles of the location 
distributions as a function of Q and C (Arrhenius/Peck acceleration 
parameters), assuming a constant Trise. We have shown a convenient 
extension of the method to arbitrary models of Trise.  This extension 
applies a multiplicative factor to the Tair/hair AF at each of the 
locations, depending on an arbitrary model of Trise at each location. 

TABLE III  SUMMARY STATISTICS OF MODELS. 
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Grand average temperature.  
Location average of time-average 
temperature.

14.02 19.85 23.86 22.45 ºC

Location standard deviation of 
time-average temperatures. 6.26 4.18 1.68 8.07 ºC

Location average of time- 
standard deviations of 
temperatures.

8.06 5.27 1.93 19.12 ºC

Grand average relative humidity.  
Location average of time-average 
humidity.

0.71 0.48 0.52 0 ≤ h ≤ 1

Location standard deviation of 
time-average humidity of each 
location.

0.10 0.10 0.09 0 ≤ h ≤ 1

Location average of time-
standard deviations of relative 
humidities.

0.12 0.11 0.11 0 ≤ h ≤ 1

Location correlation among time-
average temperature and time-
average humidity. 

-0.12 0.71 0.44 -1 ≤ ρ ≤ 1
 

APPENDIX 

Local Device Temperature Rise, Trise

Trise time variation can be represented by, for example, a 
multimodal time-PDF such as. 
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The parameters of this PDF will vary with location.  For 
simplicity in the model calculations presented in this paper, we take 
Trise to be constant in time at each location, although it may vary 
from location to location.  That is 

( )riseTxx −= δκ )( . (A2) 

where δ is a delta function. 

Ambient Temperature, Tair

Uncontrolled Ambients: The distribution of daily average outdoor 
ambient temperatures for each of many locations in the world is well-
represented by the PDF: 
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The 5 parameters (note that f2 = 1- f1) shown in bold (example 
shown in Figs. 1 and 3) are determined from NOAA and survey data 
for each of many locations [1].  For outdoor ambients, the two modes 
represent summer and winter seasons. 

Controlled Ambients: Thermostatically set heating and cooling 
limits (or human avoidance of extremes) may be modeled by adding 
minimum and maximum temperatures, Tmin (eg.  heater thermostat 
setting) and Tmax (eg. air-conditioning thermostat setting) with Tmin ≤ 
Tmax to the 5 parameters of the model in Eq. (A3).  These additional 
parameters may also be different for each location. 

Ambient Humidity, hair

The humidity distribution corresponding to each value of Tair 
must fall in the range 0 ≤ hair ≤ 1.  Variables constrained in this way 
are likely to be distributed according to a Beta distribution, and we 
have observed this.  So we write the density function μ, describing 
the PDF of ambient humidity z for each ambient temperature y as 
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where Γ is the Gamma function, and where we have made the Tair 
(aka y) - dependence of the α and β shape parameters explicit.  This 
corresponds to the observation that the distribution of all the values 
of humidity which occur at a given value of Tair changes with that 
value. 

The shape parameters, α and β, of the Beta distribution are 
related to the mean, m, and variance, v, of the distribution as follows: 
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For each location, the mean and variance of the relative humidity 
as a function of Tair (aka y) in ºC was fitted to a quadratic between 
limits, determining the 8 parameters shown in bold (example given in 
Figs. 1 and 3 in the main text): 

For Trhmin ≤ y ≤ Trhmax

c_myb_mya_mym +×+×= 2)(  (A6a) 

and 

c_vyb_vya_vyv +×+×= 2)( . (A6b) 

Note that y in Eqs. (A6a, b) is in °C, not °K.  When y falls outside 
the range Trhmin ≤ y ≤ Trhmax, m(y) and v(y) are evaluated at the 
limiting values. 



Computational Method 

A semi analytical method for computing Eq. (5) is given by 
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where (wi, xi, i = 1, N) are standard weights and sample points of the 
Gauss-Hermite quadrature, which are tabulated [8], where 
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Eq. (A7) is an optimal weighted sum over evaluation points of 
AF(x,y).  Values of 3 or 4 for N give numerical accuracy better than 
about 2%.  Eq. (A8) takes advantage of an analytical result for the 
integration of the Peck acceleration model over the Beta parametric 
representation of the humidity PDF. 
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