
Decision Diagrams in Machine Learning: an Empirical

Study on Real-Life Credit-Risk Data

Christophe Mues1, Bart Baesens1,2, Craig M. Files3, Jan Vanthienen1

1K.U.Leuven, Dept. of Applied Economic Sciences,

Naamsestraat 69, B-3000 Leuven, Belgium

{Christophe.Mues; Bart.Baesens; Jan.Vanthienen}@econ.kuleuven.ac.be

2University of Southampton, School of Management

Southampton, SO17 1BJ, United Kingdom

b.m.m.baesens@soton.ac.uk

33100 San Luis St., Fort Collins,

Colorado 80525-6612

cfiles@ee.pdx.edu

Abstract

Decision trees are a widely used knowledge representation in machine learning. However,

one of their main drawbacks is the inherent replication of isomorphic subtrees, as a result

of which the produced classifiers might become too large to be comprehensible by the human

experts that have to validate them. Alternatively, decision diagrams, a generalization of decision

trees taking on the form of a rooted, acyclic digraph instead of a tree, have occasionally been

suggested as a potentially more compact representation. Their application in machine learning

has nonetheless been criticized, because the theoretical size advantages of subgraph sharing

did not always directly materialize in the relatively scarce reported experiments on real-world

data. Therefore, in this paper, starting from a series of rule sets extracted from three real-life

credit-scoring data sets, we will empirically assess to what extent decision diagrams are able to

provide a compact visual description. Furthermore, we will investigate the practical impact of

finding a good attribute ordering on the achieved size savings.

Keywords: decision diagrams; data mining; credit scoring

1

1 Introduction

One of the key decisions financial institutions have to make as part of their daily operations is to

decide whether or not to grant a loan to an applicant. With the emergence of large-scale data-

storing facilities, huge amounts of data have been stored regarding the repayment behavior of past

applicants. It is the aim of credit scoring to analyze these data and build models that distinguish

good payers from bad payers using characteristics such as amount on savings account, marital

status, purpose of loan, etc. Many classification techniques have been suggested in the literature

to build credit-scoring models [Baesens, Van Gestel, Viaene, Stepanova, Suykens, and Vanthienen,

2003b, Thomas, 2000]. Amongst the most popular are traditional statistical methods (e.g. logistic

regression [Steenackers and Goovaerts, 1989]), nonparametric statistical models (e.g. k-nearest

neighbor [Henley and Hand, 1997] and classification trees [David, Edelman, and Gammerman, 1992])

and neural networks [Desai, Crook, and Overstreet Jr., 1996]. Especially neural networks have in

recent years received a lot of attention. However, a major drawback is the lack of transparency

of the resulting models. While they are generally able to achieve a high predictive accuracy rate,

the reasoning behind how they reach their decisions is not readily available, which hinders their

acceptance by practitioners. As a result, one often sees that the estimated credit-scoring models

fail to be successfully integrated into the actual decision environment.

Therefore, we have, in earlier work, proposed a two-step process to open the neural network

black box which involves: (1) extracting rules from the network; (2) visualizing this rule set using

an intuitive graphical representation, such as decision tables or trees [Baesens, Setiono, Mues, and

Vanthienen, 2003a]. The latter notations are intended to communicate the extracted knowledge

to the credit-scoring expert in a format that he/she can more easily understand and validate, and

efficiently apply in every-day practise. In our experience, the ability to provide such a visualization

has become a critical success factor for the development of decision-support systems for credit

scoring.

Clearly, an important criterion where human interpretability is concerned, is the size of the

generated representation. Despite their being intuitive and efficiently applicable in theory, it has

regularly been observed that the decision trees generated by machine-learning algorithms turn out to

be too large to be comprehensible to human experts. In that regard, one of their main limitations is

the inherent replication of isomorphic subtrees implementing terms in disjunctive concepts. Hence,

in this paper, we report on the alternative use of decision diagrams. The latter are a generalization

of decision trees taking on the form of a rooted, acyclic digraph instead of a tree, which have to

a great extent been studied and applied by the hardware design community [Bryant, 1986]. Their

2

use has also occasionally been proposed in the machine-learning community (e.g. in [Kohavi, 1996,

Kohavi and Li, 1995, Oliveira and Sangiovanni-Vincentelli, 1996]), precisely because of the potential

size savings a graph-based representation might offer over a tree-based one.

