
Abstract

Processor designers require estimates of the architec-
tural vulnerability factor (AVF) of on-chip structures to
make accurate soft error rate estimates. AVF is the fraction
of faults from alpha particle and neutron strikes that result
in user-visible errors. This paper shows how to use a per-
formance model to calculate the AVF of address-based
structures, using a data cache, a data translation buffer,
and a store buffer as examples. We describe how to perform
a detailed breakdown of lifetime components (e.g., fill-to-
read, read-to-evict) of bits in these structures into ACE
(required for architecturally correct execution), un-ACE
(unnecessary for ACE), and unknown components.

This lifetime analysis produces best estimate AVFs for
these three structures’ data arrays of 6%, 36%, and 4%,
respectively. We then present a new technique, hamming-
distance-one analysis, and show that it predicts surpris-
ingly low best estimate AVFs of 0.41%, 3%, and 7.7% for
the structures’ tag arrays. Finally, using our lifetime analy-
sis framework, we show how two AVF reduction tech-
niques--periodic flushing and incremental scrubbing--can
reduce the AVF by converting ACE lifetime components
into un-ACE without affecting performance significantly.

1. Introduction

Radiation-induced soft errors—caused by neutrons in
cosmic rays or alpha particles in packaging material—are
becoming an increasing burden for microprocessor design-
ers. The raw error rate per device (e.g., latch, SRAM cell)
in a bulk CMOS process is projected to remain roughly
constant or decrease slightly for the next several technol-
ogy generations [4][5]. Thus, unless we add more extensive
error protection mechanisms or use a more robust technol-
ogy (such as SOI), a processor’s error rate will grow with
Moore’s Law in direct proportion to the number of devices
we add to a processor in each succeeding generation.

Error protection mechanisms, such as radiation-hard-
ened circuits or architectural redundancy, however, come
with significant penalty in performance, power, and area.
Hence, excessive protection may make the resulting prod-
uct uncompetitive in cost and/or performance. Alterna-
tively, a microprocessor with inadequate protection from
soft errors may prove useless due to its unreliability. Conse-
quently, designers must carefully evaluate the soft error rate
of a microprocessor to decide on the appropriate amount of
protection necessary for a target market.

Computing the architectural vulnerability factor (AVF)
for all processor structures is a key aspect of such soft error
analysis. A hardware structure's AVF is the probability that
a fault in that particular structure will result in an user-visi-
ble error. A structure's error rate is the product of its raw
error rate, as determined by process and circuit technology,
and its AVF. A designer can compute a processor’s overall
soft error rate by summing the soft error contribution of all
processor structures.

Mukherjee, et al. [9] introduced the concept of architec-
turally correct execution (ACE) to compute a structure’s
AVF. ACE analysis divides a bit’s lifetime components into
ACE and un-ACE intervals. A bit is un-ACE for any inter-
val where its value can be changed without affecting the
program’s final outcome. Any interval that cannot be
proven un-ACE is assumed to be ACE. The AVF for a sin-
gle-bit storage cell is simply the fraction of time that it
holds ACE state. Assuming that all cells have equal raw
fault rates, the AVF for a structure can be computed by
averaging the individual AVFs of all of its storage cells.
Using this methodology, Mukherjee, et al. computed the
AVFs of an instruction queue and execution units of an Ita-
nium

2-like microprocessor.

This paper shows how to compute the AVF of address-
based processor structures using a level-one write-through
data cache, a data translation buffer, and a store buffer as
examples. The data cache and data translation buffer are
large enough to potentially have a significant impact on a
processor’s soft error rate. The store buffer holds modified
data, so valid entries are quite vulnerable to errors. Each of
these three structures consists of a data RAM (random
access memory) array and a tag CAM (content-addressable
memory) array, but each has different usage characteristics.
We also show how the lifetime analysis of the write-
through cache can be altered to accurately approximate the
AVF of a write-back cache.

This paper makes four contributions related to the AVF
computation of these three processor structures. First, we
perform a detailed ACE analysis of the lifetime compo-
nents of the constituent bits in the three structures’ data
arrays. Our analysis with selected sections of all SPEC
CPU2000 benchmarks running on an Itanium

2-like
microprocessor results in a best estimate AVF of 6%, 36%,
and 4% for the data arrays of a 16KB 4-way set-associative
write-through cache, 128-entry data translation buffer, and
an 32-entry store buffer.

Computing Architectural Vulnerability Factors for Address-Based Structures

Arijit Biswas1, Paul Racunas1, Razvan Cheveresan2, Joel Emer3, Shubhendu S. Mukherjee1 and Ram Rangan4

1 FACT Group, Intel Corp.

Hudson, MA 01749

2 Sun Microsystems

Santa Clara, CA 95054

3 VSSAD, Intel Corp.

Hudson, MA 01749

4 Dept. of Computer Science,

Princeton University,

Princeton, NJ 08544

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

Second, we use a novel approach that we call hamming-
distance-one analysis to compute the AVF of the tag arrays
by tracking false positive matches. A single bit error in the
tag array that results in a miss where there should have
been a hit is harmless in the data translation buffer and
write-through data cache. This miss will only result in the
same data being refetched from elsewhere in the memory
hierarchy. Therefore, only false positives, errors that result
in a incorrect match between an incoming address and a
corrupted tag, are of concern in these structures. A single-
bit error can only cause a false positive match in a tag that
is of hamming distance one—that is, differs in only one
bit—from the incoming bits. Thus, we can track these
errors by simply tracking tag entries that differ from the
incoming CAM bits in one bit. Our analysis shows a best
estimate AVF of 0.41%, 3%, and 7.7% for the tag arrays of
the write-through cache, data translation buffer, and store
buffer studied in the paper. The AVFs of the tag arrays of
the write-through cache and data translation buffer are sig-
nificantly lower than that of the data arrays because errors
are only contributed by the individual bits with the poten-
tial to cause false positive matches.

Third, we introduce a new technique called cooldown to
account for limitations of performance simulators. Because
performance models typically do not run benchmarks to
completion, we may not know the state of an entry in a
structure at the end of the simulation. Cooldown continues
the simulation after statistics collection has ended to allow
these unknown states to be resolved. A cooldown period of
10 million instructions reduces the unknown AVF of the
data cache by over 50%. The cooldown results show that
to-end times are generally un-ACE, with the average
increase in SDC AVF for all structures under 0.2% abso-
lute.

Finally, we examine two simple AVF reduction tech-
niques for the data cache and data translation buffer. Both
of these techniques reduce the AVF by converting an ACE
lifetime component to un-ACE. For example, let’s assume
a specific read-to-read time for a byte in a write-through
cache is ACE. If, however, we could evict the byte between
the two reads, then we result in the following sequence:
read-to-evict, evict-to-fill, and fill-to-read, of which evict-
to-fill is un-ACE. Thus, by forcing an early eviction, we
can convert ACE time into un-ACE, and, thereby reduce
the AVF of both the data cache and the data translation
buffer. In this paper, we examine two variations of this
scheme: one that flushes the cache and translation buffer
periodically and a second one that scrubs the cache incre-
mentally to remove single bit errors.

