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Analysis and Synthesis of Correlated Data1 

Introduction 

Monte-Carlo (MC) simulation of multiple instances of devices, testers, use conditions, etc. 
requires generation of many instances of sets of numbers.  For example one might need the  
elevation and daily average temperature at each of many locations.  Since, for example, higher 
elevations are associated with lower temperatures, these numbers are likely to be correlated.  
Once the data has been acquired, the generation of MC samples can be a random sampling of the 
original data.  For example, for each MC instance, one would randomly select a location, and use 
the mean temperature and elevation for that location.  One could extend this idea by using 
weighted sampling. 

Monte-Carlo sampling from original data is warranted if the original data is not a sample of the 
population, but in fact represents the entire population.  However, if the data is actually a sample 
of the population, there are disadvantages to MC sampling from original data: 

1. Original data may have outliers which are not representative of the design targets. 

2. Original data is not easily adjustable to do “what-if” scenarios for cases in which data 
does not yet exist. 

3. If the number of MC instances sampled exceeds the original dataset size, the sampling 
will not be true, since many instances will be repetitively sampled. 

So, we develop in this paper a methodology by which a parametric statistical model may be 
extracted, and then MC samples can be generated from the parametric model, rather than directly 
from data.  MC samples based on a parametric statistical model will not generate statistically 
significant outliers, may be adjusted by manipulation of underlying statistical parameters (to 
explore “what-if” scenarios), and may be used to generate unlimited MC samples.  The method 
described here preserves correlations, and preserves certain constraints on statistical variables 
which commonly occur.  The method can handle variables with the following types of constraint: 

1. Unconstrained: ∞<<∞− x  

2. Positive constraint: 0≥x    (variances, such as the daily temperature variance, have this 
property) 

3. Fractional constraint: 10 ≤≤ x   (fraction of time in a state) 

4. Time-in-states constraint: 10 1 ≤≤ x ,  10 2 ≤≤ x ,  10 3 ≤≤ x ,  where 1...321 =+++ xxx  
(fraction of time in multiple states). 

                                                           
1 C. Glenn Shirley, May 7, 2004 
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The methodology described here will find application in synthesizing use conditions by MC 
methods. 

The plan of the paper is to show the method by which statistical parameters for correlated 
multinormal data can be extracted, and then used to synthesize correlated data with the same 
parameters as the original data.  Then, we extend the method by showing how to handle 
statistical variables which are constrained various ways. 

Analysis and Synthesis of Correlated, Unconstrained Data 

Analysis 

Consider the following dataset consisting of 1367 associated numbers shown in Table I.  Each 
instance corresponds to a row in this table.  There is no particular constraint on the values.  The 
objective is to fit this data to a parametric statistical model, and then synthesize data from the 
model.  Distributions and correlations of this data are shown in the Jmp analysis in Figs. 1 and 2. 

 
Table I  Example dataset.  Columns 1 and 2 are correlated to each other, but Column 3 is 

uncorrelated to the others. 

T_mean1 T_mean2 Tmean_3
11.128 17.236 30.920
12.154 17.286 27.497
15.561 15.561 28.182
10.667 15.627 28.261
11.849 15.552 32.524
10.939 19.079 24.159
15.615 15.615 28.358
12.950 16.642 27.327
12.282 20.762 31.387
8.747 14.628 29.233

10.568 19.341 28.046
11.525 19.214 27.126
10.129 17.698 25.932
12.986 20.993 19.861
12.365 20.286 35.752
13.357 21.213 33.168
13.953 20.863 32.545
11.957 17.602 30.010
13.523 19.684 32.959
11.996 18.736 24.430
13.599 20.784 25.789
14.267 20.255 24.692
14.286 21.897 36.028
6.931 18.187 32.267  

and 1343 more rows. 
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Tmean_1 
Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

16.279808
5.8725802
0.1588344
16.591394
15.968222

     1367 

Tmean_2 
Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

24.373974
3.6992313
0.1000523
24.570247
24.177701

     1367 

Tmean_3 
Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

30.048748
4.0786681
0.1103149
30.265153
29.832343

     1367 
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Fig. 1  Distributions of data in Table I 

 

 T_mean1 T_mean2 Tmean_3
T_mean1 1.0000 0.7484 0.0445 
T_mean2 0.7484 1.0000 0.0412 
Tmean_3 0.0445 0.0412 1.0000  
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Fig. 2  Correlations of data in Table I. 