Nevertheless, decision diagrams have so far not gained wide acceptance in the latter problem

context, partly because the theoretical size advantages of subgraph sharing did not always directly

materialize in (the relatively scarce) reported experiments [Elomaa and Kääriäinen, 2001]. Two

problems that seem to have impaired a thorough empirical study are: (1) the use of very different

learning algorithms for the respective types of representations being compared (thus making it hard

to separate the effect of the representation from that of the specific algorithm); (2) the impact of

attribute ordering on the size of the resulting description. Therefore, in this paper, starting from a

series of rule sets produced from real-life credit-scoring data by neural network rule extraction, we

will empirically assess to what extent decision diagrams are able to provide a more compact visual

description than their decision tree counterparts. Furthermore, we will investigate the practical

impact of finding a good attribute ordering on the achieved size savings.

This paper is organized as follows. Section 2 discusses the basic concepts of decision diagrams

and how they may provide an alternative, more concise view of the extracted knowledge. The

empirical setup and results are presented in section 3. Finally, section 4 concludes the paper.

2 Decision Diagrams

Decision diagrams are a graph-based representation of discrete functions, accompanied by a set of

graph algorithms that implement operations on these functions. Given the proper restrictions (cf.

infra), decision diagrams have a number of valuable properties:

• they provide a canonical function representation;

• they can be manipulated efficiently;

• for many practically important functions, the corresponding descriptions turn out to be quite

compact.

Precisely these properties explain why various types of diagrams have been used successfully in

efficiently solving many logic synthesis and verification problems in the hardware design domain.

Especially binary decision diagrams (BDDs) have, since the work of Bryant [Bryant, 1986], who

defined the canonical subclass of reduced ordered binary decision diagrams, pervaded virtually

every subfield in the former areas. There are on the other hand relatively few reported applications

3

so far in the domain of artificial intelligence [Horiyama and Ibaraki, 2002] and machine learning

[Files, 2000, Kohavi, 1996, Kohavi and Li, 1995, Oliveira and Sangiovanni-Vincentelli, 1996], while

their use for the visual representation of rules extracted from neural networks, or in the particular

research domain of credit scoring, has to our knowledge not been proposed before.

Since we are dealing with general discrete (as opposed to binary) attributes, we will apply

multi-valued decision diagrams (MDDs), a representation similar to BDDs but which does not

restrict the outdegree of internal nodes or the number of sink nodes [Kam, Villa, Brayton, and

Sangiovanni-Vincentelli, 1998]. An MDD is a rooted, directed acyclic graph, with a sink node for

every possible output value (class). Each internal node v is labelled by a test variable (attribute)

var(v) = xi (i = 1, ..., n), which can take values from a finite set range(xi). Each such node

v has | range(xi) | outgoing edges, and its successor nodes are denoted by childk(v), for each

k ∈ range(xi), respectively. An MDD is ordered (OMDD), iff, on all paths through the graph, the

test variables respect a given linear order x1 ≺ x2 ≺ ... ≺ xn; i.e., for each edge leading from a node

labelled by xi to a node labelled by xj , it holds that xi ≺ xj .

An OMDD is meant to represent an n-variable discrete (classification) function. For a given

assignment to the variables, the function value is determined by tracing a path from the root to a

sink, following the edges indicated by the values assigned to the variables. The label of the sink

node specifies the function value (class) assigned for that input case. Figure 1 displays an example

of an OMDD representation for a two-variable function, {0, 1, 2, 3}×{0, 1, 2} → {0, 1}, with respect

to the variable order x1 ≺ x2.

x1

x2

1 2

x2

3

0

0

1

20 1 210

Figure 1: MDD example

Up to here, OMDDs are not yet uniquely determined for each function. However, by further

restricting the representation, a canonical form of MDDs is obtained, namely reduced OMDDs

4

x1

x2 x2

x3 x3 x3 x3

0 0 0 1 0 1 0 1

0 1

0 1 0 1

10 0 001 1 1

x1

x2

x3

0 1

0

1

0

1

0 1

Figure 2: Decision trees (left) versus diagrams (right)

(ROMDD). An OMDD is said to be reduced, iff it does not contain a node v whose successor nodes

are all identical, and no two distinct nodes u, v exist such that the subgraphs rooted in u and v are

isomorphic, i.e., for which: var(u) = var(v), and childk(u) = childk(v) for all k ∈ range(var(u)).