Our results show that flushing the structures every
100,000 instructions can reduce the AVF by over 50% for
every structure. For the data cache, the benchmark with
maximum loss in IPC ranges from a 0.3% loss flushing
every 5 million instructions to a 1.25% loss flushing every
100,000 instructions. On average, 0.02% loss is seen for the
5 million interval, and 0.19% for the 100,000 instruction
interval. For the data translation buffer, the maximum loss
ranges from 0.05% to 1.77% and the average loss ranges

from 0% to 0.56% for the 100,000 instruction flushing
interval. Scrubbing reduces the DUE AVF of a writeback
cache by 42%.

The rest of the paper is organized as follows. Section 2
and Section 3 provide background on soft errors and three
structures we examine in this paper. Section 4 and
Section 5 describe the AVF analysis technique for data
arrays and tag arrays, respectively. Section 6 describes our
methodology and Section 7 describes the results of the base
AVF analysis. Section 8 describes the techniques to reduce
AVF and their resultant performance. Finally, Section 9
presents our conclusions.

2. Background on Soft Errors

This section describes the background on soft errors.
We limit discussions in this paper to single bit errors, which
has the first order impact on the FIT rate of a microproces-
sor [8]. Section 2.1 discusses two different types of errors
that arise from particle strikes. Section 2.2 discusses how to
compute the AVF of different error types.

2.1. SDC & DUE

Figure 1 illustrates the possible outcomes of a single-bit
fault. Outcomes labeled 1-3 indicate non-error conditions.
The most insidious form of error is silent data corruption
(SDC) (outcome 4), where a fault induces the system to
generate erroneous outputs. To avoid SDC, designers often
employ basic error detection mechanisms, such as parity.
This comes at the expense of area, logic and sometimes the
lengthening of a critical path.

With the ability to detect a fault but not correct it, we
avoid generating incorrect outputs, but often cannot recover
when an error occurs. In other words, simple error detec-
tion does not reduce the overall error rate, but does provide
fail-stop behavior and thereby avoids any data corruption.
We call errors in this category detected unrecoverable
errors (DUE). Currently, the industry specifies soft error
rates in terms of SDC and DUE numbers.

We further subdivide DUE events according to whether
the detected error would have affected the final outcome of
the execution. We call benign detected errors false DUE
events (outcome 5 of Figure 1) and others true DUE events
(outcome 6). A conservative system that signals all
detected errors as processor failures will unnecessarily
raise the DUE rate by failing on false DUE events. Alterna-
tively, if the processor can identify false DUE events (e.g.,
the error corrupted only the result of a wrong-path instruc-
tion), then it can suppress the error signal.

2.2. Architectural Vulnerability Factor (AVF)

As described in the last section, a device’s SDC and
DUE rates are the product of its device error rate and SDC
and DUE AVFs, respectively. In this section we describe
the AVF components of this equation and how to compute
them.

With a single-bit error model, a device’s SDC AVF
expresses the probability that a bit flip in that device results
in an error in a program’s output. A device protected by an
error detection or correction mechanism cannot cause an

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

SDC event, so its SDC AVF—and its contribution to the

overall SDC rate—is zero.

The DUE AVF is the probability that a strike will result

in a detected unrecoverable error. Only components that

have error detection but not error correction (e.g., parity)

will have non-zero DUE AVFs. The DUE AVF is the sum

of the true DUE and false DUE AVFs (see Section 2.1).

Protecting a structure with an error detection mecha-

nism increases the overall error contribution from the struc-

ture. A fault that would have been an SDC event now

becomes a true DUE event, so the true DUE rate equals the

old SDC rate. However, some faults that would have been

benign because the program outcome was unaffected will

now be detected, generating false DUE events. Further-

more, error detection schemes generally add extra bits

which raise the false DUE rate of the structure as well.

Thus, the total DUE AVF of the protected structure will be

at least as large as, and probably greater than, the SDC AVF

of the unprotected version. Interestingly, an error detection

bit, such as parity, is a source of false DUE event.

3. The Three Processor Structures

This paper examines the AVFs of three common

address-based structures: a level-one data cache, a data

translation buffer, and a store buffer. These structures were

chosen because each has very different usage characteris-

tics. The baseline data cache is 4-way set-associative and

its AVF is affected by writes, while the data translation

buffer is fully associative and read-only. The access pat-

terns of the data cache and data translation buffer are sig-

nificantly different. The store buffer contains the only valid

copy of its data in the memory hierarchy, and can simulta-
neously contain multiple entries with the same tag.

The processor accesses the data cache on every load
and store to read and write data, respectively, from the
cache. Our baseline processor model uses a write-through
cache in which the store is also written out to the store
buffer. We also show how the breakdown of lifetimes into
ACE and un-ACE components for the writethrough cache
can be modified to closely approximate the AVF of a write-
back cache.

The data translation buffer is accessed by every load or
store in parallel with the access to the data cache. Unlike
the data cache, however, both loads and stores initiate only
a read operation on the data translation buffer. Each such
read CAMs the tag array with the virtual address. On a
CAM hit, a load or a store obtains the corresponding physi-
cal address and associated protection information.

Finally, our third structure is a store buffer. Like the
data cache, the store buffer is written by store instructions,
but read by loads. Unlike the data cache, however, each
store creates a new entry in the store buffer. Thus, the store
buffer can concurrently hold multiple stores to the same
address. Also, the store buffer has per-byte mask bits to
identify which bytes have been modified. As soon as a
store instruction retires, it becomes a candidate for eviction.
When a store is evicted, the pipeline moves it to a coalesc-
ing merge buffer from where the data is eventually written
into the cache hierarchy. Hence, residency times of entries
in the store buffer are much shorter than corresponding
ones in the data cache or data translation buffer.

4. Lifetime Analysis for Data Array

Tag-based structures typically have two hardware com-
ponents: a data array containing the payload and a tag array
containing tags corresponding to the payload. For example,
in our fully-associative data translation buffer, the tag array
holds virtual page numbers and the data array holds the cor-
responding payload consisting of the physical page num-
ber, protection information, etc.

This section examines the SDC AVFs of three RAM
arrays—first-level write-through cache, data translation
buffer, and a store buffer. Where applicable, we also derive
the corresponding DUE AVFs. In Section 4.2 we also show
how this analysis is altered to achieve an accurate approxi-
mation for the AVF of a write-back cache.