Synthesis of Correlated Data Rev 1.doc 4

Specific statistics of this data are of interest.  The mean of the mth variable is: 

∑=
i

i
mm

x
N

x 1

. (1) 

The covariance between the mth and nth variable is: 

( )( )∑ −−=
i

n
i
nm

i
mmn xxxx

N
V 1

. (2) 

The variance of the mth variable is given by Eq. (2) with nm = .  The correlation coefficient 
between the mth and nth variable (that is, the correlation matrix) is: 

nnmm

mn
mn VV

V
=ρ

. (3) 

It is possible for the covariance matrix to exist, but for computational difficulty to occur if a 
variable has zero variance.  For this reason, it is usually more convenient to compute the 
covariance matrix, and then test for vanishing variances before computing Eq. (3).  Some 
software (in particular Jmp) provide the correlation matrix (if it is not singular).  In this case, the 
covariance matrix can be computed from the correlation matrix and the variance for each 
variable using a rearrangement of Eq. (3): 

mnnnmmmn VVV ρ=  

Synthesis of a Single Variable, Normally Distributed 

If just one variable is of interest, then synthesis of a random variable with mean x  and variance 
V is done using 

ii zVxx ×+=  (4) 

where iz  is the i-th instance of a normally distributed variable with zero mean and unit variance 
which can be generated via the inverse normal cdf according to 

( )ii ranz 1−Φ=  (5) 

In the case of Tmean_1 this becomes: 

( )ii ranx 18725802.5279808.16 −Φ×+=  (6) 

where the values were obtained from the Jmp statistics in Fig. 1.  2000 data points generated 
from this are compared with the original data in Fig. 3.  Notice that all the statistical indicators 
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are well matched, but of necessity, the detailed shape (especially in the tails) is not reproduced in 
the synthesized data. 

 

Tmean_1 
Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

16.279808
5.8725802
0.1588344
16.591394
15.968222

     1367 

Tmean_1 (synthesized) 
Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

16.182618
  5.88826

0.1316655
16.440834
15.924402

     2000 
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Fig 3.  Tmean_1 raw data (left) versus synthesized (right). 

Synthesis of Multiple Correlated Variables, Normally Distributed 

Each individual variable in Table I can be separately analyzed and synthesized in the manner of 
the previous section.  However, if it is important to generate samples of the 3 variables which 
preserve the correlation of variables, then we use an extension of the approach described in 
previous section. 

A generalized version of Eq. (4) is the matrix equation 

zCxx rtr ′+=  (7a) 

or, explicitly, 
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 (7b) 

where the column vector on the right-hand side consists of n independently sampled normally 
distributed variables (mean 0, and variance unity), and where the matrix is the lower-triangular 
Choelesky root of the covariance matrix: 

CCV
rtt
′=  (8) 

or 
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where the upper and lower Cholesky roots are transposes of each other ( mnnm CC = ), and where 
the covariance matrix V is real symmetric ( mnnm VV = ).  In addition, the covariance matrix must 
be positive definite if the Choelsky root is to be extracted.  Positive definiteness means that, for 
any vector xr , 0>′ xVx rtr .  It can be shown that this will be true if and only if 

1. 0>iiV  for all i 

2. 2
ijjjii VVV >×  for i ≠ j 

3. Element with largest modulus lies on main diagonal. 

4. 0)det( >V
t

 

Notice that if one of the variables in Table I has zero variance, that is, has the same value for all 
instances, then at least conditions 1 and 2 will be violated, and it will not be possible to extract 
the Cholesky root.  If this is the case, however, it is not necessary to consider the variable as a 
statistical variable.  Although this therefore presents no mathematical difficulty, it is a case 
which must be taken into account when writing software code to extract statistical synthesis 
models. 



Synthesis of Correlated Data Rev 1.doc 7

An algorithm to extract the Cholesky root of a real-symmetric positive definite matrix is readily 
available2, and has been implemented in Excel Visual Basic. 

It is useful to point out that in the case of a single variable, Eq. (9) reduces to 

( )2
1111 CV =  (10) 

so that Eq. (7a) becomes Eq. (4).  In a sense, the Cholesky root is the “square root” of the 
covariance matrix. 

