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ABSTRACT 

A comprehensive statistical basis is given for the design and 
conduct of electromigration stress tests that allows for the ef- 
ficient use of test parts, equipment, and test time. It shows 
how to select the size of the sample, the required control of the 
stress conditions, and the number of failures required before 
halting the test in order to characterize metallization intercon- 
nects with a quantifiable level of confidence. The results are 
applicable to any failure mechanism for which the failure times 
obey a Normal or a log-Normal distribution. 

1. INTRODUCTION 

Electromigration is a metallization failure mechanism that con- 
tinues to be of great concern for the reliability assessment of 
VLSI-sized microelectronic devices [l]. Accelerated electromi- 
gration tests [2] are used to obtain sample estimates of mea- 
sures that describe the failure distribution. These estimates are 
used in assessing metallization reliability and in making major 
decisions for the selection of metallization and processing tech- 
nologies. It is therefore important that such tests be designed, 
conducted, and analyzed to provide reliable and timely infor- 
mation that has a quantifiable level of confidence. To that 
end, this paper describes the use of statistical methods and 
procedures for designing and interpreting such tests. 

Tests for characterizing a metallization's resistance to electro- 
migration failure involve stressing a sample of metallization 
test lines at high temperature and high current density, and 
recording the time for each to fail. Experience has indicated 
that the time-to-fail of the specimens in the sample is empir- 
ically described by a log-Normal distribution. Three parame- 
ters of the distribution are commonly used to characterize the 
metallization for electromigration: the median-time-to-failure 
( t 5 0 ) ,  the standard deviation of the logarithm of the failure 
times or sigma (a), and a lower p-th percentile of the distribu- 
tion of failure times ( t p ) .  

Test results must be analyzed statistically in order to make a 
quantitative characterization of the population from a random 
sample. To illustrate the need for such an analysis, random 
samplings of ten were made from a continuous log-Normal dis- 
tribution of failure times. The distribution was characterized 
by a t 5 0  of 1.0 and a sigma of 0.9. One hundred such samplings 
are shown in Fig. 1. For these, sample estimates of t 5 0  range 
from approximately 0.4 to 2.1 h. 

This paper describes how the sample estimates of t 5 0 ,  a, and 
tp  and their confidence limits are affected by: (1) the size of 
the sample used in the test, (2) the sigma of the population, 
(3) the use of sample censoring, or halting the test before all 
specimens have failed, and (4) the uncertainties in the mean 

* Contribution of the National Bureau of Standards; not subject 
to copyright. 
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Fig. 1 - Distribution of the log of failure times versus cumula- 
tive percent failures obtained from 100 random samplings of a 
sample size of 10 from a log-normal distribution having a mean 
of zero ( t 5 o  = 1.0) and a sigma of 0.9. Different symbols are 
used to distinguish data of individual samplings. 

values of the stress conditions and in the variations about these 
means during the test. 

An underlying assumption used in the paper is that the fail- 
ure times are log-Normally distributed. Hence, the results are 
applicable to any failure mechanism for which the times to fail- 
ure of the parts obey this distribution. The analysis presented 
applies only to characterizing the metallization at the stress 
conditions used for the test; it does not deal with extrapolat- 
ing the results to use conditions. 

The existence of freaks [3] in the population and bimodal dis- 
tributions are not considered in this paper. Their statistical 
treatment in the context of this paper requires further study. 
If freaks are encountered and their number represents only a 
very small percentage of the sample, they should be omitted 
before the procedures discussed are applied. 

2. CONFIDENCE INTERVALS 

2.1 Introduction 

Confidence intervals are given for t 5 0 ,  a, and t p  in terms of 
their respective sample estimates, t 5 0 ~ ,  s ,  and t p s ,  where the 
failure data of the entire sample is used. The sample estimate 
for t p  is expressed in terms of tSos and s. There are a number of 
ways to calculate these sample estimates from the failure data. 
The best estimators of t 5 0  and a are obtained from the mean 
of the log of the failure times and the standard deviation of 
these log times, scaled to remove the bias [4]. The confidence 
intervals given in this section are based on the use of these 
estimators. 

Sample estimates of t 5 o  and U are typically obtained by plotting 
the failure times on a log scale versus a Normal probability 
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Fig. 2 - Representative plot of failure times on probability 
graph paper with a least-squares, straight-line fit to the data. 
The 50, 16, and 0.1 percent sample failure-time estimates are 
shown. 

scale of cumulative percent failed, as shown in Fig. 2.  A best 
straight-line fit to the points is made using an unweighted, 
least-squares fitting procedure [5] and the intersection of the 
line with the 50% point defines the sample estimate, t 5 0 S I  of 
t 5 0 .  The sample estimate, s, of sigma is obtained from the 
difference between the logarithms of t 5 o s  and of the percentile 
that is one standard deviation from t50 .5 ,  or approximately 
tl6S. 

