This charming little boat needs some explanation, as she is not the novelty craft she first appears. The rig and hull were carefully selected to fill a unique niche. Some background will help you understand my choices—and why this is an interesting craft to study but not likely one you will want to duplicate. Feel free to skip directly to the “Restoration” and “Sail Rig” sections.

I am a designer, but usually not of small craft, and I have spent my life in and around boats and the arts. Sailing is clearly an art form (there are more paintings of sailboats than symphony orchestras), and I think amateur designs can be more creative and interesting than the usual professional craft commissioned by a wealthy amateur yachtsman. Phil Bolger’s old Small Boat Journal Cartoons are delightful examples of some amateur’s hare-brained concept sparking the imagination of a gifted boat designer. I also believe that widespread use of the scientific method by amateurs is the key to human-driven evolution.

The Scientific Method:

1. You have an idea that differs from common knowledge and practice
2. You figure out a way to test that idea
3. Your experiment reveals merit and flaws in the concept
4. You use what you’ve learned to modify the original idea/design
Reading and habitual use of the scientific method are keys to furthering your own education. Reading takes you on previously traveled paths, and the scientific method takes you further. Along the way you discover stuff you didn’t even know you didn’t know. Repressive societies tend to suppress both literature and amateurs who think they might have something to contribute.

The Bolger Nymph Topsail Gaff Cutter rig evolved along with my own sailing skills, geographic local, family, and general approach to life. It is a boat for someone who has been designing, building, and sailing for a long time, in a large assortment of craft including some experimental ones with unusual qualities. The project has been going on for decades, and isn’t finished. But she’s been attracting some attention on the water lately and it is a good time to sit back and tell her story.

She started in the winter of 1987 as a father-son project, to serve as a tender. Not a yacht tender--a tender for a small piece of waterfront property with a house, dock, mooring, and wood-fired sauna on a significant piece of water connected on both ends to Lake Superior, in Michigan’s Upper Peninsula. My dad gathered the materials at my folks house in Ohio. I made a series of long weekend trips to my parents house, with my son as traveling companion. We celebrated his 2nd birthday about the time the strakes were tacked and glued. My mother cooked meals and watched my son while my dad and I cut sheets of plywood in his shop and assembled them in the sun room. Construction took 5 long weekends, from March through June. Building the Nymph hull in 1987 was everything a boat project should be: an excuse to spend time with my folks; time for my son with his grandparents; an interesting project to share with my dad; and long drives on the road to think about what the future held for my son and me.

At the time I represented a minor slice of demography: young father balancing home, work, and full-time responsibility for a young child. Not a vocal minority, but often featured in Disney Movies. I imagined a woman in my life, but was haunted by the legendary ad in the Upper Peninsula personals:

Wanted: Woman with boat. Please send picture of boat.

I figured a better strategy was to already have a boat. The kind of woman I’d find interesting could tell a lot from a guy’s boat, so it had to be pretty and practical, tough but elegant, and worth taking care of for the long haul. I’d stayed in school longer than most guys, so if I could build a good boat, it would show that I still had enough patience, skill, and common sense to be worthwhile company for a woman with more to her than just a pretty face. ...Or something like that. I don’t remember all the details, but it was a 750 mile drive to my parents house, so I had a lot of time to think.
I applied the finish coat and oarlocks in July 1987, about the time my cousin and I first tried making it back to shore on his original windsurfing board. We had both grown up sailing and knew a bit about force vectors, balance and such, but neither of us had any notion of windsurfing, other than that we’d seen it done and knew it was possible. Had we been graceful, some of the moves we managed to pull off might have had merit. I think his experience underwater as a certified diver were as valuable as any of our sailing history. By the following summer I was falling off my own windsurfer, and dating a beautiful, intelligent woman with two very young daughters. 22 years later, all three of them still think the Nymph is cute. I still think my wife is amazing. God smiled on my thoughts and choices.