The individual variable statistics, correlation matrix, and lower-triangular Cholesky root may be 
extracted from the data in Table I, and are shown in Table II. 

Table II  Mean and standard deviation (square root of variance) for the 3 variables in Table I.  Also 
tabulated are the correlation matrix (Rho), and the lower-triangular Cholesky root of the 

covariance matrix.  This is an application of an Excel tool “UCPET”. 
 

Statistics Mean SD  
T_mean1 16.2798 5.8704  
T_mean2 24.3740 3.6979  
Tmean_3 30.0487 4.0772  
    
Rho T_mean1 T_mean2 Tmean_3 
T_mean1 1.0000 0.7484 0.0445 
T_mean2 0.7484 1.0000 0.0412 
Tmean_3 0.0445 0.0412 1.0000 
    
Cholesky T_mean1 T_mean2 Tmean_3 
T_mean1 5.8704 0 0 
T_mean2 2.7675 2.4526 0 
Tmean_3 0.1814 0.0483 4.0729 

Notice in Table II that T_mean1 and T_mean2 have a significant correlation, whereas Tmean_3 
has a very low (effectively zero) correlation with T_mean1 and T_mean2. 

The values shown in italics in Table I are the parameters needed in Eq. (7b) to synthesize 
variables with the required correlation. 

So Eq. (7b) will be written 
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 (11) 

                                                           
2 “Numerical Recipes..”, W.H. Press, B.P. Flannery, S. A. Teukolsky, W. T. Vetterling, Cambridge Univ. Press 
(1992) 
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where the elements of the “z” vector are independent (uncorrelated) normal deviates samples 
from a normal distribution with a mean of zero, and a variance of unity.  Notice that the first 
equation in Eq. (11) is identical with Eq. (4).  Any number of triples of correlated numbers may 
be generated by repeated use of Eq. (11) with triples of uncorrelated normal deviates.  When this 
is done, we obtain the sample shown in Table III. 

Table III Synthetic data generated by using Eq. (11). 

T_mean1 T_mean2 Tmean_3
6.908 14.681 30.052

11.192 20.304 37.431
13.842 19.550 23.273
16.696 30.713 28.610
19.559 24.448 33.982
23.137 26.160 28.866
15.073 25.369 23.661
11.280 23.093 21.982
13.619 21.542 25.599
22.802 25.896 28.223
18.356 26.505 26.362
20.306 20.933 32.166
25.493 27.225 27.881
19.685 27.315 32.662
23.614 25.213 34.447
13.311 22.289 26.791
10.885 24.881 25.881
17.354 24.166 32.518
17.060 29.140 32.881
12.900 20.744 27.849
8.239 20.076 30.855

25.225 32.867 33.289
25.138 25.664 25.641  

.. 2000 rows in total. 

The synthetic data in Table III may be analyzed in exactly the same way as the original data was 
analyzed above.  Figs. 4 and 5 show the results of the analysis and may be compared with Figs. 1 
and 2. 
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Tmean_1 
Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N
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Fig. 4.  Synthesized data generated using Eq. (11) 

 

 T_mean1 T_mean2 Tmean_3
T_mean1 1.0000 0.7434 0.0021 
T_mean2 0.7434 1.0000 0.0165 
Tmean_3 0.0021 0.0165 1.0000  
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Fig. 5.  Correlations of synthesized data.  This is to be compared with Fig. 2. 
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Analysis and Synthesis of Multiple Correlated Constrained Variables 

Sometimes statistical variables (or data) are constrained.  Table IV is an example of data for 
which two of the statistical variable values for each unit are constrained: 

110 ≤≤ f  (12a) 

∞<≤ 1var_0 T  (12b) 

whereas one is not constrained 

∞<<∞− 1_ meanT .   (unconstrained, assumed normal) (12c) 

The constraint on f1 is typical of statistical variables which represent a fraction.  The constraint 
on T_var1 is typical of variables which are positive definite, such as variances of a variable for a 
specific unit. 