Compared to the best estimators of 150 and U described above, 
the least-squares method is equivalent for estimating t 5 0  but is 
less efficient for estimating U. The estimate of U is also biased. 
Preliminary results from a study now underway indicates that 
for a sample size of ten, the mean and the standard deviation 
of the distribution of s values obtained with the least-squares 
method are approximately 15% larger. With increasing sam- 
ple size, the him decreases and the efficiency increases. The 
le bt-squares method suffers because it assumes that the data 
points a-e independent and vary about the line with a constant 
variance. Both assumptions are violated when the points are 
ordered as they are for probability plots, and when the vari- 
ance is clearly not constant with the order in which they are 
plotted, as illustrated in Fig. 1 .  

It is recommended that for complete samples the mean of the 
log of the failure times and the corrected standard deviation 
of the log times be used as the estimators of t 5 0  and U, respec- 
tively, and that the practice of plotting the data as described 
above be continued to determine the validity of the assumption 
of a well-behaved, log-Normal failure distribution. 

2.2 Population Median Time To Failure 

The variability of the median-time-to-failure, t 5 0 ,  of a popu- 
lation of test lines that can be fabricated from a given met- 
allization, is determined as follows. Assume that when the 
structures are subjected to an electromigration stress test, the 
logarithms of the failure times are normally distributed. If t f ;  
is the time for the i-th structure to fail and Yj = In t f ; ,  then 
Y; belongs to a population of Y values having a Normal dis- 
tribution with a population mean p and a standard deviation 
U. 

Because the distribution of the population of Y's is Normal, 
the mean and the median are equal so p = In t 5 0 .  Hence: 

t 5 0  = e z p  p. 

If a linear regression analysis is used to estimate the median of 
a complete sample of Y values, the sample mean and median 
are equal. Hence: 

t5OS = e r p  P 

where t 5 o s  is the sample estimate of the median of the popu- 
lation of failure times and Y is the sample mean. 

If U is known and N test lines are selected at random and 
stressed to failure, the probability is 1 - Q that P is within the 
limits: 

p - z (1  - 4 2 ) .  u / d E  < P < p + z(1 - 4 2 )  o / f i ,  

where %(a) is the 1 O O a  percentile obtained from a Normal dis- 
tribution [6].* The equivalent limits for t 5 0 S  are: 

This can be rewritten to define the l O O ( 1  - a)% confidence 
interval for t 5 0 :  

t 5 0 s '  e z p [ - z ( 1 - a / 2 ) . u / J ~ i r ]  < 150 < t50S' e r p [ z ( l - a / 2 ) . u / h f  I. 

If o is unknown, then U must be replaced by the sample stan- 
dard deviation s and the z factors must be replaced by the 
percentile factors of the t distribution [7] .  The l O O ( 1  - a)% 
confidence interval for t 5 0  will then be given by: 

e z p [ - t ( l  - a / 2 ,  N - 1 )  . s / f i  ] < t 5 0  

< t 5 O S .  e z p [ t ( l  - a / 2 ,  N - 1 ) .  a / d E  1 .  ( 1 )  

The limits that define this interval and others in the paper are 
two-sided limits. One-sided limits are obtained by replacing 
L(l - a/2)  by t ( l  - a) .  The t factors differ significantly from 
the z factors only for N values less than approximately 20 where 
they increase as N becomes smaller. 

The confidence interval for t 5 0 ,  described by eq.1, decreases 
with increasing sample size and decreasing values of s as shown 
in Fig. 3. The figure demonstrates that when s is sufficiently 
small, sample sizes of 10 or less provide relatively small confi- 
dence intervals which are smaller than those obtained when s 
is larger, even though many more samples are used. For exam- 
ple, the confidence interval for a sample size of 7 ,  when s equals 
0.3, is approximately as small as the interval for a sample size 
of 20, when s is 0.6, and for a sample size of 45, when s is 0.9. 

2.3 Sigma 

The confidence interval for the population sigma, U ,  is based 
on the sampling distribution of (N-l)sa/u2 , which is the chi- 

* For a 68.27% (one sigma) confidence level, the e factor is 1.0 
while for a 90% confidence level, the I factor is 1.645. 
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square distribution with N-1 degrees of freedom [8]. The l O O ( 1 -  
a)% confidence limits for U are given by: 

90% Confidence Limita 

6 .  J"-' < U < 6 .  J"-' x2(a/2, N - 1)' (2) x2(1 - a / 2 ,  N - 1) 

tM - 
The 90% confidence limits for U ,  divided by s, are plotted in 
Fig. 4. They show that the confidence interval decreases with 
increasing sample size. 

2.4 Population Percentile Failure Time 

For the Normally distributed population of Yi values where 
Yj = In t f j ,  the p-th percentile of the population, Yp,  is 

1508 
- 

1.0 - 

SAMPLE SIZE 

Yp = p +  zp . U  = In t p  
Fig. 3 - Ninety-percent confidence limits for t50, divided by 
t50S, versus sample size for three sample estimates of sigma. 

and the sample estimate of Y p  is 

30% Confidence Limits 

a 
s 
- 

1.2 - 

where zp  is the p-th percentile of the standard Normal distri- 
bution. For example, p = -3.09 for the 0.1-th percentile 
which is used below for Fig. 5. 