The Bolger Nymph faithfully served our small waterfront family as a tender for 8 years, pulled up on the rocks under the sauna when not bobbing about like a mother hen, in daily use from May to November while the lake was ice-free. As is usual with waterfront families, we naturally grew a fleet of small craft, but all the others had sails. The Nymph served as tugboat, taxi, and coast guard as the kids learned to swim, snorkel, windsurf, and sail. My own sailing skills improved, the windsurfing boards got smaller and faster, and ultimately my sailing partner and I became the “windsurfing beasts of Lake Superior,” according to the County Sherriff, relishing 30 knot winds and 18 foot wind-driven swells. During the calm summer months we rented a house in Hood River, Oregon, and sailed the Columbia River Gorge. I designed and built my own hollow high performance windsurfing boards and they worked well, even racing against the latest creations in The Gorge.

Our new family knitted, the kids grew up, and jobs and high-performance sailing pulled us out to Oregon, where we relocated in 1996. Without a waterfront, the Nymph was orphaned. I slapped on some paint and my folks took her out for a row on the Columbia River during one of their summer visits, but mostly she sat inverted on a concrete pad in the yard, overgrown with English Ivy. The skeg dry-rotted, and then the gunnels. In Spring 2009 I gathered tools to cut back the Ivy, and was treated to a pathetic show as a mortally wounded male partridge flopped around between me and the boat. I retreated and sat back to watch. The bird miraculously recovered and hopped up on a fence rail, with an eye cocked in my direction. A half hour later, a mother and 12 newborn chicks spilled out from beneath the gunnel next to an oarlock. I watched them for weeks, and put off any work on that area of the yard for a few months. In early September 2009 I finished another boat restoration project and hoisted the Nymph onto the cartop for the ride to the shop. I expected this would be her last ride, as the gunnels had crumbled away and I expected to find dry rot where the rocks had breached her original West System fiberglass sheath after a decade of neglect. But she was sound. Every bit of the original 1/4” AC exterior plywood was intact, and most still as new, soaked and protected by the West system epoxy. The following detailed photographs show the hull restoration process. For anyone contemplating building an Instant Boat, this is what she will look like in 22 years, after a decade of hard use followed by a decade of neglect. She has aged more gracefully than some commercial plastic dinghys of her era. Soaking the wood with epoxy did the trick—the skeg and gunnels were just fir with a coat of varnish.
Here’s the bottom after grinding away the surface damage to get to the wood underneath. The original quarter-inch AC exterior plywood is sound. The rest of the hull is in good condition.
First I rolled on a layer of epoxy to wet the bottom and soak into the wood. When that was tacky it was easy to lay 4” wide 6 oz. glass fiber tape on the chines. I rolled wet epoxy into that, then added another layer of tape on top. Two layers of 6 oz 4” wide tape over the chines, where hard service is both historic and anticipated.

The tape is followed by a fairing layer of epoxy thickened with West System 510 microlight filler. Each step proceeded before full cure of the previous epoxy work.
The trick to getting epoxy to adhere between layers is to either add the next layer before the previous layer hardens, or sand the layer completely before adding the next layer. Since every bit of surface needs to be sanded, that’s a big job. It helps to get as much done in one day as possible to keep the all over sanding to a minimum.
The filler doesn’t need to be pretty, since much of will to be sanded away. Particularly at the chines, it helps to have a big glob along the length, so that it can be sanded to a nice edge. Once the filler is completely done—one more coat at least—it will be sanded to a smooth finish.

It really is ugly, but working it too much will leave gaps. It’s a bit like frosting a cake, except the frosting is getting harder as you work on it. Much of it will be sanded away.

At this point I had to keep reminding myself that this is a working boat. It is easy to get carried away on a restoration and end up with a mirror finish on part of a small craft in glaring violation with the overall aesthetic. Surfboards and Sailboards owned by office-dwellers see little use and can have flawless fit, fairing, and finish. Cedar strip kayaks are meant to be used, and are allowed a few tool marks and the wear and tear of multiple launchings and use. Working boats need resilience and toughness. In the $6 latte coffee shops of Portland, young bodies adorned with exquisite tattoos tap away on laptops with baby-soft hands. On the bike trails and whitewater around Hood River, nothing beats a good scar. It’s a different aesthetic.
An unseasonal 90 degree sunny day in late September allowed me to do a solar-assisted quick cure. A black plastic garbage bag was cut into a single layer, and laid over the top of the epoxy after it kicked. Three hours was enough for a rock hard cure, followed by a warm evening of wet sanding.