For a given variable ordering, the ROMDD representation of any function is uniquely determined

(up to isomorphism), as a result of which several properties (e.g., functional equivalence, constant

functions, etc.) become easily testable. Conceptually, a reduced decision diagram can be interpreted

as the result of the repeated application of two types of transformations on a decision tree or graph:

one reduction rule is to bypass and delete redundant nodes (elimination rule), the other is to share

isomorphic subgraphs (merging rule). In Figure 2, both rules are illustrated for a simple binary

example. Note that, in practice, efficient implementations of diagram operations are used that

directly produce a reduced form as the diagrams are being built. From here on, we will use the

term ‘MDD’ or decision diagram to denote ROMDDs in particular.

When using decision diagrams to represent a function, some total ordering of the input variables

must be selected. Since the size of the resulting diagram (i.e., the number of nodes) is very sensitive

to this choice, finding a suitable ordering is critical in many application domains. Figure 3 illustrates

the extent to which form and size can be affected by the chosen variable order. Both diagrams shown

represent the same function (given by the Boolean formula x1,1x1,2 +x2,1x2,2 +x3,1x3,2), but using

different orders. Several exact minimization algorithms have been proposed (e.g. in [Friedman and

Supowit, 1990]), but, considering that finding an optimal order is an NP-hard problem, they are

often too costly for larger problem instances (i.e., with many variables). Hence, heuristic approaches

5

x1, 1

x2, 1

x1, 2

x3, 1

x2, 2

x3, 2

0 1

0

1

0

0

0

0

0

1

1

1

1

1

x1, 1

x2, 1 x2, 1

x3, 1 x3, 1 x3, 1x3, 1

x3, 2

0

x2, 2x2, 2

x1, 2x1, 2x1, 2 x1, 2

1

0

0

0

0

0
0

0

0 0

0

0

1

1

1

11
1

1

1

1

1

1

1

1

0

0

0
1

Figure 3: Effect of variable ordering on decision diagram size; example taken from [Bryant, 1986]

(selecting some ordering based on available problem data) or local search techniques (which aim at

improving a given variable order, e.g., by moving variables up or down the graph) have been widely

investigated as well.

Over the years, several BDD packages have been developed, which implement and provide in-

terfaces for the manipulation of BDDs. Most often, MDDs are implemented indirectly using these

same packages, by binary encoding multi-valued variables. Direct MDD implementations have also

been proposed, e.g. in [Files, 2000]. The latter package was used in the subsequent experiments.

3 Empirical Evaluation on Real-Life Credit-Scoring Data

3.1 Step 1: Neural Network Rule Extraction

The experiments were conducted on three real-life credit-risk evaluation data sets: German credit,

Bene1 and Bene2. The Bene1 and Bene2 data sets were obtained from two major Benelux (Belgium,

6

The Netherlands, Luxembourg) financial institutions. The German credit data set is publicly

available at the UCI repository (http://www.ics.uci.edu/∼mlearn/MLRepository.html). All

data sets were discretized using the discretization algorithm of Fayyad and Irani with the default

options [Fayyad and Irani, 1993].

We then investigated the performance of two neural network rule (tree) extraction algorithms:

Neurorule and Trepan. Neurorule starts by training and pruning a neural network for the given

classification task. It then extracts a set of propositional if-then rules, which mimics the decision

process of the neural network and resolves its black box property (see [Baesens, Setiono, Mues, and

Vanthienen, 2003a, Setiono and Liu, 1996] for more details). For example, Figure 4 displays the rules

extracted by Neurorule on the Bene1 data set. Trepan is a neural network tree extraction algorithm

which tries to approximate the neural network as a decision tree whose nodes may consist of m-of-n

expressions [Craven and Shavlik, 1996]. The tree is grown recursively using information-theoretic

concepts. The neural network is hereby used as an oracle to generate additional observations, when

the number of data points available to decide upon the splits becomes unacceptably low.