Values .'(U) and ~ ' ( 1 )  are determined such that 

P + .'(U) . s  < /A + z p  . U < P + z'(1) . 6 .  

z p -  Jv 
A 

Z'(U)  = 

z p +  J- 
A z'(1) = 

t o  I - 
10.15 and where 

4a/2I1 z ( a / 2 ) z  and B = zp  - - 
N *  A = l -  

2 (N - 1) 

The 90% confidence limits for t p  (defined by eq. 3), divided by 
tps, are plotted for the 0.1 percentile in Fig. 5 for three values 
of s. (Note that for the 0.1-th percentile, p = z(.OOl) = 
-3.09 in the above expressions for z'.) The figure shows how 
the confidence interval decreases with increasing sample size 
and with decreasing S. The curves are much like those in Fig. 

5 10 20 40 100 200 400 

SAMPLE SIZE 

Fig. 5 - Ninety-percent confidence limits of to.1, divided by 
tO . lS ,  versus sample size for three sample estimates of sigma. 
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3 for t50 except that the interval at a given sample size is 
considerably larger for tp. 

3. CENSORING OF DATA 

3.1 Introduction 

This section examines the effect of halting the stress test when 
only K out of the N lines on test have failed, that is, when 
the test data are sample (Type 11) censored. It discusses the 
very significant test-time savings that are possible with sample 
censoring and the care that should be exercised in the selection 
of estimators for the parameters of the failure distribution. The 
effect that censoring has on the confidence intervals for t50, U ,  

and to.1 are reviewed and precautions in combining test results 
are given with a brief mention of time (Type I) censoring. The 
subject of deta censoring is considerable and only some of the 
basic issues can be examined in this paper. 

3.2 Effects on Test Time 

The median time for the K-th test part to fail, out of a total 
of N on test, can be expressed as follows: 

t(0.5; KIN)  = erp{p + U . ~ ( 0 . 5 ;  K I N ) }  

where z(0.5;KIN) is the median of the K-th smallest observa- 
tion out of a sample of N from a standard Normal distribution, 
which is closely approximated [ll] by 

z(O.5; K I N )  = z ( {K  - 0.3175}/{N + 0.365)) 

for 1 < K < N. For K = N, 

z(0.5;NIN) = ~ ( 0 . 5 ~ ” )  

exactly [ll]. The time savings of sample censoring, expressed 
as the ratio of the median time to complete the test with cen- 
soring to without censoring (tclt), is given by 

tc/t = t(0.5; KIN)/ t (0 .5;  N I N ) ,  (4) 

or 

K N - + 0.3175) 0.365 ) - 2 ( 0 . 5 ~ / ~ ) ]  

This time-savings ratio is plotted in Fig. 6 versus U for a 
sample size of 40 for different levels of censoring to illustrate 
how greatly test times can be shortened, especially when U is 
large. For example, the test time can be reduced to one fifth 
when censoring is 30% and U is 1.0. Even for censoring as small 
as 1096, the test time can be reduced by more than one half for 
populations with a large U.  Increasing N will increase the time 
savings but this is relative to the test time for all the samples 
to fail, which increases with increasing N. The net effect of 
increasing N is to alter the test time only slightly, for a fixed 
percentage of censoring. 

t c  
t 
- 

1.0 

0.0 

0.6 

0.4 

0.3 

0.1 1 I 1 I J 
0 0.2 0.4 0.6 0.0 1.0 

SIGMA 

Fig. 6 - Ratio of test time with sample censoring, t,, to that 
with no censoring, t ,  versus sigma for different levels of sample 
censoring when the sample size is 40. 

3.3 Estimators for t50 and U 

For censored samples, the mean of the In If; values and their 
standard deviation are not appropriate estimators of p and 
U because of the bias introduced by censoring. (Note: t5o = 
ezp p.) The Best Linear Unbiased Estimates, commonly known 
as BLUE’s [12], can be used but tables for their use are avail- 
able only for sample sizes up to 20. Maximum Likelihood esti- 
mators (131 can be used for larger sample sizes. 

Persson and Rootzen [14] define Restricted Maximum Likeli- 
hood (RML) estimators of p and U and use these to correct the 
moment estimators P and s calculated from the logarithms of 
the observed failure times. These estimators are more easily 
calculated than are the Maximum Likelihood estimators and 
represent an option when there is no access to facilities for cal- 
culating Maximum Likelihood estimators. They considered the 
censoring of the lower values, so their formulas must be modi- 
fied for censoriqg the higher values. The RML estimators and 
the corrected moment estimators are described in Appendix 
A, where it may be seen that they are easier to use than the 
least-squares estimators because only one z factor needs to be 
evaluated. 