Here’s a shot along the faired curve, showing the chine and bottom after sanding with 220 grit wet-dry paper. After this shot I relieved the knife edge along the chine to a 1/8” radius before adding the 4 oz bottom cloth. Knife-edge chines look OK until the first time the boat touches a rock.
The 4 oz bottom cloth was draped on, smoothed out, and wetted out. It was then faired with West System epoxy and 510 microlite filler in thick mayonnaise thickness, sanded 220 grit, and a coat of Pettit Easypoxy undercoater rolled on for solar protection. This was into October, and rain could have started at any point, so I didn’t want to leave the epoxy exposed for the winter.

Note that restoration fit, fairing and finish are to a higher standard than original 1987 construction. Not only are my skills improved, but my years of designing and building boards to sail at the Event Site in Hood River left me with the bad habit of putting an exhibition finish on everything. I had to keep reminding myself to embrace a different aesthetic for a wooden working boat. I don’t want a show piece I’d be reluctant to launch from a rocky shore.

In this shot, the original gunnels are still in place, and transoms haven’t yet been touched. The shear strakes were in good condition, and except for a little fairing at the transoms, were left untouched until the final hull painting.
New Douglas Fir gunnels in place. Timber for restoration came from the woodpile, Lowes, and several dismantled sheds and shelves on the property. The causes of the original dry rot were examined, and a few different techniques tried. In 20 years I’ll know if they worked.

The interior was sound, with normal wear from a decade of use as a tender. Chips in the transom edges were filled, faired and covered with a layer of 6 oz glass cloth.

My son, with a finely tuned sense of history and a wooden boat aesthetic earned crewing on a 100 year-old Schooner in Puget Sound, cautioned me against painting over the foot wear on the bottom. My feet rested further aft. Those are 1000 hours of his footprints growing up on the edge of Lake Superior.
Transoms filled and faired, protected with a coat of Pettit Easypoxy undercoat, and sitting pretty on the back deck.

Original Oarlocks reinstalled after 2 hour brite-dip in Ketchup from the fridge. She’s now better than new, ready to splash, with just the original longitudinal thwart seat fastened in place with the original SS fasteners. I sail-row boats for a few hours before applying finish coats of paint, so I can relocate any fastenings etc. That’s the scientific method applied to boat building, and it works for me.

That might have been the end of the story, except it was late October, it had started to rain (which lasted until June this year in Oregon), and my son had finished his MS in Undersea Acoustics and moved to Annapolis, where he was sailing every week, shopping for a boat. Our 25 year father-son relationship has entered Book 2, with phone calls and internet chats instead of daily contact.
Here we are, last week, rowing along as Phil Bolger intended. When I started building her in 1987 I envisioned daily rowing exercise. But I discovered that this hull moves through flat water so effortlessly that you don’t get much of a workout, even after 6 miles. It is time well spent, but not much exercise. As you row harder, you can generate a big wave, but expending energy disturbing the surface of the water violates several aesthetics I embrace.
Cutting a hole in the bottom of a perfectly good boat. October through December 2009.

This part was traumatic. Phil Bolger specifies leeboards for very good reasons, and I agree with them. But I have considerable experience with unstable sailing platforms in big waves and heavy chop, and some of it applies here. The Nymph has a reputation for being “tender” under sail, and has considerably less beam than easy-to-sail boats under 8 feet. Every photo I’ve seen of a Nymph under sail looked awkward to me, and I’m now old enough that I want some comfort during a 3 hour sail— that clever fore-and-aft seat had to go.