 
Table IV  Example data with fraction of time in ambient f1, average temperature T_mean1, and 

variance T_var1. 

f1 T_mean1 T_var1
0.928 11.1283306 11.1532073
0.898 12.1539885 12.5669417
0.773 15.5611623 6.86547489
0.891 10.6667886 22.8168552
0.982 11.8492834 15.2243792
0.911 10.9386929 25.4351889
0.714 15.615437 9.33561594
0.934 12.9496939 14.2044274
0.942 12.2815545 20.8951555
0.776 8.74737591 29.1459802
0.912 10.5676292 27.5987067
0.872 11.5250515 22.8812167
0.909 10.1287694 26.0174409
0.959 12.9862047 23.5971688
0.757 12.3647639 23.934025
0.913 13.3573995 23.2383428
0.757 13.9532134 18.141637
0.948 11.9565801 21.4910688
0.853 13.5228469 21.9822903  

.. a total of 1367 data points. 
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Mean
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Fig. 6  Distributions of data in Table IV, showing that f1 and T_var1 are constrained by Eqs. (12a) and 

(12b). 

 

 f1 T_mean1 T_var1 
f1 1.0000 -0.0072 0.0129 

T_mean1 -0.0072 1.0000 -0.6762 

T_var1 0.0129 -0.6762 1.0000  
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Fig. 7  Correlations of data in Table IV.  The “flattened” sides of the correlations involving one or both of 
f1 and T_var1 are due to the constraints of Eqs. (12a) and (12b) 
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We determined the parameters of normal, correlated, distributions which fit the data in Table IV.  
Those parameters were used to synthesize 2000 data points (f1, Tmean_1, T_var1).  Then the 
synthesized data were analyzed in the same way as the original data, and the results are shown in 
Figs. 8 and 9.  It is apparent that sampled values of f1 and T_var1 will violate the constraints of 
Eqs. (12a) and (12b).  Sampled values such as these will cause computational problems.  It is a 
bad practice to do a “normal” MC simulation and then discard samples which violate the 
constraints of Eqs. (12a) and (12b), because, for one thing, this will not preserve the average and 
variance of the original data. 
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Fig.  8.  Synthesis of from “unconstrained” model (assuming that variables are normally distributed) 

derived from data in Table IV.  This produces unphysical values of parameters (arrows, and blue lines).  
That is, negative variances, and values of f1 which exceed unity are generated. 

 f1 T_mean1 T_var1 
f1 1.0000 0.0080 0.0009 

T_mean1 0.0080 1.0000 -0.6910 

T_var1 0.0009 -0.6910 1.0000  
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Fig. 9.  Correlation of variables synthesized from fits to the data in Table IV assuming normal 
distributions for the statistical variables. 
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To synthesize statistical variables which will satisfy the constraints of Eqs. (12a) and (12b) it is 
necessary to transform the original data in each column of Table IV from a “constrained” 
variable into one which is not constrained, then fit a correlated normal model to the transformed 
variables.  Synthesis from the model requires sampling of correlated normal variables (some of 
them transformed), and then application of the inverse transformations into the constrained 
variables.  We show three, not necessarily unique, transformations which cover all scenarios yet 
encountered in the study of use conditions. The transformation functions have the properties 1) 
The mean and variance of original and transformed variables are preserved, and 2) in the limit of 
the constraint disappearing (mean and variance such that little of the data is actually 
constrained), the transformation automatically reverts to an identity transformation. 

Positive Constraint: Variables Constrained by xn ≥ 0 

For variables which are variances, and 0≥nx  a useful transformation into the variables yn may 
be derived from a condition on two cumulative distribution functions (cdfs): 







−=







 −
Φ dfx

E
dfChiDist

V
Ey

n
n ,1  (14a) 

where “ChiDist” is Excel terminology for the Chisquare distribution, and where the degrees of 
freedom is the integer (> 0) closest to 

V
Edf

22
=

 (14b) 

The variable xn on the rhs of Eq. (14) has mean E and variance V because it is a property of the 
Chisquare distribution that for ),( dfzChiDist , dfzzE >==<)( , and 

dfzzzVar 2)( 22 =><−>=< , so for the variable x in Eq. (14) 

dfx
E
dfx

E
df

==
   or   Ex =  

and 

dfV
E
dfx

E
dfVar 2

2

=





=






   or  

V
Edf

22
=  

The Chisquare distribution has the property 












×
−

Φ− → ∞→ df
dfxdfxChiDist df 2

1),(  (15) 

so, using Eq. (15) we may write the limiting form for the rhs of Eq. (14a) as 
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where we have used the relationsips shown earlier for relating E and V to df.  Or, simply 

ndfn xy  → ∞→ . 