If Term >12 months and Purpose = cash provisioning

and Savings Account ≤ 12.40 e and Years Client ≤ 3

then Applicant = bad

If Term >12 months and Purpose = cash provisioning

and Owns Property = no and Savings Account ≤ 12.40 e
then Applicant = bad

If Purpose = cash provisioning and Income > 719 e
and Owns Property = no and Savings Account ≤ 12.40 e
and Years Client ≤ 3 then Applicant = bad

If Purpose = second-hand car and Income > 719 e and

Owns Property = no and Savings Account ≤ 12.40 e and

Years Client ≤ 3 then Applicant = bad

If Savings Account ≤ 12.40 e and Economical sector =

Sector C then Applicant = bad

Default class: Applicant = good

Figure 4: Rules for Bene1 extracted by Neurorule

The performance of both neural network extraction algorithms was contrasted with that of the

neural network itself and with three other algorithms producing decision trees, rules and diagrams.

C4.5 is a well-known induction algorithm which uses information-theoretic concepts to grow a

decision tree [Quinlan, 1993]. It first grows a full tree and then retrospectively prunes it in order

7

to avoid overfitting. The C4.5rules algorithm converts this tree to a set of rules which can then be

further pruned [Quinlan, 1993]. The EODG (Entropy-based Oblivious Decision Graphs) algorithm

uses mutual information to build a decision tree in a top-down manner; this tree is subsequently

converted to a decision diagram by merging its isomorphic subtrees [Kohavi and Li, 1995].

Table 1 presents the classification performance of the discussed techniques on the three credit-

scoring data sets. Note that the reported accuracy was computed on independent test sets (typi-

cally one-third of the observations) and thus adequately represents the generalization behavior of

the classification technique. It can be observed that the Neurorule and Trepan algorithms fairly

Data set Method Accuracy Complexity

German Neural network 77.84 6 inputs
Neurorule 77.25 4 rules
Trepan 73.95 21 nodes
C4.5 71.56 54 nodes
C4.5rules 74.25 17 rules
EODG 72.45 9 nodes

Bene1 Neural network 71.85 7 inputs
Neurorule 71.85 6 rules
Trepan 71.85 21 nodes
C4.5 70.03 114 nodes
C4.5rules 70.12 17 rules
EODG 71.37 5 nodes

Bene2 Neural network 74.09 7 inputs
Neurorule 74.13 7 rules
Trepan 74.01 17 nodes
C4.5 73.09 578 nodes
C4.5rules 73.51 27 rules
EODG 72.38 7 nodes

Table 1: Classification accuracy of rule, tree and diagram extraction techniques

well approximate the performance of the neural networks from which they were derived. For the

Bene2 data set, the Neurorule method even outperforms the neural network slightly. Both algo-

rithms consistently yield very good classification performance when compared to C4.5, C4.5rules

and EODG. Besides classification performance, we also report the number of inputs, extracted rules

or nodes. When looking at these criteria, it becomes clear that Neurorule and Trepan extract con-

cise decision models. Although the EODG algorithm extracts very concise representations as well,

its classification performance is inferior when compared to Neurorule and Trepan. The size of the

C4.5-tree is in all cases prohibitively large for visualization purposes.

8

Although the knowledge descriptions extracted by Neurorule or Trepan already offer an insightful

explanation of the neural network model they were generated from, they lack an efficient evaluation

scheme by which the expert can validate the knowledge as a whole, or apply it to case-by-case

decision making. For those purposes, diagrammatic notations such as decision tables, trees or

diagrams, instead of being induced directly, can additionally provide a more suited visualization of

the extracted rule sets. Thus, the format in which the knowledge is being communicated can be

transformed without causing any loss of predictive accuracy. This idea will be elaborated on next.

3.2 Step 2: Visualizing the Extracted Knowledge using Decision Dia-

grams

In previous work [Baesens, Setiono, Mues, and Vanthienen, 2003a], we have largely focused on the

use of a particular class of (lexicographically ordered) decision tables in this subsequent knowledge

visualization step. It was shown that this restricted type of decision table exhibits very similar

properties to a decision tree, in that it can be efficiently evaluated in a top-down manner. Rather

than having to evaluate the textual rule expressions one by one, the credit-scoring expert can thus

quickly reach a conclusion for a given application by following the proper path through this tree

structure. For example, in Figure 5, a decision tree is shown that is functionally equivalent to the

prior rule set of Figure 4 (i.e., it classifies all possible applicants in the same way).