To speak in general terms, we’ll refer to the part of a sailboat that sticks down into the water from near the center of the hull as simply “The thing that sticks down in the water,” or simply, “it.” It has several functions widely discussed by intelligentsia et al. The terms lateral resistance, righting moment, and initial stability are often encountered, along with lift, drag and the various ratios of all of the above, taken in pairs. It has been suggested that an unweighted daggerboard provides only lateral resistance, while a heavily ballasted keel or swinging keel provides both lateral resistance and righting moment. The hull shape supposedly determines initial stability, and flat bottomed boats have a lot. Those suggestions were clearly made by sailors who haven’t spent much time trying to stand up on a windurfing board with and without the daggerboard in place, or spent enough time in dinghys to realize that a capsize most frequently coincides with downwind sailing with the daggerboard up.

When I told my son that our 12’ dinghy didn’t have positive righting moment, he countered: “sure it does--you weigh 160 lbs, and when you stand on the daggerboard, it pops right up!” Even if the thing that sticks down in the water is light enough to float, if it is centered in the bottom of the hull, you can easily right the boat by standing on it, on either tack.

A daggerboard on the center line provides considerably more initial stability than a leeboard. A leeboard is a flat plate on the end of a lever arm. Bend your hand at right angles to your arm. Your arm is the bottom of the boat, and you hand is the leeboard. As the boat heels, the leeboard moves up and down, in and out of the water, with very little resistance. A daggerboard centered in the bottom of the hull has to push water from side to side as the boat heels. The difference in initial stability is profound.

The decision to use a center-line daggerboard was not made for aesthetics, although some American traditionalists and youngsters like my son might disagree. I’ve been to Amsterdam twice, read everything Jan de Hartog wrote in English, and leeboards and tumblehome are part of my soul. I fondly recognize a Dutch hull a mile away. I chose a centered daggerboard for stability, and pondered adding a big lead weight if necessary.

Design and actual wood cutting were difficult, because I was hacking an elegant design. The photos show the process and my decisions, but next time I’ll do a few things differently. The precision 1/2” slot is too narrow. I pulled it off, but it took twice as long to build than a 3/4” slot. I epoxied the daggerboard trunk to both the bottom of the boat and the center thwart, with reinforcing timbers faired to the bottom. Next time I’ll fasten it hard to the bottom but lash it to the thwart so the hull can flex more and the wood expand and contract without distorting.
Here’s half of the daggerboard trunk sandwich, with the bottom curve cut into the lower edge. The inside surfaces were glassed with 4 oz cloth. This is the only part of the boat inaccessible after construction, and I wanted it guaranteed watertight and resistant to scratching if a sharp object ended up between the board and inside surface.
Here’s the trunk, epoxied in place. I took a lot of care to get it centered, aligned fore-and-aft, and vertical. Off-center daggerboard slots have their place, but they need to be far enough off that it’s clear that is what the designer intended.

A benefit of that precision 1/2” slot is that I was able to take a piece of 1/2” aluminum rod, chuck it in the lathe, and center drill a hole for a 1/8” brad point wood bit in one end, held in place with a set screw. Then I used the 1/2” rod with bit in a cordless drill to bore a series of 1/8” holes through the bottom of the boat, using the daggerboard trunk as a guide. When I had a line of holes, I flipped the boat over and drilled out the 1/8” guide holes with a brand new 1/2” circle-cutting wood bit. Finally I cleaned up the slot between the holes with a key-hole saw, and smoothed it out with a bastard file on the sides and rat tail file on the ends. I relieved the slot the thickness of one layer of 6 oz glass all the way around, and glassed it in with a wrap from the bottom. It probably came out better than I deserve, and is one of the more precise things I’ve ever done in wood. It’s a whole lot nicer than the centerboard slot in the bottom of my commercial fiberglass 12’ sailing dinghy.
Here's the slot from the outside, with a piece of 3/8" mahogany plywood that served as a template. Fit is perfect. It slides up and down easily, but you never want the actual daggerboard to absorb any water—or the trunk to swell and distort either.

Astute readers will note that the time to design and build the daggerboard slot was three months—the same amount of time it took to build the entire hull in 1987. A leeboard would have taken a weekend. But a different consideration applies here. My father now lives in Virginia. My son lives in Maryland. It started raining in October, and the boat is taking up the entire garage, so I can’t work on anything else out there even if I wanted.