The least-squares method represents a convenient option for 
analyzing censored data because of experience with its use for 
complete data. The only publication found which considered 
its efficacy for censored data is by Gupta [15].* He found that 
the efficiency of the least-squares fitting is greater than 90% 
for all degrees of censoring. (Efficiency is defined here as the 
ratio of the variance of the BLUE’s to the variance of these 
least-squares estimators.) However, only the case for N = 10 
was considered. 

* Gupta [15] proposed an easy alternative to the BLUE estima- 
tors in which he replaces the covariance matrix of the Normal 
order statistics by the identity matrix which is analogous to as- 
suming that the Normal order statistics are uncorrelated and 
have the same variance. This approach is identical to least- 
squares fitting on Normal probability paper, if the plotting 
positions are chosen to be the expected values of the Normal 
order statistics rather than the commonly used z(i/(N+l)) val- 
ues. This difference is expected to be insignificant. 
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The result of Gupta [15] gives hope that least-squares fitting 
will provide acceptable estimators for large N as well. Pre- 
liminary results, from a study now underway that includes a 
comparison of the least-squares estimators with those of Pers- 
son and Rootzen [14], indicate that to be true. For sample 
sizes between 20 and 50 and for censoring less than 50%, the 
least squares estimators for t 5 0  and U are more variable but by 
no more than approximately 20%. The least-squares estimator 
for U is biased, but by no more than 10% in the above range 
of sample sizes. 

3.4 Effects on Measurement Precision 

With sample censoring, there is a loss of information, hence the 
resulting estimates for t50, U ,  and to.1 are subject to greater 
variability than are the estimates from a complete test. Percent 
increases in the lengths of the confidence intervals for t50, U, 
and 20.1 are shown in Fig. 7 for increasing levels of censoring. 
The curves were calculated from the work of Meeker [16] using 
Maximum Likelihood estimators [13], as described in Appendix 
B. 

The increase in the confidence interval for U is largest because 
the loss of information by censoring is most serious for estimat- 
ing U. The confidence interval for ts0 is least affected by small 
censoring because the data censored is not near In 150s which 
is, by itself, a relatively efficient estimator of In t50 [17]. As 
censoring increases to 50% , the percent increase in the interval 
begins to rise sharply, as expected. 

It is possible to avoid loss of precision due to censoring by 
increasing the sample size N. This can be seen in Fig. 8 for 
estimating t 5 0 ,  where contours of equal variance (equivalently, 
equal confidence interval) are plotted in the (N,K/N) plane. 

10 

For example, the variance obtained with a sample size of 20, 
when there is no censoring, is the same as the variance where 
30 lines are put on test and the test is halted after 15 have 
failed. 

The time-savings ratio for increasing N and censoring can be 
determined from the contours of constant time and the top 
scale in Fig. 8, both for U = 1.0. The contours are given in 
terms of t(0.5;KIN)/tso, for varying values of K and N; the 
top scale is marked off in t(0.5; NIN)/tso for different values of 
N. The ratio is given by eq. 4. To calculate the time savings 
for other values of U ,  raise the result obtained to the power 
U. The time-savings ratio is 0.16 if U equals 1.0 in the above 
case where one waits until only 15 fail of the 30 lines on test, 
instead of testing 20 lines to completion. If U equals 0.3, the 
time saving will be only 0.58. This was determined from Fig. 
8 as follows. 

If U = 1.0, 

and if U = 0.3, 

tc/t = 0.16°’s = 0.58. 

Contours of constant variance and test time are shown for es- 
timating U and to.l in Figs. 9 and 10 respectively, and can 
be used in the same way as was illustrated for Fig. 8. All 
three figures are based on the work of Meeker as described in 
Appendix C. 

If the form of the distribution is uncertain, there is another po- 
tential benefit when increasing the sample size and the level of 

t(0.5; N)N)/tSO for U = 1.0 
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Fig. 8 - Contours of constant variance (solid) for estimating t 5 0  

and contours of constant median test time (dashed), for K fail- 
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CENSORING (%) 

Fig. 7 - Percent increase in the confidence interval lengths 
for 150, U, and to.1 versus percent sample censoring. The de- 
pendence on s and N of the increase in the length for t0.1 is 
indicated by the band. The upper limit is for s = 1.1 and N 
= 20; the lower limit is for smaller values of s and larger val- 
ues of N. The dependence on s and N of the increase in the 
length for t50 is negligible. The increase for U with censoring 
is independent of N. 

ures out of N. Each variance contour represents the variance, 
u z / N o ,  for an uncensored test of NO items; from left to right, 
NO = 5, 10, 20, 30, 40, 50, and 60. Each time contour repre- 
sents the median time as labeled in units of t(0.5; KIN)/tso, 
for u=l.O. The median uncensored test time for selected values 
of N is given on top in units of t(0.5; NIN)/tSo, also for ~ = 1 . 0 .  
To obtain median times for other U ’ S ,  raise the normalized time 
to the power U. 

196 

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on March 15, 2009 at 18:08 from IEEE Xplore.  Restrictions apply. 