Section 4.1 describes the details of our lifetime analy-
sis. Section 4.2 describes some of the exceptions that must
be made to account for the behavior of individual struc-
tures. Section 4.3 describes the impact of working set size
on lifetime breakdown. Section 4.4 shows why the granu-
larity at which we maintain the lifetime breakdown is criti-
cal. Section 4.5 describes the impact of edge effects arising
from partial simulation of benchmarks. Section 4.6
describes how to compute the DUE AVF for these struc-
tures using the lifetime analysis results.

bit has
error protection?

faulty bit
is read?

benign
fault; no error

no yes

fault corrected;
no error

Figure 1. Classification of the possible outcomes of a
faulty bit in a microprocessor. SDC = silent data corrup-
tion. DUE = detected unrecoverable error.

no
detection

detection &

no
yes

SDC false DUE true DUE

noyes

affects program
outcome?

correction
only

4

2

1

3 5 6

affects program
outcome?

benign
fault; no error

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

4.1. LifeTime Analysis

Mukherjee, et al. [9] introduced lifetime analysis to
compute the AVF of a processor’s instruction queue and
execution units. Lifetime analysis involves dividing up a
bit’s lifetime during a program execution into ACE and un-
ACE components. The AVF is the fraction of the bit’s life-
time during which the bit contained ACE state. To compute
the AVF we use Mukherjee, et al.’s conservative assumption
that the entire lifetime is ACE and then systematically prove
which portion of the bit’s lifetime is un-ACE. Then, the
fraction that cannot be proven un-ACE (ACE and unknown
in Table 1), by definition, is an upper bound of ACE time.
Also, instead of reporting a per-bit AVF, we report a per-
structure AVF, which is the average AVF of all its bits.

To compute the un-ACE fraction of a bit’s lifetime, we
identify activities during a bit’s lifetime that contribute
towards un-ACE state. Figure 2 shows example activities
occurring during the lifetime of a bit in a data array. The bit
begins in “idle” state, but is eventually filled with either
ACE or un-ACE state. The bit is written, read, and eventu-
ally the state contained in the bit is evicted and re-filled.
Reads from or writes to a bit in the data array occur on a tag
match in the corresponding tag array. Thus, the lifetime of a
bit can be divided up into several non-overlapping compo-
nents: idle, fill-to-read, read-to-write, write-to-write, write-
to-read, read-to-evict, etc. Table 1 shows a detailed classifi-
cation of lifetimes into ACE and un-ACE components.

By definition idle, read-to-write, and write-to-write are
un-ACE. Whether fill-to-read and write-to-read are un-ACE
depends on the read itself. For example, if the read is
dynamically dead (its value will never be used in future and,
therefore, will not affect the final outcome of a program),
then the write-to-read time is un-ACE. Other examples of
un-ACE reads include those on the wrong-path or those
falsely predicated.

4.2. Structure Differences

The store buffer is somewhat unique in that a write to
the data bit of one entry can change the ACE status of a data
bit in a completely different entry. Consider two stores that
write to the same byte of a data address. In a single-proces-
sor system, the bits representing this byte in the store buffer
entry associated with the older store become un-ACE as
soon as the younger store is entered into the store buffer.
This is because any subsequent loads to this address will
receive their value from the younger store buffer entry.

The write-back cache needs special consideration also.
Consider the following scenario in the data array. Two con-
secutive bytes A and B in the same cache block are fetched
into the data array. If A is only read and B is never read
prior to eviction, then the fill-to-evict time for B is un-ACE.
In contrast, if A is written into, then the fill-to-evict time for
B becomes potentially ACE because the entire block
(including B) will now be written back into the next level of
the cache hierarchy. Thus, an error in B will get propagated.
To handle a write-back cache, the lifetime breakdown must
be modified. Any bytes of a modified line that have not
themselves been modified are ACE from fill-to-evict,
regardless of what else may happen to them in the interim.
The bytes that have been modified are ACE from last write-
to-evict, plus any earlier write-to-read time. The bytes of an
unmodified line work identically to those of a write-through
cache. Hence, two of the un-ACE components for a write-
back cache (as shown in Table 1), fill-to-evict and read-to-
evict, can be conditionally ACE at certain times. This extra
ACE component could potentially be reduced by adding
multiple modified bits, each representing a portion of the
cache line.

4.3. Working Set Size

The working set size can have a big impact on a struc-
ture’s AVF. For example, if in an 128-entry data translation
buffer, only one entry is ever used, then the AVF will never
exceed 1 / 128. Similarly, if a structure’s miss rate is very
high, then the AVF is likely to be low because part of the
ACE lifetime gets converted to un-ACE time. For example,
an intervening eviction between a write and a read—arising
possibly from reduction in a structure’s size or forced evic-

Figure 2. Example activities during a bit’s lifetime.

......
Fill Read Write Read Evict FillWrite

Time

Table 1: Classification of lifetimes into non-overlapping ACE or un-ACE components. Dynamically dead reads or writes (not shown

explicitly) convert ACE into un-ACE components.

Processor

Structure

Lifetime Classification

ACE un-ACE Unknown

Write-through

data cache

fill-to-read, read-to-read, write-to-read idle, fill-to-write, fill-to-evict, read-to-write,

read-to-evict, write-to-write, write-to-

evict, evict-to-fill

fill-to-end, read-to-

end, write-to-end

Write-back data

cache

fill-to-read, read-to-read, write-to-read, write-to-evict,

write-to-end, some of un-ACE components can be condi-

tionally ACE (see prose)

idle, fill-to-write, fill-to-evict, read-to-write,

read-to-evict, write-to-write, evict-to-fill

fill-to-end, read-to-

end

Data Translation

Buffer

fill-to-read, read-to-read idle, read-to-evict, evict-to-fill fill-to-end, read-to-

end

Store Buffer fill-to-read, fill-to-evict, fill-to-end, read-to-read, read-to-

evict, read-to-end

idle, evict-to-fill none

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

tion—can convert ACE time to un-ACE, thereby reducing
that entry’s contribution to overall AVF (Figure 3).

4.4. Granularity

The granularity at which we maintain the lifetime infor-
mation can have a big impact on the lifetime analysis of
certain structures, such as a cache. A cache data array is
divided up into cache blocks, whose typical size ranges
between 32 - 128 bytes. When a byte in a cache block A is
accessed, the entire cache block A is fetched into the cache.
However, not all the remaining bytes in the block A will be
read or written by the processor. When a new cache block
B replaces the cache block A, the remaining bytes in block
A becomes un-ACE. This is reflected as fill-to-evict time in
Table 1, which represents the bytes of data either never
used before the line is evicted or used only by the initial
access. For the write-through cache, fill-to-evict time con-
stitutes approximately 45% of its total un-ACE time.

For the data translation buffer, we only maintain the
ACE and un-ACE components on a per-entry basis. For the
store buffer data array, however, we maintain the informa-
tion on a per-byte basis, just like the data cache.

4.5. Edge Effect

Edge effects arise as an artifact of not running a bench-
mark to completion in a performance model. For example,
in Figure 2, if our simulation ended after the write, then we
would not know if the write-to-end time is ACE or un-
ACE. If there were an ACE read after the simulation ended,
the write-to-end time would be ACE. Conversely, if there
were an eviction after the simulation ended, then the write-
to-end time would be un-ACE.

Similarly, in Figure 3a, if the simulation ended after the
read, we would not know if the read could have been
dynamically dead or not. The read could become dynami-
cally dead, if there were a corresponding write to the same
address after the simulation ended.

To tackle these edge effects, we introduce the concept
of cooldown, which is complementary to the concept of
warmup in a performance model. A processor model faces

a problem at startup in that initially all cache blocks will be
empty. If simulation begins immediately, the simulator will
show an artificially high number of cache misses. This
problem can be solved by warming up the caches before
activating full simulation. In the warmup period, no statis-
tics are gathered, but the caches and other structures are
warmed up to reflect the steady state behavior of a proces-
sor.