There is a common small boat aesthetic that rewards simplicity, ease-of-construction, and low cost. Nymph was originally featured in Dynamite Payson’s “Build the New Instant Boats.” My Nymph surely isn’t an instant boat. Restoration took nearly as long as original construction, and adding a daggerboard added still more time, grief, and precision woodworking. I can’t imagine Payson’s next book suggesting: “for the next step, make a tool by chucking a length of 1/2” rod in your metal lathe.” But each step involved conversations with my father and my son, photographs sent and commented on, and exchanged advice. I was much more comfortable with my decisions after I figured out how to explain and justify them. Nymph has been a part of our lives since 1987, and there was no benefit to rushing through the project. Ladies get together to sew quilts. I doubt there is a book titled: “Sew the New Instant Quilts,” as it wouldn’t serve a community more interested in sharing a project than finishing it. Maybe I’ve been in the Northwest too long, and this multigenerational bonding stuff is just so much hooie. Maybe in Maine, a reasonable guy would rather just finish up the dang boat in October and spend the winter living it up on the internet, reading articles like this one, maybe wishing he had a project to share with his dad and his kid.

My years in the Michigan’s Upper Peninsula taught me that time and aesthetics take on a different meaning in the winter. It’s a good time to add a daggerboard trunk and cut a hole in the bottom of a perfectly good boat. Time passes differently for a boat project you start in September than one you start in May.
Part 3. A Sailing Rig.

With a lovely restored hull, nicely undercoated, the daggerboard slot cut and everything ready for the next step, I needed to put some serious thought into the sailing rig, both above and below the waterline. This involved long periods of gazing at the hull shape, thinking about hull speed (low), points of sail, stability, heel angles, relative sizes of underwater and above water surfaces, etc. I'm not a professional naval architect, but I do design other things, and my most successful designs have all been more than just a bunch of equations, formulas, and applied physics. After using everything I know and all my training, I try to come up with a design that feels right. My intuition as a designer is based on a lot of underlying physics and experience. Here are some of the thoughts I kicked around with my dad and my son.

Size, shape, and position of daggerboard and rudder: Daggerboard position was determined by the Nymph center thwart. It looked about right, so that's where I put it. An inch or two fore and aft is easily compensated for by shifting my weight a bit. The rudder position is also fixed. The size and shape of the daggerboard and rudder were copied from another sailboat with about the same sail area. I didn't worry about that much, because they are so easily changed. I can cut and epoxy-coat a new rudder blade in a weekend, and change the depth of the dagger while sailing. I designed a nice kick-up rudder because it was an enjoyable project and makes it particularly easy to change just the wetted surface. It comes in handy a few of the places I sail. I've selected the size of fin to go along with the appropriate sail area 1000 times while windsurfing, and it's both second nature and not all that critical. I know what it feels like to have too much or too little above and below the waterline, and some ways to compensate.

Mast height and position: Some of my favorite Bolger designs have off-center masts, but there is no reason for that here. I made dozens of sketches of gaff-rigged sloops on 10' hulls, and they began to converge on a plan form that looked right. I ran some numbers, but none of the numbers can be all that precise. Effective sail area changes with angle of heel, point of sail, etc. If a yacht design is correct with a club-foot jib, then the numbers must be all wrong for a 150% genoa. So I picked a spot that looked right, and then designed a mast base and partner that would allow me to change the mast base position and rake at the sailing site, using just a cordless drill and some lashings.