K 
N 
- 

t(0.5; NIN)/tso for U = 1.0 

0 10 20 30 40 50 60 70 80 90 100 
N 

Fig. 9 - Contours of constant variance (solid) for estimating 
U and contours of constant median test time (dashed), for K 
failures out of N. Each variance contour represents the vari- 
ance, (r2/(2N0),  for an uncensored test of No items; from left 
to right, No = 5 ,  10, 20, 30, 40, 50, and 60. For use of graph, 
refer to the caption of Fig. 8. 
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n 3  

t(0.5; N(N)/tSO for U = 1.0 
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Fig. 10 - Contours of constant variance (solid) for estimating 
to .1  and contours of constant median test time (dashed), for 
K failures out of N. Each variance contour represents the vari- 
ance, (1 + 3 . 0 9 2 / 2 ) u 2 / N ~ ,  for an uncensored test of NO items; 
from left to right, NO = 5 ,  10, 20, 30, 40, 50,  and 60. For use 
of graph, refer to the caption of Fig. 8. 

3.5 Precautions When CombininP Test Data 

When test facilities limit the number of lines that can be tested 
at one time, uncensored data from tests of lines from the same 
population that are stressed at the same level but at different 
times may be combined to increase the sample size.* When 
sample censoring, this procedure leads to more complicated 
analyses than considered here. The complication arises because 
of having to sacrifice either the basic assumption of halting the 
test when K out of N samples have failed (for a predetermined 
value of K) or the assumption of a single censoring time. 

An alternative censoring procedure is to halt the test after a 
fixed time period, which is called time (or Type I) censoring. In 
this case, the number K of failures is randomin contrast to that 
for sample censoring, where the number is fixed. The above 
discussion of the effects of censoring applies approximately to 
time censoring because it is based on Maximum Likelihood 
estimators which do not depend on whether the censoring time 
is random. With time censoring, the fraction observed (K/N) 
is not known beforehand. Thus, one knows only approximately 
where to look in Fig. 7 and in the (N, K/N) planes of Figs. 
8-10 to estimate the effect of time censoring on the confidence 
intervals for the test to be performed, and also to estimate a 
realistic test time. 

4. ERROR AND VARIATION IN STRESS CONDITIONS 

4.1 Introduction 

In establishing the confidence limits for 1 5 0 ,  U, and t p ,  it has 
been assumed that the stress conditions of current density and 
metallization temperature are accurately known and that each 
test line is subjected to the same stress conditions. In an ac- 
tual test, small errors will be encountered in estimating the 
means of the stress conditions applied to the structures under 
test. Variations of these conditions about these means for the 
individual structures will also be encountered. 

The effect of these errors and variations on the results of the 
test are examined for two cases: (1) there is an error in the 
estimate of one of the two stress conditions; and, (2) there 
are line-to-line variations in the stress conditions about their 
means. 

The following empirical expression [18] was used to examine 
the effect of the stress current density J and of the stress tem- 
perature T on t s o  and on t f :  

150 = A ( l / J ) "  e z p ( q Q / W  

where A and n are constants, Q is the activation energy, q is 
the electronic charge, and k is the Boltzmann constant. 

censoring. It provides more information about the early failure 
character of the distribution, which has important reliability 
implications. Because the shortest failure time occurs at ap- 
proximately the l / ( N + l )  percentage point of the distribution, 
there is little that can be learned about the 0.1% point from, 
for example, a sample size of 20 where the first failure occurs 
at approximately the 5% point of the distribution. There has 
been concern whether the early failure distribution actually 
follows a Weibull distribution rather than a log-normal. Using 
the log-normal, when the actual distribution is a Weibull, will 
seriously over-estimate the early reliability of parts. Placing 
many more lines on test and censoring deeply will provide in- 
formation about the early-order statistics of the distribution 
without the use of grossly excessive test times. 

4.2 Errors in the Stress Levels 

Only the measurement of t s o  is afTected when the estimates of 
the mean values for J and T are in error; the measurement of U 

* This procedure is appropriate only if it can be reasonably as- 
sumed that the samples have not been altered in the interven- 
ing time and so still can be considered to belong to the same 
population. 
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is not. The fractional error in 1 5 0 s  for a fractional error e in J 
is given below, where joule-heating effects on the metallization 
temperature are included [l9]. 

60 

where: 

I -  

- 
\ 
- \  

T(OC) a(ev) -- 
- 2 0 0  0.5 

L. \ 

T = Te( fm e = 0); 

and where Ta is the temperature of the silicon substrate; P O ,  
/3, t, and w are, respectively, the room-temperature resistivity, 
temperature coefficient of the resistivity, thickness, and width 

30 I\\ 

-20 .:tF 
J 

J fMA/cm2) 

- 0 2  
1 0  
1 5  
2 0  
2 5  

-- 
_ _ _ _ _  
- -  

I ,  1 .  I '  I . . \ I  
-10 -5 0 5 10 

ERROR IN J (%) 

Fig. 11'- Percent error induced in t5o  by percent error in 
current-density stress for five current-density levels, and the 
following conditions: w = 3 pm, t = 1 pm, p = 3.9 x 103 oC-I,  

po = 3.14 x lo-' ohm-cm, ti = 1 pm, and Ki = 0.01 W/cm 
" C ,  where the underlying insulator is silicon dioxide. 