To derive the unconstrained transformed data yn (which will be fitted to a normal distribution) 
from the constrained data xn, we invert the lhs of Eq. (14a) to get 















−Φ×+= − dfx

E
dfChiDistVEy nn ,11  (16) 

where VEdf /2 2≈  (nearest integer > 0). 

On the other hand, for synthesis, once the unconstrained variable yn is generated from a 
multivariate MC synthesis, the corresponding constrained variable is computed by the inverse of 
Eq. (16): 
















 −
Φ−= df

V
Ey

ChiInv
df
Ex n

n ,1  (17) 

where again, VEdf /2 2≈  (nearest integer > 0). 

Fractional Constraint: Variables Constrained by 0 ≤ xn ≤ 1 

Variables which are constrained by 10 ≤≤ nx  are plausibly fitted by a Beta distribution.  We can 
define a transformation by a condition on the cdfs 

( )baxBetaDist
V

Ey
n

n ,,=






 −
Φ  (18) 

where 







 −

−
= 1)1(

V
EEEa  (19a) 

and 
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( )






 −

−
−= 1)1(1

V
EEEb . (19b) 

That is, both {xn} and {yn} have the same mean and variances.  Note that, for a Beta distribution 
)1( EEV −≤ , and it can be shown that 

nEEVn xy  → →− 0)]1(/[ . 

When determining parameters of the model, one first uses original data to determine E and V, 
and thence, via Eqs. (19), a and b.  This is then used to transform all of the original data points 
(each value in a column such as f1 in Table Y) according to 

[ ]),,(1 baxBetaDistVEy nn
−Φ+=  (20) 

which follows from Eq. (18). 

When synthesizing data, yn will be generated, and it is transformed into the synthetic values of xn 
by the inverse of Eq. (20): 
















 −
Φ= ba

V
EyBetaInvx n

n ,,  (21) 

where a and b are determined from Eqs. (19). 

We build a model by transforming T_var1 in Table IV according to Eq. (16) and f1 according to 
Eq. (20), before determining means and covariances of the transformed variables.  Data was then 
synthesized by MC generation of transformed variable deviates which, for T_var1 and f1 were 
transformed back into the original variables using the inverse transformations Eqs. (17) and (21), 
respectively. 

The synthesized data (1000 points) are analyzed in Fig. 9 and Fig 10.  These figures are to be 
compared with the corresponding analysis of the original data in Figs. 6 and 7. 
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Fig.  9.  Distributions of f1, T_mean1, and T_var1 synthesized using a Beta (for f1) and Chisquare (for 

T_var1) transformation of the data.  The synthesized data automatically satisfies definitional constraints. 
 

 f1 T_mean1 T_var1 
f1 1.0000 0.0309 -0.0020 

T_mean1 0.0309 1.0000 -0.6416 

T_var1 -0.0020 -0.6416 1.0000  
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Fig. 10.  Correlation of f1, T_mean1, and T_var1 synthesized using a Beta (for f1) and Chisquare (for 

T_var1) transformation of the data.  This simulation reproduces the “flat-sidedness” of the correlations 
appropriate to the constraints. 
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Time-In-States Constraint 

Models of time in state are often given in the form of the example in Table V where each 
variable is constrained to lie in the range 10 ≤≤ ns  (n = 1, N), but with the additional constraint 

1
,1

=∑
= Nn

ns .  Analysis of the data in Table V are shown in Figs. 11 and 12. 

Table V.  160 points of time-in-state data (table has been folded 4-fold). 