While retaining the predictive accuracy of the original rule set, the top-down readability of

a decision tree makes it a seemingly attractive visual representation of the extracted knowledge.

However, a well-known property that can undermine the conciseness and interpretability of decision

trees (and hence also of lexicographically ordered decision tables) is the inherent replication of

subtrees implementing terms in disjunctive concepts (as explained, e.g., in [Kohavi, 1996]). This is

the reason why we have decided to also investigate decision diagrams as an alternative representation

that could help avoid such unnecessary replication, provided that a suitable attribute ordering can

be found for the problem at hand. The principal goal of this study therefore is to empirically verify

these theorized advantages in a real-life credit-scoring setting.

For example, although the tree shown in Figure 5 is substantially smaller than the corresponding

C4.5-tree (cf. Table 1), it still contains a certain degree of replication. Most notably, two out of the

three subtrees rooted at a ‘years client’-test node are isomorphic. In contrast, by reducing the tree

into a decision diagram, in which recurring parts are shared through multiple incoming edges, a

9

Savings
Account

Economical
sector

≤ 12.40 €

Applicant
= good

> 12.40 €

Purpose

other

Applicant
= bad

sector C

Term

cash provisioning

Years
Client

 second-

hand car

Applicant
= good

other

Years
Client

≤ 12 months

Years
Client

>12 months

Income

≤ 3

Applicant
= good

> 3

Income

≤ 3

Applicant
= good

> 3

Owns
Property

> 3

Applicant
= bad

≤ 3
Owns

Property

> 719 €

Applicant
= good

≤ 719 €
Owns

Property

> 719 €

Applicant
= good

≤ 719 €

Applicant
= good

yes

Applicant
= bad

no

Applicant
= good

yes

Applicant
= bad

no

Applicant
= good

yes

Applicant
= bad

no

Figure 5: Example of an (ordered) decision tree for Bene1/Neurorule

smaller representation is obtained (cf. Figure 6, below).1 In the latter, the subgraph rooted at the

rightmost of the two ‘years client’-nodes is thus included once instead of twice. If these size savings

are indeed substantial on average, a decision diagram will provide a valuable alternative knowledge

visualization.

Hence, we further processed each rule set by joining nominal attribute values that do not appear

in any rule antecedent into a common ‘other’ state, and by rewriting rules containing negations

or m-of-n expressions into disjunctive normal form. Based on the latter format, we then built a

decision diagram representation, using the standard implementations of logical sum and product

provided by the MDD-package. As explained in section 2, the size of the resulting diagram depends

on the order in which the attributes are evaluated. To find an optimal order (i.e., which results in a

minimum-size MDD), we implemented a simple exhaustive search procedure, at every step of which

two neighboring variables in the order are swapped. Considering that adjacent variable pairs can be

swapped efficiently by a local exchange of subgraphs [Fujita, Matsunaga, and Kakuda, 1991], and

given the input space reduction achieved in the preceding step of the knowledge discovery process,

1To produce these graph drawings, we used the Graphviz software [Gansner, Koutsofios, North, and Vo, 1993]
from AT&T Laboratories (http://www.research.att.com/sw/tools/graphviz).

10

Savings
Account

Economical
sector

≤ 12.40 €

Applicant
= good

> 12.40 €Purpose

other

Applicant
= bad

sector C

Term

cash provisioning

Years
Client

 second-

hand car

other≤ 12 months

Years
Client

> 12 months

Income

≤ 3

> 3

Owns
Property

> 3≤ 3

yesno

> 719 €

≤ 719 €

Figure 6: Minimum-size MDD for Bene1/Neurorule

11

execution turned out to be feasible (other more efficient minimization algorithms are described

elsewhere, e.g. in [Friedman and Supowit, 1990]). As a result of this optimization process, we

ended up with a minimum-size MDD for each rule set. Figure 6 earlier depicted the MDD thus

obtained from the Bene1 rule set extracted by Neurorule. The results for all MDDs are listed

in Table 2. Most importantly, in all cases, the diagrams were sufficiently concise to be easily

understood and applied.