Fig. 12 - Percent error induced in t50  by an error in tem- 
perature for two different activation energies and two stress 
temperatures. 

of the metallization; and K; and ti are the thermal conductiv- 
ity and thickness of the dielectric f lm between the metalliza- 
tion and the silicon substrate. 

The percent error in t 5 o s  for a constant Ta is plotted in Fig. 
11 versus the percent error in J for a range of J values. The 
error in t5Os increases, as expected, with increasing values of J 
because of joule heating. For the conditions shown, the induced 
percent-error in t 5 0 ~  is between two and three times the percent 
error in J, depending on the level of joule heating. 

When there is an error only in the estimate of T, the fractional 
error in t 5 0 ~  for an error of c "C is given by 

A ~ S O S / ~ ~ O S  = [ e z p { ( q Q / k )  . (1/(T + c) - 1/T)}] - 1 

The induced error in t 5 0 ~  is plotted in Fig. 12  versus the error 
in estimating T for two levels of T and Q. The results show 
that a 5 "C error in T can introduce as much as a 15 to 20% 
error in t50 .5 .  

4.3 Between-Line Variations in the Stress Levels 

When individual test lines are subjected to stress conditions T 
and J that vary in a random way about the respective means, 
T and J ,  individual test lines fail either sooner or later than 
had they all been subjected to identical stress conditions. 

The population of Yi = In t f ;  values are normally distributed 
with a mean of In ts0 and a variance of U', where tfi is the 
failure time of the i-th line to fail when subjected to stress 
conditions T and 1. 

The effect of variations in the stress conditions can be examined 
by adding to Y; independent random variables, v i ,  which are 
normally distributed with a mean of zero and a variance of 
u2.  The new population of Y; + vi values is also normally 
distributed with a mean of In t s o  and a variance of U' + 2. 
The failure times, ifi, of this new population are given by 

t>; = e z p ( s  + v i )  = e z p ( q ) .  e z p ( v j )  = tf; . ezp(u;) .  

If the ui values are small, tfi is approximated by 

t>; = tf;(l + U ; )  

and the variations appear as fractions of the original time to 
fail, tf;. Variations described by the random variable vi model 
how line-to-line variations in J and T affect yi (and thus t f ; ) .  

Variations with a standard deviation U ,  increase the sigma of 
the population of T's to a new and larger value U' = d m .  
They do not affect the population mean. The relative effect of 
the variations on U is significant only when v becomes compa- 
rable to U. In this case, the percent increase in the confidence 
intervals for In t 5 0  and for sigma will be 1OO(u' - u)/u,  as an 
examination of eqs. 1 and 2 will show. 
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Percent variations of as much as 20% in the t f ;  values (U = 0.2) 
can be tolerated before significant increases (20%) in U' and in 
the confidence intervals will be observed. This holds as long as 
U is 0.3 or larger. For example, an imposed variation of U = 
0.2 will introduce an increase of 20% if U = 0.3, but only 5% 
if U = 0.6. 

This implies that individual measurements of, or corrections 
for, the cross-sectional area of the test lines are not necessary. 
Small random variations in the temperature of the test lines 
can be tolerated without significantly degrading the quality of 
the estimates of t 5 0  and U.  The magnitude of these variations, 
in combination, should not produce random variations in the 
t values of more than approximately 20%. For example, using 
the results shown in Figs. 11 and 12, variations in J and T of 
only 5% and 5"C, respectively, could each produce variations of 
15% in t f .  The variations in t f i  as a result of the twoprocesses, 
in combination, will be 21% of the failure times. 

f 

5 .  INFERENCES ABOUT TWO POPULATIONS 

5.1 Introduction 

Stress tests are conducted to determine if, for example, a pro- 
cess or material change has affected the resistance of a met- 
allization to electromigration failure. The basis of this de- 
termination is a comparison of the sample estimates of the 
parameters of the failure distribution obtained from the two 
metallizations. It is assumed below that the sample estimates 
for t50, U ,  and tp are from tests with no data censoring. The 
analysis of censored data is usually accomplished by invoking 
the large-sample Normality of Maximum Likelihood estima- 
tors. This approximate analysis can be performed using the 
formulas below by treating the sample estimators (see 3.3) as 
Normally distributed, with variances as shown in Figs. 8-10 
and calculable from the formulas in Appendix C and the cap- 
tion of TabIe B2. Censoring complicates the tests given here 
in that it is not clear what degrees of freedom to use for the 
t- and F-distributions. One option is to use K, and then use 
N for the degrees of freedom. If the conclusions agree, accept 
them; if not, treat the results as borderline. 