Total Run Idle Off Total Run Idle Off Total Run Idle Off Total Run Idle Off
1.00 0.02 0.01 0.97 1.00 0.19 0.02 0.79 1.00 0.34 0.03 0.63 1.00 0.61 0.26 0.14
1.00 0.03 0.02 0.95 1.00 0.19 0.28 0.53 1.00 0.35 0.29 0.36 1.00 0.62 0.31 0.07
1.00 0.04 0.27 0.69 1.00 0.19 0.66 0.15 1.00 0.35 0.03 0.61 1.00 0.64 0.14 0.22
1.00 0.05 0.11 0.84 1.00 0.20 0.34 0.45 1.00 0.37 0.08 0.55 1.00 0.64 0.02 0.34
1.00 0.05 0.31 0.64 1.00 0.21 0.79 0.00 1.00 0.37 0.13 0.50 1.00 0.64 0.01 0.35
1.00 0.06 0.02 0.93 1.00 0.21 0.79 0.00 1.00 0.37 0.54 0.09 1.00 0.64 0.00 0.36
1.00 0.07 0.17 0.77 1.00 0.22 0.01 0.78 1.00 0.38 0.34 0.28 1.00 0.65 0.02 0.34
1.00 0.07 0.29 0.64 1.00 0.22 0.78 0.00 1.00 0.38 0.58 0.04 1.00 0.65 0.22 0.13
1.00 0.08 0.00 0.92 1.00 0.22 0.78 0.00 1.00 0.39 0.02 0.59 1.00 0.66 0.07 0.27
1.00 0.08 0.24 0.68 1.00 0.22 0.78 0.00 1.00 0.39 0.49 0.12 1.00 0.67 0.17 0.16
1.00 0.08 0.15 0.77 1.00 0.22 0.03 0.74 1.00 0.39 0.57 0.03 1.00 0.68 0.32 0.00
1.00 0.08 0.27 0.65 1.00 0.23 0.71 0.06 1.00 0.40 0.31 0.29 1.00 0.68 0.31 0.01
1.00 0.08 0.01 0.90 1.00 0.23 0.31 0.47 1.00 0.43 0.56 0.01 1.00 0.74 0.15 0.11
1.00 0.09 0.11 0.80 1.00 0.23 0.31 0.46 1.00 0.43 0.29 0.28 1.00 0.75 0.10 0.14
1.00 0.10 0.29 0.62 1.00 0.23 0.07 0.70 1.00 0.43 0.01 0.56 1.00 0.76 0.02 0.22
1.00 0.10 0.87 0.03 1.00 0.23 0.45 0.31 1.00 0.44 0.13 0.42 1.00 0.78 0.06 0.16
1.00 0.10 0.55 0.34 1.00 0.23 0.04 0.72 1.00 0.44 0.55 0.01 1.00 0.78 0.00 0.21
1.00 0.11 0.04 0.86 1.00 0.23 0.27 0.50 1.00 0.45 0.45 0.10 1.00 0.78 0.00 0.21
1.00 0.11 0.89 0.00 1.00 0.24 0.64 0.12 1.00 0.45 0.02 0.52 1.00 0.80 0.19 0.01
1.00 0.12 0.19 0.69 1.00 0.24 0.41 0.35 1.00 0.46 0.00 0.54 1.00 0.82 0.15 0.03
1.00 0.12 0.46 0.42 1.00 0.24 0.01 0.75 1.00 0.46 0.42 0.12 1.00 0.83 0.03 0.14
1.00 0.12 0.12 0.76 1.00 0.25 0.03 0.72 1.00 0.47 0.02 0.50 1.00 0.83 0.02 0.15
1.00 0.12 0.12 0.75 1.00 0.27 0.25 0.48 1.00 0.50 0.43 0.06 1.00 0.84 0.15 0.01
1.00 0.13 0.10 0.78 1.00 0.27 0.66 0.07 1.00 0.51 0.08 0.41 1.00 0.87 0.02 0.11
1.00 0.14 0.37 0.49 1.00 0.28 0.07 0.65 1.00 0.51 0.05 0.44 1.00 0.89 0.06 0.05
1.00 0.14 0.13 0.73 1.00 0.28 0.28 0.44 1.00 0.51 0.46 0.03 1.00 0.89 0.03 0.07
1.00 0.14 0.44 0.42 1.00 0.28 0.00 0.72 1.00 0.53 0.42 0.05 1.00 0.90 0.09 0.00
1.00 0.14 0.38 0.48 1.00 0.28 0.31 0.40 1.00 0.53 0.10 0.37 1.00 0.93 0.05 0.02
1.00 0.15 0.10 0.75 1.00 0.29 0.36 0.35 1.00 0.53 0.40 0.07 1.00 0.93 0.00 0.07
1.00 0.15 0.41 0.43 1.00 0.29 0.37 0.34 1.00 0.54 0.25 0.20 1.00 0.93 0.03 0.04
1.00 0.16 0.02 0.82 1.00 0.29 0.70 0.01 1.00 0.55 0.09 0.37 1.00 0.94 0.01 0.05
1.00 0.16 0.09 0.74 1.00 0.30 0.38 0.32 1.00 0.55 0.02 0.43 1.00 0.95 0.05 0.00
1.00 0.16 0.15 0.69 1.00 0.30 0.19 0.51 1.00 0.56 0.03 0.41 1.00 0.95 0.05 0.00
1.00 0.17 0.18 0.65 1.00 0.31 0.02 0.66 1.00 0.56 0.29 0.15 1.00 0.96 0.03 0.01
1.00 0.17 0.14 0.69 1.00 0.32 0.57 0.11 1.00 0.56 0.06 0.38 1.00 0.97 0.03 0.00
1.00 0.17 0.30 0.53 1.00 0.32 0.20 0.48 1.00 0.56 0.07 0.37 1.00 0.98 0.01 0.01
1.00 0.18 0.11 0.71 1.00 0.33 0.14 0.53 1.00 0.57 0.35 0.09 1.00 0.98 0.01 0.01
1.00 0.18 0.18 0.64 1.00 0.33 0.39 0.28 1.00 0.57 0.14 0.29 1.00 0.98 0.01 0.01
1.00 0.18 0.28 0.54 1.00 0.34 0.51 0.16 1.00 0.58 0.11 0.31 1.00 0.98 0.01 0.01
1.00 0.19 0.05 0.76 1.00 0.34 0.21 0.45 1.00 0.58 0.42 0.00 1.00 0.99 0.01 0.00  