Rig: I have a half dozen sails for my two primary sailboards. I pick a sail based on wind speed and direction at the sailing site. Then I pick the fin. I usually sail on the Columbia, near the town of Hood River. I have sailed in everything from nothing to 50 knots. While sailing in a sustained 50 knot wind one afternoon east of Hood River, the owner of the boat calmly announced. "This isn't really any fun. We don't go any faster, and it hurts the boat." I won't intentionally take the Nymph out in more than 20 knots, but I expect I'll see that sooner or later, in moderate to large swells. The hull can handle it just fine. The ability to drop sails, reef the main, sacrifice the jib as a sea anchor etc. are all possibilities that might allow me to get back to where I launched. But why I really want a jib is simple: on a windsurfer, the skeg is fixed, and steering is all done with boat and sail trim. I like that. With a gaff main, jib and seating arrangement that allows me to finesse boat trim, I can balance the helm.
Seats. The fore-aft thwart seat in the Bolger Nymph is an elegant solution that served us well for a decade as a rowboat. If I ever return to using the Nymph primarily with oars, I will miss it. But it is disfunctional if not dangerous with a sailing rig. Sailboats sail by balancing sideways forces so that forward lift propels the boat. A sailor moves to balance the sideways forces, shifting his own weight off center and fore and aft. In a motor, rowing, or paddling craft, the driver can always be in the same spot, but in a sailboat, the driver and crew are constantly moving about, side to side, fore and aft. An elegant solution for everything from dinghies to cruising yachts is a seating area surrounding a foot well. That allows the driver to make small but significant adjustments to boat trim without sacrificing comfort. Many small boats are designed primarily for young, beginning sailors. The Optimist is a good example. It is stable, performs well, and beastly uncomfortable for anyone of adult stature.

The Nymph is so small that seating options are severely limited. I did some experiments with stair steps, phone books, and big boxes to figure out what was the minimum height off the floor for an effective seat, and how much room I needed in front of the seat for my legs and feet. I finally came up with the arrangement shown here. Note that this was not my first attempt. I used the scientific method. The first iteration was close, but some obvious changes were needed. My second attempt was good until it broke. It was too stiff—a boat needs to flex. This version has survived many hours of aggressive sailing in some stiff conditions and chop. I like it, but by the end of an otherwise delightful 4 hour sail last week, I had started sketching some 3/4” foam seat pads...

When facing across the boat, there is room under the opposite seat for my feet. When beating, one leg can go across the daggerboard with that foot forward of the thwart, but it is important to get both feet back in the foot well for tacking in a breeze. This shot illustrates Nymph’s slender figure, and why her more ample sister Ruben’s Nymph can carry a full foot more beam in the same length.
Spars: I bought a 13’ child’s fiberglas windsurfing mast. The mast works OK and looks good, but now that I’ve sailed her for half a summer I’m contemplating a somewhat stiffer, taller adult mast. I have a stiff carbon fiber 14’ mast to try. I’ll change masts before I design the topsail. Before I sailed her, I was afraid to put too much weight aloft due to her reputation for tenderness, but that has not been an issue, and it will be interesting to see how she handles more sail in lighter wind. I laminated up a boom from light cedar and spruce, and added a gooseneck from Race-light with brass reinforcement.
Here’s the gaff, a single piece of light cedar 1x2, planed down to size. The bridle is knotted to a fitting near the mast, goes up through the main halyard, down through a sheave on the end of the gaff, and is tied off to the peak grommet.

This is a close-up of the sheave arrangement. After sailing a few times with the bridle acting as a traveler, an optimum position was determined for the main halyard attach, and a loop knot placed at that point. The main can now be trimmed full on most points of sail.

Pay no attention to the gaff yoke at the throat. It failed in high wind after these shots were taken, and was replaced by a ring and lashing.
Here is the gaff sheave from the starboard side. This bridle arrangement works well for a single halyard small gaff rig. Hauling the main halyard tensions both the head and luff of the sail, and the loop knot in the bridle establishes balance of forces between the throat and peak. The main halyard, vang, and mainsheet provide good control over sail shape in all wind conditions, on all points of sail. This experiment paid off.
Bowsprit and mast partner detail. The lower mast attachment is easily moved fore and aft. Mast rake is set by lashings at the mast partner, and the forestay and shrouds. The turnbuckle on the bowsprit was added to counter the forces on the forestay in high wind. The Harken dinghy racing hardware near the mast base is effective, down where it won’t foul the jib sheets, and out of sight of traditionalist eyes when sailing.