5.2 Test to Compare Two Sigmas 

If the population sigmas are the same, then the ratio of the 
sample estimates of the sigmas, s(l)z/s(2)z, has a sampling 
distribution called the F-distribution [20]. At a 100~1% signif- 
icance level, u(1) and u(2) are not equal if the ratio s(l)/s(2) 
exceeds the limits [21] 

JF(aI2; Nl - 1, Nz - 1) and JF(1- a/2;N1 - 1,Na - I), 

where NI and Na are the sample sizes of the two populations. 

5.3 Tests to Compare tsn Values When Sinmas Are Equal 

To test whether the t50'~ of the two populations are the same 
when the U ' S  of the two populations are equal, the student 
t statistic is used, where the degrees of freedom is equal to 
NI + Na - 2. At a l O O a %  significance level, the t s o  values for 
the two populations are not equal if t 6 0 s ( l ) / t 6 0 ~ ( 2 )  exceeds 
the limits [22] 

where t50s(l) and tsos(2) are the sample estimates for the two 
populations and sp is the pooled mean-square estimate of U 
given by: 

A more conservative set of limits is obtained by substituting 
the larger of s(1) and s(2) for the pooled value, if there is a 
question about the U ' S  being equal. 

5.4 Tests to Compare t 5 0  Values When Sigmas Are Not Equal 

To test whether the t 5 0 ' s  of the two populations are the same 
when the U'S of the two populations are not, the range of the 
critical limits in 5.3 is increased somewhat because the degrees 
of freedom, df, is reduced. At a 100~1% significance level the 
population medians are not equal if t50s( l ) / t50~(2)  exceeds the 
limits [23]: 

ezp(ft(1 - a/2;  df) . J.(l)'/Nl + S(Z)'/Na ) 

where 

5.5 Test To Compare Two Percentiles 

At a 100a% significance level, the p-th percentiles of the two 
populations are not equal if the ratio tp(l)/tp(2) exceeds the 
limits: 

where 

and where, as before, zp is the p-th percentile of the standard 
Normal distribution and no assumption is made about whether 
t50 or U of the two populations are equal. These limits are 
developed in Appendix D. 
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6. SUMMARY 

The precisions in estimates of the population median-time-to- 
failure (t50), sigma (a), and percentile failure time ( t p !  are 
given in terms of sample size and sample estimates of sigma 
(s). Examples of these precisions are providedin terms of 90% 
confidence limits for sample sizes of 5 to 400 and for U equal 
to 0.3, 0.6, and 0.9. They show that populations with a small 
a require relatively few test samples to achieve a given level of 
precision. 

Statistical decision rules to determine from test data if twomet- 
allization populations have the same t50, a, and t p  are provided 
to use in evaluating the relative effectiveness of metallization 

[3] D. S. Peck, “The Analysis of Data from Accelerated Stress 
Tests,” Proceedings Reliability Phys. Symp.,” 1971, pp.69- 
78. 

[4] W.J. Dixon and F.J. Massey, Jr., Introduction to  Statisti- 
cal Andy&, McGraw-Hill Book Co., 1983, p. 535. 

[5] J. Neter, W. Wasserman, and G. A. Whitmore, Applied 
Statistics, Allyn and Bacon, Inc., 1979, pp. 437-450. 

[6] Dixon and Massey, op. cit. ch. 6. 

[7] Dixon and Massey, op. cit. pp. 83-84. 

[8] Dixon and Massey, op. cit. pp. 107-108. 
processes, treatments, and alloys. 

Reductions in test time are achieved when the stress test is 

The time savings increase as the populations a’s increase. Data 
censoring, however, increases the variability in the estimates 
for b o ,  6, and t p  in ways that are described. Greater time 
savings are possible without loss of precision if the sample size 
is increased. February 1975. 

[9] D.B. Owen, “A Survey of Properties and Applications of 
the Noncentral t-Distribution,” Technometrics, vol. 10, 

halted before all the samples have failed (sample censoring). pp. 445-478, August 1968. 

[lo] Ibid. p. 468. 

Ill] J.J. Filliben, “The Probability Plot Correlation Coefficient 
Test for Normality,” Technometrics, vol. 17, pp. 111-117, 

An examination of the effect of errors and uncertainties in the 
current-density and temperature stresses show that small er- 
rors in estimating the stress conditions can lead to relatively 
large errors in 150. Sample-to-sample variations of the stress 
conditions, however, have a relatively small effect on U and 
on the confidence intervals for a and t 5 0 ,  especially when the 
starting a is larger than approximately 0.4. The estimate of 
150 is unaffected by these variations. 
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Q ; I M L  = ( 1 / 2 ) .  ( ~ ( 1  - K / N ) .  ( C  - E ) )  + Table B2. Expressions* for the Confidence Limits for t m ,  U and 

For calculating t0.1,  ZP = -3.09. 
t p .  V a r { Y + z p . s }  = v u T ( P } + z ~ . V a r { s } +  2ZP.Cal{P,S}. 

Parameter Limits 
( 1 / 2 ) . d [ z ( l  - K / N ) . ( C - Y ) ] '  + ( 4 / K ) C z l ( C - Y i ) z  

t5O t 5 0 S  e z p  (is . z ( 1 -  a/2)  . J-) 

and U 9 [ l  f z ( l  - a / 2 )  * JZ&j7F] 

where c = yK = In t f K ,  the maximum observed log failure 
time. 