Cooldown is the dual of warmup and follows the actual
statistics gathering phase in a simulation. During the
cooldown interval, we only track events that determine if
specific lifetime components, such as write-to-end or read-
to-end should be ACE or un-ACE. If after the end of the
cooldown interval, we cannot precisely determine if the
specific lifetime components were ACE or un-ACE, we
mark them as unknown (Table 1).

Cooldown has a marked impact on reducing the
unknown portion of a data cache’s array. The effect is less
pronounced in the data translation buffer and is negligible
for the store buffer. Short cooldown intervals quickly help
determine if specific lifetime components in a cache, such
as write-to-end, are ACE or un-ACE. But, for benchmarks
whose working sets fit in the data translation buffer, we
have to simulate till the end of a program to precisely deter-
mine when an entry becomes un-ACE. In a store buffer,
effect of cooldown is negligible because any valid entry is
ACE until eviction.

4.6. Computing the DUE AVF

All prior discussions in Section 4 focused on determin-
ing the SDC AVF, which assumes no protection for a spe-
cific structure. Instead, if these structures had fault
detection (e.g., via parity protection) and no recovery
mechanism, then the corresponding AVF is called DUE
AVF. As described in Section 2.2, we can derive the DUE
AVF by summing the original SDC AVF and the resulting
false DUE AVF.

In the structures studied in this paper, false DUE AVF
from parity protection arises only for a write-back cache
and the store buffer. On detecting a parity error, the write-
through cache and data translation buffer can refetch the
corresponding entry from either the higher-level cache or
page table, respectively. That is, with parity and appropriate
recovery mechanism, the DUE AVF of both a write-
through data cache and data translation can be reduced to
zero.

In both the write-back cache and store buffer RAM,
however, false DUE AVF arises from dynamically dead
loads. When a dynamically dead load reads an entry in the
cache or store buffer RAM array, it can check for errors by
recomputing the parity bit. If there is a mismatch between
the existing and computed parity bit, then the cache or store
buffer will signal an error, resulting in a false DUE event.
The π bit can help reduce the false DUE AVF [13], but we
do not include the π bit in our evaluation. Section 8.2
examines how scrubbing can help reduce the DUE AVF of
a cache.

......
Fill Write Read Evict Fill

......
Fill Write Evict

ACE

un-ACE

(a)

(b)

Time

Time

Fill

un-ACE

Figure 3. AVF reduction by converting ACE time to un-
ACE. (a) shows an example where write-to-read time is
ACE. (b) shows how an intervening evict can convert
part of the ACE time to un-ACE.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

5. Lifetime Analysis for Tag Array

The lifetime analysis for tags in cache arrays has both
similarities to and differences from that for the data pay-
load. Like in Figure 2, the lifetime analysis for tags also
involves monitoring activities on the tag array and identify-
ing the un-ACE portion of a tag’s lifetime. Again, read and
evict operations can contribute ACE time to bits of the tag.
Nevertheless, there are two key differences between the
lifetime analysis for tags and data payload: false positive
and negative cases (Section 5.1) and hamming-distance-
one analysis (Section 5.2).

5.1. False Positive & False Negative Match

A content-addressable memory, such as the tag store,
operates by simultaneously comparing the incoming
address against the contents of each of several memory
entries. As Table 2 illustrates, a single bit error in the tag
array results in two scenarios that can cause incorrect exe-
cution. In the first scenario the incoming bits would match
against a tag entry when it should really have mismatched.
We refer to this as the false positive case. This will cause
the corresponding data array to deliver the incorrect entry,
potentially causing incorrect execution.

In the second scenario, the incoming bits do not match
any tag entry, even though they should have really
matched. For a write-through cache or a data translation
buffer, this would result in a miss, causing the entry to be
refetched without causing incorrect execution.

Structures that hold modified data, such as a write-back
cache or store buffer, must be handled differently. In these
structures, the tag must be correct at eviction time. An
incorrect tag at eviction will cause the data to be written to
an incorrect memory location. We conservatively assume
that any such write will corrupt ACE data. Therefore, all
bits of a tag associated with a modified entry are ACE from
the time that any byte in that entry was first modified until
the time that entry is evicted. This is true even if the store
that modified the entry is dynamically dead.

5.2. Hamming-Distance-One Analysis

To track false positives in the tag array, we use a new
technique called hamming-distance-one analysis. Assum-
ing a single bit error model, an incoming set of bits can
cause a false positive match in the tag array if and only if
there exists an entry in the tag array that differs from the
incoming set of bits in one bit position. In other words,

false positives are introduced in those tag entries that are at
hamming distance one from the incoming set of bits.

Because the false positive case is caused by one particu-
lar bit in a tag entry, the ACE analysis for the tag array must
be done on a per-bit basis, rather than on a per-entry or per-
byte basis as in the data arrays (Section 4.4). That is, when
we match, we mark the bit as potentially ACE. All other
bits in the same entry remain un-ACE.

The false negative case is easier to track. The false neg-
ative case—mismatch when it should have really
matched—occurs when the incoming bits match a tag entry.
A single bit error in any bit of the tag entry would force a
mismatch. On a false negative match, therefore, all bits in
the tag entry are marked either ACE or un-ACE depending
on whether a false miss in the structure would cause incor-
rect execution.

Interestingly, there is a subtle difference between the
data and tag analyses. On a single bit error in the data array,
the actual execution does not necessarily change because
the effect of the single bit error is localized. In contrast, on
a false negative match in the CAM array, we may not get an
actual error (e.g., as in the write-through cache or data
translation buffer). Nevertheless, the error can alter the
flow of execution because the hardware would potentially
bring in a new entry in the tag array. In our simulation
model, we do not track this effect.

To gauge the importance of this effect, we have done
limited statistical fault injection experiments with a data
translation buffer in a corresponding commercial-grade
RTL model. Our experiments with microbenchmarks show
that this effect is negligible and does not alter the AVF in
any significant way.

6. Methodology

For our evaluation, we use an Itanium

2-like IA64 pro-

cessor [6] scaled to current technology. The baseline processor

Table 2: un-ACE CAM lookup scenarios on a single bit error

Should

Have

Actual

Outcome

Potential Error? Scenario

Write-

through

Cache

Data

Translation

Buffer

Store

Buffer

Mis-

matched

Matched Yes Yes Yes False

Positive

Matched Mis-

matched

No No Yes False

Negative

Table 3: SPEC2000 benchmarks in this paper. M = 1 million.

Integer

Benchmarks

Instructions

Skipped

Floating

Point

Benchmarks

Instructions

Skipped

bzip2-source 48,900 M ammp 50,900 M

cc-166 4,700 M applu 500 M

crafty 120,600 M apsi 100 M

eon-kajiya 73,000 M art-110 36,400 M

gap 18,800 M equake 1,500 M

gzip-graphic 29,000 M facerec 64,100 M

mcf 26,200 M fma3d 23,600 M

parser 71,400 M galgel 5,000 M

perlbmk-makerand 0 M lucas 123,500 M

twolf 185,400 M mesa 73,300 M

vortex-lendian3 59,300 M mgrid 200 M

vpr-route 49,200 M sixtrack 4,100 M

swim 78,100 M

wupwise 23,800 M

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

we modeled has a 22-cycle pipeline, runs at 2 GHz, and has an

issue width of six instructions. It has three levels of cache: a

16KByte four-way set-associative L1 cache with 32 byte lines,

a 512KByte 8-way set-associative L2 cache, and a 4MByte L3

cache. It has a 128-entry fully-associative data translation

buffer and a 32-entry store buffer. Each entry in the store

buffer can contain up to 16 bytes of data.