Data set Extraction Internal nodes Internal nodes Size

method in min.-size MDD in matching tree saving

German Neurorule 7 14 50%

Trepan 7 7 0%

Bene1 Neurorule 8 12 33.3%

Trepan 14 29 51.7%

Bene2 Neurorule 11 28 60.7%

Trepan 16 51 68.6%

Table 2: MDD size results

In Table 2, we can also see that, except for the German credit classifier produced by Trepan,

substantial size gains are being achieved as a result of MDD reduction (unlike, e.g., for the learning

algorithm applied in [Elomaa and Kääriäinen, 2001], which reportedly produced few node merging

on real-world data sets). To give an idea of the amount of subgraph sharing, we have included a

column displaying the size of the equivalent decision tree obtained when the same (total) attribute

ordering is adopted (note that we are not considering unordered trees or graphs at this point). To

make the analysis fair, we avoid repetitive counting of sink nodes, and measure size in terms of the

number of internal nodes. The percentage in the final column thus provides an indication of the

effectiveness of the merging rule.

As explained above, the reported figures are for minimum-size MDDs. Unlike in prior decision

diagram based learning approaches, we do not have to revert to a greedy ordering strategy, or to

incremental reordering methods (as in [Oliveira and Sangiovanni-Vincentelli, 1996]), because MDDs

are applied only after the input space has been drastically reduced in the first step of the process.

Consequently, we are able to more fully explore the impact of variable ordering on diagram size.

Figure 7 displays the observed size distribution for all investigated cases. Along the y-axis of each bar

plot, the number of condition orders is indicated that lead to the number of internal nodes specified

on the x-axis. The resulting distribution curve for the MDDs is depicted by solid boxes; empty

boxes indicate the same relation for the matching decision trees (i.e., without subgraph merging).

Although, even with non-optimal attribute orders, the MDDs obtained still are relatively small on

12

average (most points on the MDD curves are well to the left of the tree size curve), the importance

of finding an appropriate attribute ordering becomes clear. For example, for Bene1/Trepan, the

number of internal nodes varies from 14 to 38. Obviously, where comprehensibility and evaluation

efficiency are concerned, this is an important difference. Hence, as could be expected, the utility

of decision diagram techniques as a visual communication aid strongly depends on whether an

adequate ordering strategy is applied.

4 Conclusions and Future Work

In this paper, we have demonstrated the effectiveness of a two-step approach to build accurate yet

comprehensible credit-scoring models from data, using three real-life data sets. Firstly, powerful

rule set classifiers were obtained using neural network rule extraction techniques (viz., Neurorule

and Trepan). In the second step, these were then compactly visualized in the form of decision

diagrams, thus providing the credit-scoring expert with a comprehensible and efficiently applicable

notation, while retaining the predictive accuracy of the original rule set. To minimize the size of the

resulting diagrams, an exact variable order optimization procedure was applied. In all cases, this

approach yielded highly accurate classifiers, compared to the decision tree and diagram inducers

C4.5 and EODG, while the resulting decision diagrams were also satisfactorily concise. We found

that the MDD reduction mechanism was quite effective, in that several isomorphic subgraphs are

being shared which would otherwise be replicated when using a decision tree representation. This

is a noteworthy result, considering that the theorized advantages of decision diagram inducers did

thus far not often directly materialize in a real-life setting. Finally, the importance of selecting a

good attribute order was demonstrated.

Although the obtained decision diagrams are clearly more compact than their decision tree

counterparts, it has to be noted that we have restricted the comparison to both ordered diagrams

and trees (i.e., in which the order of testing variables does not differ between different branches).

Clearly, the search space of finding a minimal unordered representation (sometimes also referred to

as ‘branching programs’ or ‘free’ diagrams) is much larger, while the relative advantages of graph

sharing might be less prominent.

Secondly, we have implicitly assumed that a compact graph representation is to be preferred over

a larger tree-based representation. Obviously, overly large decision trees inhibit the intuitiveness and

usability of the extracted knowledge, hence succinctness is indeed an important factor. However,

an interesting topic for further research would be to investigate, in an experimental setting, to what

extent credit-scoring experts are actually at ease interpreting these graph-based decision schemes as

13

5 10 15 20 25 30 35 40 45 50 55
0

20

40

60

80

100

120

140

160

180

200

(a) German/Neurorule

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

(b) German/Trepan

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

900

(c) Bene1/Neurorule

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

(d) Bene1/Trepan

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

(e) Bene2/Neurorule

10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

(f) Bene2/Trepan

Figure 7: Size distribution of decision diagram vs. tree

14

opposed to the more conventional tree-based schemes. In that case, additional evaluation criteria

would, e.g., have to be the average time required by practitioners to classify applicants, or the

observed frequency of classification mistakes.