Using these equations to correct for the bias in the ordinary 
sample mean and sample standard deviation of the observed 
In t f ; ,  they obtain: 

* The use of e factors give adequate estimates of the confidence 
limits for N 220. For smaller N ,  t factors are more appropri- 
ate but introduce the problem of determining the degrees of 
freedom. 

APPENDIX C. Development of Figs. 8, 9, and 10. 

Meeker [16] and earlier writers have calculated the asymptotic 
variances and covariance of the Maximum Likelihood (ML) es- 
timators of p = In t 5 0  and U ,  in units of u 2 / N ,  for various 
degrees of censoring. Simple curves which could be easily in- 
verted were fit (within 3 variances. If the fraction observed is 
K/N, the fitted curves are: 

p* = Y + U i M L  *a* 

and 

Q* == J { ( K  - 1)/K}. 3' + a* . ( z ( K / N )  + a*) . (uHML)2 

where a* = { N / ( K f i ) }  e z p  - (1/2) .  z ( K / N ) ' .  Z V U ~ { E ) / ( U ' / N )  = A + B / ( K / N )  + ( 1  - A - B ) / ( K / N ) ' ,  

They find these latter estimators to be quite close to the Max- 
imum Likelihood estimators for all reasonable degrees of cen- 
soring, both asymptotically and for small N. 

where A = 0.96132 and B = -0.204312; 

V a r { s } / ( u ' / N )  = A + B / ( K / N )  + C / ( K / N ) ' ,  

APPENDIX B. Calculating the Percent Increase in the Confi- 
dence Interval for t 5 0 ,  U ,  and t o . ] .  

where A = -0.224197, B = 0.720370, and C = 0.0064277; 

The percent increase in the confidence intervals for the three 
statistics graphed in Fig. 7 were determined from a Table 
calculated by Meeker [16] which is an expanded version of one 
by Gupta [15]. The data from Meeker [16] were used to develop 
percent increases of the confidence limits due to censoring. The 
confidence limits for each of the three statistics were calculated 
by using the values listed in Table B1 in the expressions listed 
in Table B2 for the level of censoring desired. The confidence 
intervals were obtained by taking the differences of these limits. 

Table B1. Abridged listing, in units of u 2 / N ,  of the variance 
of the sample mean of the logarithms of the failure times, the 
variance of the sample estimate for sigma, and the covariance, 
when a Normal distribution is fitted by maximum likelihood 
to singly censored data [16]. 

Censoring V@} Var{s} Cov{Y, S} 

(?%) u2/N t5= /x G'/N 

0 1.000 0.500 0.000 
10 1.020 0.586 0.041 
20 1.963 0.689 @.la? 
30 1.139 0.820 0.207 
40 1.214 0.996 0.362 
50 1.517 1.241 0.605 

where A = 7.84667, B = -4.00845, and C = 1.91339. 

Each variance contour starts at a point   NO,^), for sample size 
NO = 5, 10,20, 30, 40, 50, and 60. It continues through points 
(N,K/N) for which the variance is the same as the variance 
for an uncensored test of No items. For a given N > N O ,  the 
variance for an uncensored test is smaller by the factor N O I N ,  
so the corresponding K/N is chosen (from Meeker's results) to 
inflate the uncensored variance by N / N o .  

APPENDIX D. Comparison Test For Failure-Time Percentiles 

To compare two failure-time percentiles, consider the p-th per- 
centiles from two Normal populations: 
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where Yp = In t p .  No assumption is made about whether the 
means or the sigmas of these two populations are the same. To 
test for the hypothesis that the p-th percentiles from the two 
populations are equal, based on the sample estimates Yps(l) 
and Y p s ( 2 ) ,  consider: 

Y p s ( 1 )  - y p s ( 2 )  = (P(1) + p .  c . a(1))  - ( E ( 2 )  + z p .  c . s ( 2 ) )  

where c is the correction factor used to make s an unbiased 
estimate of U [4]. The variance V of YPs(1 )  - YPs(2 )  is given 
by 

v = [ q + -1 +)*  * 11 + 4 / 2 1  
N2 

where NI and Nz are the sizes of the two samples. 

The distribution of sample standard deviations s approaches 
normality as the sample size increases. Hence, for large N the 
assumption that the distribution of Y p s ( 1 )  - Y p s ( 2 )  is Normal 
will be adequate to perform a significance test. 

At a lOOa% significance level, the p-th percentiles of the two 
populations are not equal if the difference YPs(1 )  - Y p s ( 2 )  
exceeds the limits: 

+ t ( l  - 4 2 )  ' Jv, 

or if the ratio t p ( l ) / t p ( 2 )  exceeds the limits: 

where V' is the sample estimate of the variance of Yps( l )  - 
Y p s ( 2 )  obtained by substituting s for U in the above expression 
for V. 
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