The processor is modeled in detail in the Asim framework

[3]. The benchmarks are run on Red Hat Linux 7.2 via an OS

simulation front-end. For wrong paths, we fetch the mis-spec-

ulated instructions, but do not have the correct memory

addresses that a load or store may access.

Table 3 lists the skip interval and input set selected for

each of the SPEC CPU2000 programs used for our analysis.

The benchmarks were compiled with Intel’s electron compiler

(version 7.0) with the highest level of optimization. We

obtained the number of instructions to skip using Sherwood, et

al.,’s [11] SimPoint analysis modified for the IA64 instruction

set architecture [10]. For each benchmark we obtained a num-

ber of SimPoints, but here we present numbers only for the

first SimPoint of each benchmark. We ran each SimPoint for

10 million instructions, which included no-ops.

7. Results

Section 7.1 shows the overall SDC AVF numbers for
each structure broken down by benchmark. Section 7.2
shows how much false DUE would be created by adding
parity to each of the structures. Section 7.3 examines the
results of the cooldown experiments.

7.1. SDC AVF

Figure 4 shows the SDC AVFs for the data and tag
arrays of the structures we studied in this paper. From left

Figure 4. (Left to right: Data cache (write-through), Data cache (write-back), Data Translation Buffer, Store Buffer)

(b) Tag AVFs

0
10
20
30
40
50
60
70
80
90

100

b
z
ip

2
_
s
o

u
rc

e

c
c
_
1
6
6

c
ra

ft
y

e
o

n
_
k
a
ji
y
a

g
a
p

g
z
ip

_
g

ra
p

h
ic

m
c
f

p
a
rs

e
r

p
e
rl

b
m

k
_
m

a
k
e
ra

n
d

tw
o

lf

v
o

rt
e
x
_
le

n
d

ia
n

3

v
p

r_
ro

u
te

a
m

m
p

a
p

p
lu

a
p

s
i

a
rt

_
1

e
q

u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g

ri
d

s
ix

tr
a
c
k

s
w

im

w
u

p
w

is
e

A
V

E
R

A
G

E

A
V

F
 %

AVF Unknown

(a) Data AVFs

0
10
20
30
40
50
60
70
80
90

100
b

z
ip

2
_
s
o

u
rc

e

c
c
_
1
6
6

c
ra

ft
y

e
o

n
_
k
a
ji
y
a

g
a
p

g
z
ip

_
g

ra
p

h
ic

m
c
f

p
a
rs

e
r

p
e
rl

b
m

k
_
m

a
k
e
ra

n
d

tw
o

lf

v
o

rt
e
x
_
le

n
d

ia
n

3

v
p

r_
ro

u
te

a
m

m
p

a
p

p
lu

a
p

s
i

a
rt

_
1

e
q

u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g

ri
d

s
ix

tr
a
c
k

s
w

im

w
u

p
w

is
e

A
V

E
R

A
G

E

A
V

F
 %

AVF Unknown

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

to right, the bars associated with each benchmark show the
AVF of a 16KB 4-way write-through data cache, a 16KB 4-
way write-back data cache, a 128-entry data translation
buffer, and a 32-entry store buffer. The y-axis of the graph
shows the average SDC AVF of the bits of each structure
over the course of the simulation. These experiments were
run with a cooldown interval of 10 million instructions and
any lifetime component that could not be classified at simu-
lation’s end is listed in the graphs as unknown. Section 7.3
will show how cooldown reduces the unknown components
in the lifetime analysis of these numbers.

7.1.1. Unknown Components

In the graphs in Figure 4, the unknown component on
average shows a maximum at 3% for the data arrays and
4% for the data cache and store buffer tag arrays. The data
translation buffer tag array has a significantly higher
unknown component of 13%. This is because the transla-
tion buffer has a significantly lower turnover rate than the
data cache. All of the bits of a tag that do not Hamming-
distance-one match with a memory operation will remain in
the unknown state until that entry is evicted from the trans-
lation buffer. However, nearly all of these bits will eventu-
ally resolve to the un-ACE state. Hamming-distance-one
matches are rare, and each match only adds ACE time to a
single bit of the matched tag. The unknown lifetime com-
ponents for the data arrays also resolve to un-ACE at a very
high rate. This will be discussed in Section 7.3. Throughout

this paper, when we refer to the best estimate AVF for a
structure, the number we quote does not include the
unknown component for this reason.

7.1.2. Data Arrays

The best estimate of SDC AVFs vary widely across the
data arrays: from 4% for the store buffer and 6% for the
write-through data cache to 25% for the write-back cache
and 36% for the data translation buffer. If unknown time is
included, these rise to 4%, 9%, 28%, and 38%, respec-
tively. The store buffer’s low SDC AVF arises from its
bursty behavior and lower average utilization in most
benchmarks. Additionally, the store buffer has per-byte
mask bits that identify which of the 16 bytes of an entry are
written. Entries that are not written remain un-ACE and do
not contribute towards the AVF. In the average in-use store
buffer entry, only 6 out of the 16 bytes are written.

The data translation buffer’s data array has an SDC
AVF of 36%, the highest among the data arrays we studied.
This is due to its read-only status and relatively low turn-
over rate. However, as we will see in Section 8.1, flushing
the data translation buffer helps increase the turnover rate,
thereby reducing the SDC AVF.

The write-through cache’s SDC AVF is relatively low
for several reasons. These can be best illustrated by looking
at a breakdown of the lifetime components for the cache.
Figure 5 shows the lifetime component breakdown for a
16KB 4-way set-associative L1 data cache. The analysis is

Figure 5. Lifetime Breakdown of a Write-through Data Cache.

0%

20%

40%

60%

80%

100%

b
z
ip

2
_
s
o

u
rc

e

c
c
_
1
6
6

c
ra

ft
y

e
o

n
_
k
a
ji
y
a

g
a
p

g
z
ip

_
g

ra
p

h
ic

m
c
f

p
a
rs

e
r

p
e
rl

b
m

k
_
m

a
k
e
ra

n
d

tw
o

lf

v
o

rt
e
x
_
le

n
d

ia
n

3

v
p

r_
ro

u
te

a
m

m
p

a
p

p
lu

a
p

s
i

a
rt

_
1

e
q

u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g

ri
d

s
ix

tr
a
c
k

s
w

im

w
u

p
w

is
e

A
V

E
R

A
G

E

L
if

e
ti

m
e

Read-to-evict

Write-to-evict

Fill-to-evict

Idle

 Read-to-w rite

Write-to-w rite

 Fill-to-w rite

 Evict-to-Fill

Any-to-end

 Read-to-read

 Write-to-read

 Fill-to-read

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

done on a byte granularity, and the y-axis shows on aver-
age, what percent of execution time a byte in the cache
spends in each lifetime component. For example, if a cache
line is filled and one of its bytes is read 5 cycles later, a
contribution of 5 cycles is made to the fill-to-read lifetime
component for that byte. This graph does not account for
dynamically dead loads, so, in the above example, a fill-to-
read lifetime component would be added even if the read
were from a dynamically dead load. The graph also does
not use a cooldown interval. Doing so would further
resolve the any-to-end time into one of the other compo-
nents.