References

B. Baesens, R. Setiono, C. Mues, and J. Vanthienen. Using neural network rule extraction and

decision tables for credit-risk evaluation. Management Science, 49(3):312–329, 2003a.

B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens, and J. Vanthienen. Benchmarking

state of the art classification algorithms for credit scoring. Journal of the Operational Research

Society, 54(6):627–635, 2003b.

R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on

Computers, C-35(8):677–691, 1986.

M.W. Craven and J.W. Shavlik. Extracting tree-structured representations of trained networks. In

D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in Neural Information Processing

Systems (NIPS), volume 8, pages 24–30, Cambridge, MA, U.S., 1996. MIT Press.

R.H. David, D.B. Edelman, and A.J. Gammerman. Machine learning algorithms for credit-card

applications. IMA Journal of Mathematics Applied In Business and Industry, 4:43–51, 1992.

V.S. Desai, J.N. Crook, and G.A. Overstreet Jr. A comparison of neural networks and linear scoring

models in the credit union environment. European Journal of Operational Research, 95(1):24–37,

1996.

T. Elomaa and M. Kääriäinen. On the practice of branching program boosting. Lecture Notes in

Artificial Intelligence, 2167:133–144, 2001.

U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued attributes for clas-

sification learning. In Proceedings of the Thirteenth International Joint Conference on Artificial

Intelligence (IJCAI), pages 1022–1029, Chambéry, France, 1993. Morgan Kaufmann.

C. Files. A New Functional Decomposition Method As Applied to Machine Learning and VLSI Lay-

out. PhD thesis, Department of Electrical and Computer Engineering, Portland State University,

2000.

15

S.J. Friedman and K.J. Supowit. Finding the optimal variable ordering for binary decision diagrams.

IEEE Transactions on Computers, 39(5):710–713, 1990.

M. Fujita, Y. Matsunaga, and T. Kakuda. On variable ordering of binary decision diagrams for

the application of multi-level logic synthesis. In Proceedings of the European Design Automation

Conference, pages 50–54, 1991.

E.R. Gansner, E. Koutsofios, S.C. North, and K.P. Vo. A technique for drawing directed graphs.

IEEE Transactions on Software Engineering, 19(3):214–230, 1993.

W.E. Henley and D.J. Hand. Construction of a k-nearest neighbour credit-scoring system. IMA

Journal of Mathematics Applied In Business and Industry, 8:305–321, 1997.

T. Horiyama and T. Ibaraki. Ordered binary decision diagrams as knowledge-bases. Artificial

Intelligence, 136(2):189–213, 2002.

T. Kam, T. Villa, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Multi-valued decision diagrams:

Theory and applications. International Journal on Multiple-Valued Logic, 4(1-2):9–62, 1998.

R. Kohavi. Wrappers for Performance Enhancement and Oblivious Decision Graphs. PhD thesis,

Department of Computer Science, Stanford University, 1996.

R. Kohavi and C.H. Li. Oblivious decision trees, graphs, and top-down pruning. In Proceedings of the

Fourteenth International Joint Conference on Artificial Intelligence, pages 1071–1077, Montréal,

Québec, Canada, 1995. Morgan Kaufmann Publishers.

A.L. Oliveira and A.L. Sangiovanni-Vincentelli. Using the minimum description length principle to

infer reduced ordered decision graphs. Machine Learning, 25(1):23–50, 1996.

J.R. Quinlan. C4.5 programs for machine learning. Morgan Kaufmann, 1993.

R. Setiono and H. Liu. Symbolic representation of neural networks. IEEE Computer, 29(3):71–77,

1996.

A. Steenackers and M.J. Goovaerts. A credit scoring model for personal loans. Insurance: Mathe-

matics and Economics, 8:31–34, 1989.

L.C. Thomas. A survey of credit and behavioural scoring: forecasting financial risk of lending to

customers. International Journal of Forecasting, 16:149–172, 2000.

16