Kick-up rudder with cam cleat to hold it down. Race-lite pintles and gudgeons. Epoxy coat on rudder, oil finish on tiller. Note jib-sheet cam cleat on port gunnel. All fittings are below the level of the rails, to allow the boat to slide easily up onto the car-top carriers.
Bowsprit and jib tack attachment. Lashings are used where possible to make changes easy. She saw regular service as an icebreaker in the UP, so she may qualify as a bluenose.

Main tack and gooseneck. Inhaul and Cunningham lashings allow sail trim, but not easily under way.
Boom end, with mainsheet block and clewouthaul. The two-part mainsheet is just right for this 3.5 square meter sail, with a fixed attachment at the port corner of the transom and block at the starboard transom corner.

Mast partner detail. The cam cleat just forward of the daggerboard is for the vang. The entire rig can be disassembled and stowed for travel, with the bare hull on the car top, in about 20 minutes.

The square corners of the partner have since been rounded off, and you can see where fittings were removed from the cross-brace. The jib sheets foul on anything that sticks up or out in this area.
Two part vang. After this shot was taken, the Irish pennants were tucked in and clipped, and a thumb cleat was added to the top of the boom to capture the vang loop.

By now you will have noticed the Tanbark Sails. They were the most expensive part of the project, but by February it was clear that this craft deserved some special canvas. I made many sketches, using my eye for balance, lowering the peak of the gaff to allow for an eventual topsail, and agonizing over the jib area. I settled on a standard jib design from a 10’ sloop in the SailRite catalog, and sketched my mainsail drawings into SailRite’s order form. The sail kits arrived in a few weeks and were sewn together by our younger daughter, an artist living on the Oregon Coast. She has an eye for such things, and it was rewarding to involve another member of the family in the project.
In mid-July 2010 my wife and I spent 5 days at Timothy Lake near Mount Hood in Oregon, sailing, hiking, and kayaking. Here’s a shot of me in mid-tack:

A broad reach at hull speed:
Ghosting out. There is nothing quite so enjoyable as simply messing about in boats.

So that's the story. While sailing her, you pay attention to boat trim, jib sheet and halyard, mainsheet, main halyard and vang, tiller, and all the external conditions that make adjustment of any of those necessary at a moments notice. She has no flotation other than the wood hull, so she'd be unforgiving in a knockdown. I have a self-rescue plan, but I haven't yet tried it out. The water has been too cold for that set of experiments.

She is as balanced as my eye and experience hoped for. After the first few times sailing her, I added a line and two cam cleats so I can throw a constrictor knot around the tiller, lash it amidships and steer her on a reach entirely using the main and jibsheets. With this sail area: 3.5 square meters main, 1.5 square meters jib--she sails at hull speed on most points of sail in any wind over 5 knots. But I have been passed ghosting downwind by a 9’ cat-rigged dinghy with 5 square meters of sail. Downwind in a breeze with the dagger lifted she is a bit exciting, and probably goes almost as fast with the dagger down. The jib is blanketed by the main when ghosting downwind, so a topsail or a large asymmetrical loose-luff lightweight nylon jib would help. Setting it would be an adventure, but it could be done.

I haven't yet completed designs for the topsail and additional forestay to make her a true topsail cutter...perhaps a clubfoot jib with sewn-in cable forestay for high wind with the reefed main...
She sure is pretty. A lecture quote from the Northwest poet Nelson Bentley: “I have this sneaking suspicion that not everything is always happening in the present tense.” This project has reached back into the past, and provided us with lessons that will serve in the future. Sailing her is a performing art. The above shot nicely shows off the elegant lines of a hard chine small craft with bow transom, a bit of tumblehome, and bow sprit.

Unlike any other 8’ boat, she makes no claims to ease under sail. My son looked on for a while and remarked, “Well, you did it--a traditional small craft that’s as hard to sail as a windsurfer.” She rewards attention to sail and boat trim, and punishes inattention. She was also more work than most builder are willing to invest in a boat this size, but designing a boat using the scientific method takes more time than copying the suggested rig from the plans.

This is a boat I’d like a woman who would notice, and she did. She scrambled over rocks and launched a kayak to take pictures, and then joined me on our 12’ dinghy, at the helm ...as she has for 22 years. Life is good.