The graph shows several things about the write-through
cache that imply that its SDC AVF should be relatively low.
First, on average over 45% of the bytes read into the cache
are accessed only on that initial access or not at all. This
can be seen from the fill-to-evict bar in Figure 5. A read or
write to a specific byte or word brings in a whole cache
block full of bytes, but many of these other bytes are never
accessed. Second, read-to-evict constitutes a significant
fraction of the average overall lifetime (over 20%). These
results agree with observations made in previous research
[7][14]. Read-to-evict is un-ACE for a write-through cache.
It is also un-ACE for a write-back cache assuming that no
write preceded the read. Lastly, unlike the data translation
buffer, a data cache line is modified by stores. This means
that any bytes overwritten by a store are un-ACE in the
time period from the last useful read until the write. On the
graph, this component of un-ACE time can be generated by
adding together the read-to-write, fill-to-write, and write-
to-write times. The combination of the three ends up
accounting for a little less than 5% of the overall lifetime.

The write-back cache’s SDC AVF is 25% compared to
6% for the write-through cache. This is because a write to a
byte of a cache line makes all unmodified bytes in the
cache line ACE from the time of the initial fill until the
eviction of the line. This is true regardless of the interven-
ing access pattern to that line. Since this number cannot be
generated from the components in Figure 5, the write-
through lifetime analysis was modified to allow recording
of this interval. The write-back numbers were then gener-
ated from the modified lifetime analysis. The modified
bytes of the write-back cache line will be ACE for write-to-
evict plus any preceding write-to-read time for those bytes.
Per-byte mask bits (as in the store buffer) would help avoid
the write-backs of bytes never modified, thereby reducing
the write-back cache’s AVF.

7.1.3. Tag Arrays

The best estimate SDC AVFs for the tag arrays of the
write-through cache and the data translation buffer, which
do not include unknown time, are quite low: 0.41% and
3%, respectively. These values are considerably lower than
the same values for the corresponding data arrays: 6% and
36%, respectively. The low AVF in these tag arrays arises
because the false negative case (Section 5.1)—mismatch
when there should have been a match—forces a miss and
refetch in these structures, but does not cause an error. In

contrast, the false positive case—match when there should
be a mismatch—can cause an error, but it only affects the
ACE state of the single bit that causes the difference. Con-
sequently, there are significantly fewer ACE bits on aver-
age in the tag arrays of these structures compared to the
data arrays. The write-through tag AVF is particularly low
because a Hamming-distance-one match would have to
occur between the four members of a set to contribute to
ACE time.

When including unknown time, the tag array SDC
AVFs of the write-through cache and data translation buffer
increase to 4.3% and 16% respectively. We argue that the
lower numbers are more representative of the actual AVFs
for these two structures because Hamming-distance-one
matches are so rare and each Hamming-distance-one match
makes only one bit ACE. If the higher number were used,
we would be classifying all bits of the tag as ACE at the
end point of the simulation. Also, it is likely that these
structures would be effectively flushed by a context switch
before the end of the cooldown phase. We will show the
results of flushing on AVF in Section 8.1.

In contrast, the SDC AVF of the store buffer is 7.7%,
which is, as per our expectation, higher than that of the cor-
responding data arrays. This is because the store buffer tags
are always ACE from fill to evict. The only contributor to
un-ACE time for the store buffer tags is the idle lifetime
component. The low AVF implies that the store buffer utili-
zation is on average quite low. The tag AVF is higher than
the data AVF for the store buffer because all of the bytes in
the store buffer entry are not written by each store. On aver-
age, an in-use store buffer entry contains only 6 valid bytes
out of 16 total. Only the valid bytes contribute ACE time.

The SDC AVF of the tag array of the write-back cache
is 25%, but is not directly correlated with that of its data
array. This is because two of the un-ACE components for a
write-through cache—fill-to-evict and read-to-evict—may
become potentially ACE in a write-back cache (see
Section 4.1). A write-back cache’s tag is always ACE from
the time of first modification of its data entry until that
entry is evicted.

7.2. DUE AVF

As explained in Section 2.1, a DUE (detected unrecov-
erable error) occurs when we can detect a fault in a struc-
ture, but cannot recover from it. Putting parity on a write-
back cache or a store buffer allows us to detect an error in a
dirty block, but not recover from it. To compute the DUE
AVF we can use the original SDC AVF (same as the true
DUE AVF with parity) from Section 7.1 and false DUE
AVF arising from dynamically dead loads. Our analysis
shows that the false DUE AVF is, on average, an additional
0.2% and 0.5% arising out of dynamically dead loads and
stores. Hence, the total DUE AVF for the data arrays of a
store buffer and write-back cache are 4.2% and 25.5%
respectively.

In contrast, putting parity on a write-through cache or
data translation buffer’s data array allows us to recover
from a parity error by refetching the corresponding entry

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

from the higher-level cache or page table respectively. Con-

sequently, DUE AVF of these two data arrays can be

reduced to zero.

The DUE AVF of the tag arrays of both structures is the

same as their SDC AVF, since the tag bits are required to be

correct even if the store is dynamically dead. An incorrect

tag could result in data being written to a random memory

location when the entry was evicted.

7.3. Effect of Cooldown

As explained in Section 4.5, edge effects increase the

unknown component (Table 1) of lifetime components,

thereby increasing the overall SDC AVF. Figure 6 shows

the effect cooldown has in reducing the unknown compo-

nent. The y-axis of the graph shows the average AVF for

each structure over all benchmarks. There are two bars

associated with each structure. The first bar represents that

structure’s AVF without cooldown, and the second repre-

sents the AVF with cooldown. The gray section of each bar

represents the fraction of AVF that is unknown at simula-

tion end. For every structure other than the tags of the data

translation buffer, the cooldown period reduces the

unknown component by over 50%. Less effect is seen in

the data translation buffer because an unknown entry can

only be classified after it is evicted, and the data translation

buffer has a much lower turnover rate than the other struc-

tures. The cooldown graph shows that most entries that

reach end of simulation in the unknown state are resolved

to be un-ACE. The unknown component of the tags of the

data cache and data translation buffer resolves at a ratio

greater than 60 units un-ACE to 1 unit ACE. The unknown

component of the data portions of all structures resolves at

a ratio greater than 10 units un-ACE to 1 unit ACE. The

average SDC AVF for all structures increases less than

0.2% absolute, during the cooldown phase.

8. AVF Reduction Techniques

As explained in Section 4.3, a high turnover rate in a
structure can increase the un-ACE fraction of a structure’s
lifetime, thereby reducing the AVF. We use the same
insight to design AVF reduction techniques. Section 8.1
describes how flushing can reduce the SDC AVF of a data
cache and data translation buffer. Section 8.2 describes how
scrubbing can reduce the DUE AVF of a data cache.