When  

It is possible to convert N variables {sn, n = 1, N} into N-1 variables {xn, 1, N-1} each of which 
independently satisfy the “fractional constraint” of the previous section, and may therefore be 
fitted by the Beta distribution, and synthesized there from.  We next show the required 
transformation, and its inverse. 

Constrained to Unconstrained Transformation 

For 3 variables, with example values s1 = 0.1, s2 = 0.6, s3 = 0.3 we can write 
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1
3

3
3 ==

s
sx  (22c) 

In general the transformation to unconstrained fractional variables is 

∑
=

=

Nnj
j

n
n s

sx

,

. (23) 

The variables { }nx  are individually constrained according to 10 ≤≤ nx  but have no other 
constraint.  Therefore the statistical parameter extraction and synthesis of unconstrained (but 
physically hard to interpret) variables will follow the methods of the fractional constraint above.  
After synthesis, the unconstrained variables may be converted (back) into the physically more 
meaningful constrained fractional variables by the following transformation. 

Unconstrained to Constrained Transformation 

The inverse of Eqs. (22), with example values, is 

1.011 == xs  (24a) 

( ) ( ) 6.01.0166667.01 122 =−×=−×= sxs  (24b) 

( ) 3.0)6.01.01(11 2133 =−−×=−−×= ssxs  (24c) 

In general, the inverse transformation is 

11 xs =  (25a) 

and then 

Nnsxs
n

j
jnn ,21

1
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
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


−×= ∑

−

=

 (25b) 

The transformed variables will have the constraint that 10 ≤≤ nx , n = 1, N-1, but there is no 
constraint on the sum of these variables.   

When the data in Table V is transformed according to the transformation of Eq. (22), fitted to 
independent time-in-state distributions, and synthesized as in the “Fractional Constraint” section 
above, the synthesized data (1000 points) is as shown in Figs. 13 and 14.  These figures are to be 
compared with Figs. 12, and 13. 

Fig. 15 is a 3D plot which shows an interesting comparison between the original Run/Idle/Off 
data (160 points), and 1000 points of synthesized data.  Points constrained by Run + Idle + Off 
fractions lie on the 111 plane in the all positive octant of the 3D plot. 
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Fig. 11.  Distributions of times in Run, Idle and Off state data in Table V. 
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Fig. 12 Correlations of Run, Idle and Off state data in Table V.  The triangular shapes reflect the 

constraint Run + Idle + Off = 1 
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Fig. 13  Distributions of synthesized of Run/Idle/Off data.  This is to be compared with Fig. 11. 
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Fig. 14.  Correlations of synthesized Run/Idle/Off data.  This is to be compared with Fig. 12.  The 

diagonal boundaries reflect the Run + Idle + Off = 1 constraint. 
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Fig 15.  3D plot of Run/Idle/Off original data, and synthesized data.  Notice the concentration along the 
Run/Off axis. 