8.1. Flushing

The first technique simply flushes (or invalidates) the
structure periodically. Flushing effectively evicts one or
more entries from a structure, thereby achieving the same
effect shown in Figure 3b.

Flushing helps reduce the AVF for only two of the three
structures—cache and data translation buffer—we examine
in this paper. Flushing cannot be used to reduce the AVF of
the store buffer because the data is aggressively written out
as soon as a store retires.

The basic insight behind reducing the AVF is to convert
ACE lifetime components into un-ACE. Flushing a struc-
ture periodically achieves this, for example, by converting
part of the write-to-read (ACE) time in a write-through
cache to write-to-evict (un-ACE). Figure 7 shows the over-
all SDC AVF reduction from flushing structures at regular
intervals. For this experiment, we assume that a flush oper-
ation is instantaneous. The y-axis on the graph represents
the AVF of each structure averaged over all benchmarks.
Each structure has 4 entries on the x-axis, one for the base-
line AVF, and one each for flushing at a 5 million instruc-
tion granularity, a 1 million instruction granularity, and a
100,000 instruction granularity. Flushing mirrors the cache
data displacement that is caused by operating system con-
text switches

Our results show that flushing the structures every
100,000 instructions can reduce the AVF by over 50% for
every structure except for the write-through data cache
tags. For the data cache, the benchmark with maximum loss
in IPC ranges from a 0.3% loss flushing every 5 million

Figure 6. Effect of cooldown with a 10 million instruction
cooldown interval.

COOLDOWN GRAPHS
PAIR of graphs with and without cooldown, but
 including unknowns

Six pairs of #s: write-through data & tag
write-back data & tag
data translation buffer data & tag

0

5

10

15

20

25

30

35

40

45

50

D
c
a
c
h

e
 D

a
ta

 (
W

T
)

D
c
a
c
h

e
 D

a
ta

 (
W

B
)

d
T

L
B

 D
a
ta

D
c
a
c
h

e
 T

a
g

s
 (

W
T

)

D
c
a
c
h

e
 T

a
g

s
 (

W
B

)

d
T

L
B

 T
a
g

s

A
V

F
 %

Figure 7. Effect of flushing (with different intervals) on
the SDC AVF.

FLUSHING GRAPHS
Multiple bars per structure

Structures: Same as in Cooldown.
0
5

10
15
20
25
30
35
40
45
50

W
ri

te
th

ro
u

g
h

 W

T
 5

M

 W

T
 1

M
 W

T
 1

0
0
K

W
ri

te
b

a
c
k

 W

B
 5

M

 W

B
 1

M
 W

B
 1

0
0
K

D

T
B

 b
a
s
e

D

T
B

 5
M

D

T
B

 1
M

D
T

B
 1

0
0
K

W
ri

te
th

ro
u

g
h

 W

T
 5

M

 W

T
 1

M
 W

T
 1

0
0
K

W
ri

te
b

a
c
k

 W

B
 5

M

 W

B
 1

M
 W

B
 1

0
0
K

D

T
B

 b
a
s
e

D

T
B

 5
M

D

T
B

 1
M

D
T

B
 1

0
0
K

A
V

F
 %

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

instructions to a 1.25% loss flushing every 100,000 instruc-
tions. On average, 0.02% loss is seen for the 5 million
interval, and 0.19% for the 100,000 instruction interval. For
the data translation buffer, the maximum loss ranges from
0.05% to 1.77% and the average loss ranges from 0% to
0.56%.

8.2. Scrubbing

Parity-protecting a write-back cache brings the SDC
AVF down to zero, but introduces the DUE AVF compo-
nent. One way to reduce the DUE AVF is to use ECC.
However, ECC requires extra logic in the critical path of a
load’s access to a cache for inline correction. To avoid this
extra overhead, a processor may choose to avoid the logic
for inline correction of errors. Instead, a hardware scrubber
can wake up periodically and correct single bit errors in the
cache. However, it is impractical for the scrubber to correct
single bit errors in all cache blocks in one cycle (this would
make it equivalent of inline ECC correction). Hence, a
scrubber must periodically wake up, sequence through the
cache blocks one at a time, and correct single bit errors in
the cache block it examined. This should eliminate a frac-
tion of the errors a load would have seen in the processor’s
cache. AMD’s OpteronTM processor uses such a scheme [1].

We demonstrate that our lifetime analysis for AVF cal-
culation can also easily compute the impact of scrubbing on
the DUE AVF of such a write-back cache. Lets assume that
a certain fill-to-read component is ACE. If we introduce a
scrub operation in between, then the fill-to-scrub becomes
un-ACE, whereas the scrub-to-read remains ACE. Thus,
scrubbing can reduce the AVF by converting ACE time into
un-ACE component. Our analysis shows that the DUE AVF
is reduced by 42% with scrubbing with a 16KB cache, 2
GHz processor, and a scrubbing interval of 40ns (which is
the best case scrubbing interval for AMD’s OpteronTM pro-
cessor). Our analysis scrubs only on idle cache cycles, to
minimize any disruption in processor performance.

8.3. Sensitivity Analysis

Figure 8, shows the effect of halving the size of each
structure on its AVF. In general, halving the size of a struc-
ture tends to increase its AVF slightly. This is due to the set
of frequently accessed lines in the structure. As the struc-
ture size decreases, this set of frequently accessed lines
makes up a greater fraction of the structures’s capacity.
These lines are less likely to be evicted and more likely to
spend time in ACE lifetime components, such as read-to-
read. The exceptions are the store buffer data and transla-
tion buffer tag arrays. The AVFs of the data translation
buffer tags decrease because the opportunity for Hamming-
distance-one matches is reduced when considering 64 other
tags instead of 128 other tags. While in general the AVF of
the store buffer data array increases slightly when its size is
halved, this effect is not seen in the average above. This is
because the three benchmarks with high store buffer utili-
zation and AVFs see their AVFs decrease enough to offset
the general trend. Reducing the size of the store buffer in a
benchmark with high utilization will increase stalls and
reduce the average lifetime of entries in the store buffer.
The benchmark with maximum IPC loss from halving
structure size ranges from a loss of 7.5% for the data cache
to 28% for the data translation buffer to 6.3% for the store
buffer.

9. Summary

This paper made four contributions towards computing
the AVFs of three critical address-based structures--a write-
through data cache, a data translation buffer, and a store
buffer--each with distinctive hardware characteristics. First,
we described how to perform a detailed breakdown of life-
time components (e.g., fill-to-read, read-to-evict) of bits in
these structures into ACE (required for architecturally cor-
rect execution), un-ACE (unnecessary for ACE), and
unknown components. Then, we computed the AVF for the
data arrays. Our analysis of a detailed IA64 processor simu-
lator shows best estimate AVFs of 6%, 36%, and 4%,
respectively, for the data arrays of the three structures (with
realistic sizes). The AVF of the store buffer's data array is
particularly low because of low average utilization.

Second, we extended the lifetime analysis for tag arrays
to identify false positive (match when there should have
been a mismatch) and false negative (mismatch when there
should have been a match) cases. To identify false positive
matches, we introduced a novel technique called hamming-
distance-one analysis, which identifies tag entries that dif-
fer by one bit (potentially due to a single bit error) from the
incoming match bits. Our analysis shows that the tag arrays
of these structures have surprisingly low best estimate
AVFs of less than 0.41%, 3%, and 7.7%, respectively. For
the data cache and translation buffer, the low AVF arises
because a false negative match will force a miss and refetch
sequence, but not cause an error. For the store buffer tag,
the low AVF arises from low average utilization of the store
buffer itself.

Third, we introduced a new technique called cooldown
to account for limitations of performance simulators.

Figure 8. Relative SDC AVFs with halved structure size.

Relative SDC AVF with half the size

for all the eight structures

0

5

10

15

20

25

30

35

40

45

50

D
c
a
c
h

e
 W

T
 D

a
ta

 1
6
K

D
c
a
c
h

e
 W

T
 D

a
ta

 8
K

D
c
a
c
h

e
 W

B
 D

a
ta

 1
6
K

D
c
a
c
h

e
 W

B
 D

a
ta

 8
K

T
L

B
 D

a
ta

 1
2
8

T
L

B
 D

a
ta

 6
4

S
T

B
 D

a
ta

 3
2

S
T

B
 D

a
ta

 1
6

D
c
a
c
h

e
 W

T
 T

a
g

s
 1

6
K

D
c
a
c
h

e
 W

T
 T

a
g

s
 8

K

D
c
a
c
h

e
 W

B
 T

a
g

s
 1

6
K

D
c
a
c
h

e
 W

B
 T

a
g

s
 8

K

T
L

B
 T

a
g

s
 1

2
8

T
L

B
 T

a
g

s
 6

4

S
T

B
 A

d
d

re
s
s
 3

2

S
T

B
 A

d
d

re
s
s
 1

6

A
V

F
 %

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

Because performance models typically do not run bench-

marks to completion, we may not know the state of an entry

in a structure at the end of the simulation. Running the sim-

ulation a little longer through the cooldown interval may

allow us to see the eviction of the entry and resolve the

original read-to-end time as un-ACE. In the absence of

such a cooldown analysis the read-to-end time would be

unknown and would increase the AVF in a conservative

analysis. A cooldown period of 10 million instructions

reduces the unknown AVF of the data cache by over 50%.

The cooldown results show that unknown times are gener-

ally un-ACE, with the average increase in SDC AVF for all

structures under 0.2% absolute.

Finally, we examined two simple AVF reduction tech-

niques for the data cache and data translation buffer. Both

of these techniques reduce the AVF by converting an ACE

lifetime component to un-ACE. In this paper, we examined

two variations of this scheme: one that flushes the cache

and translation buffer periodically and a second one that

scrubs the cache incrementally to remove single bit errors.

We show scrubbing to reduce the AVF of a write-back

cache by about 42%. Our results show that flushing the

structures every 100,000 instructions can reduce the AVF

by over 50% for every structure except for the write-

through data cache tags, which essentially have a zero AVF.

For the data cache, the benchmark with maximum loss in

IPC ranges from a 0.3% loss flushing every 5 million

instructions to a 1.25% loss flushing every 100,000 instruc-

tions. On average, 0.02% loss is seen for the 5 million

interval, and 0.19% for the 100,000 instruction interval. For

the data translation buffer, the maximum loss ranges from

0.05% to 1.77% and the average loss ranges from 0% to

0.56% for a 100,000 instruction flushing interval.s evicted.

Acknowledgments

We would like to thank John Crawford and Nelson Tam

for their help with the analysis of cache scrubbing, Nick

Wang for his work on RTL fault injection, Chris Weaver,

Eric Borch and Intel’s Asim group for their help with the

Asim infrastructure and Harish Patil and Robert Cohn for

providing PinPoints for the benchmark set. We would also

like to thank Bill Herrick, Steve Raasch, and the other

members of the FACT group for their comments on early

drafts of the paper and the anonymous reviewers for their

useful feedback.

References

[1] AMD, “BIOS and Kernel Developer’s Guide for AMD Ath-

lonTM 64 and AMD OpteronTM Processors.” Publication

#26094, Revision 3.14, April 2004, http://www.amd.com/us-

en/assets/content_type/white_papers_and_tech_docs/

26094.PDF.

[2] D. Bossen, "CMOS Soft Errors and Server Design," 2002

IRPS Tutorial Notes - Reliability Fundamentals, April 7,

2002.

[3] J. Emer, P. Ahuja, N. Binkert, E. Borch, R. Espasa, T. Juan,

A. Klauser, C.-K. Luk, S. Manne, S. S. Mukherjee, H. Patil,

and S. Wallace, “Asim: A Performance Model Framework,”

IEEE Computer, 35(2):68-76, Feb. 2002.

[4] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walstra, and

C. Dai, "Impact of CMOS Scaling and SOI on soft error rates

of logic processes," VLSI Technology Digest of Technical

Papers, 2001.

[5] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and

S. Borkar, "Scaling trends of Cosmic Rays induced Soft

Errors in static latches beyond 0.18µ," Symposium on VLSI

Circuits Digest of Technical Papers, 2001.

[6] K. Krewell, “Intel’s McKinley Comes Into View,” Micropro-

cessor Report, Volume 15, Archive 10, October 2001.

[7] A. Lai, C. Fide and B. Falsafi. “Dead-Block Prediction and

Dead-Block Correlating Prefethers,” 28th International Sym-

posium on Computer Architecture, June 2001.

[8] S.S.Mukherjee, J. Emer, and S.K.Reinhardt, “The Soft Error

Problem: An Architectural Perspective,” 11th International

Symposium on High-Performance Computer Architecture

(HPCA), Feburary 2005.

[9] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and

T. Austin, “A Systematic Methodology to Compute the

Architectural Vulnerability Factors for a High-Performance

Microprocessor,” 36th Annual International Symposium on

Microarchitecture (MICRO), December 2003.

[10] H. Patil, R. Cohn, M. Charney, R.Kapoor, A. Sun, and A.

Karunanidhi, “Pinpointing Representative Portions of Large

Intel® Itanium® Programs with Dynamic Instrumentation,”

37th Annual International Symposium on Microarchitecture

(MICRO), 2004.

[11] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,

“Automatically Characterizing Large Scale Program Behav-

ior,” 10th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASP-

LOS), October 2002.

[12] N. Wang, M. Fertig, and S. Patel, “Y-Branches: When You

Come to a Fork in the Road, Take It,” 12th International

Conference on Parallel Architectures and Compilation Tech-

niques (PACT), 2003.

[13] C.Weaver, J. Emer, S.S. Mukherjee, and S.K.Reinhardt,

“Techniques to Reduce the Soft Error Rate of a High-Perfor-

mance Microprocessor,” 31st Annual International Sympo-

sium on Computer Architecture (ISCA), 2004.

[14] D. Wood, M, Hill and R. Kessler. “A model for estimating

trace-sample miss ratios,” 1991 SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, May 1991.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on April 16, 2009 at 15:57 from IEEE Xplore. Restrictions apply.

