
1

Association Internationale
pour les Technologies Objets

The AITO Test of Time Award 2023

is awarded to

for their work

Traits: Composable Units of Behaviour,

ECOOP 2003

Seattle, United States, July 2023

For the Nomination Committee: For AITO:

Nathanael Schärli,

Stéphane Ducasse,

Oscar Nierstrasz,

Andrew P. Black

Eric Jul

President

Tijs van der Storm

Chairman

Why Programming Languages Matter:
an Improvisation in six languages

Andrew P. Black

Portland State University
Portland, Oregon

Why Programming Languages Matter:
an Improvisation in six languages

Andrew P. Black

Portland State University
Portland, Oregon

seven

Program Design is Hard

I want to make it easier

4
Clip from "Minority Report"

Programming Language
Design is Meta-Hard

Why So?
• A programming language is not just — or even

primarily — a means for programmers to
communicate with computers

• It is also a means for programmers to
communicate with programmers — including
themselves

• It is a social, as well as a technical, enabler
- language adoption is slow, like any social change

6

Why So?
• A programming language is not just — or even

primarily — a means for programmers to
communicate with computers

• It is also a means for programmers to
communicate with programmers — including
themselves

• It is a social, as well as a technical, enabler
- language adoption is slow, like any social change

- but enjoys the “100th monkey” effect

6

Seven Languages

7

Language Years Place Customer

Algol H 1977 UEA VWRS

3R 1977–80 Oxford B. Shearing

EPL 1982 UW Eden Programmers

Emerald 1983–6 UW Ourselves

Traits 2001– U Bern Smalltalk Programmers

Fortress 2008 Sun Labs Engineers

Grace 2010– Cyberspace Novices

1977: Algol H

9

9

II. N o t e s on D a t a Structuring *

C. A. R. HOARE

l. INTRODUCTION In the development of our understanding of complex phenomena, the most
powerful tool available to the human intellect :is abstraction. Abstraction
arises from a recognition of similarities between certain objects, situations,
or processes in the real world, and the decision to concentrate on these
similarities, and to ignore for the time being the differences. As soon as we
have discovered which similarities are relevant to the prediction and control
of future events, we will tend to regard the similarities as fundamental and
the differences as trivial. We may then be said to have developed an abstract
concept to cover the set of objects or situations in question. At this stage,
we will usually introduce a word or picture to symbolise the abstract concept;
and any particular spoken or written occurrence of the word or picture may
be used to represent a particular or general instance of the corresponding
situation.

The primary use for representations is to convey information about
important aspects of the real world to others, and to record this information
in written form, partly as an aid to memory and partly to pass it on to
future generations. However, in primitive societies the representations were
sometimes believed to be useful in their own right, because it was supposed
that manipulation of representations might in itself cause corresponding
changes in the real world; and thus we hear of such practices as sticking
pins into wax models of enemies in order to cause pain to the corresponding
part of the real person. This type of activity is characteristic of magic and
witchcraft. The modern scientist on the other hand, believes that the manipu-
lation of representations could be used to predict events and the results of
changes in the real world, although not to cause them. For example, by
manipulation of symbolic representations of certain functions and equations, *This monograph is based on a series of lectures delivered at a Nato Summer School,

Marktoberdorf, 1970.

83

• Algol 68: good

10

• Algol 68: good

• Hoare’s Structured Data: + good

10

• Algol 68: good

• Hoare’s Structured Data: + good

• Algol 68 + Hoare’s Structured Data:

10

• Algol 68: good

• Hoare’s Structured Data: + good

• Algol 68 + Hoare’s Structured Data:

10

+ + good

• Algol 68: good

• Hoare’s Structured Data: + good

• Algol 68 + Hoare’s Structured Data:

10

• Algol 68: good

• Hoare’s Structured Data: + good

• Algol 68 + Hoare’s Structured Data:

10

a closing of the gap between the data
structures of the program and the real-world

objects they represent. ”
“

A. P. Black and V. Rayward-Smith. Proposals for Algol H — a
superlanguage of Algol 68. Algol Bulletin, 42:36–49, May 1978.

Lessons:

• Consolidation is harder than innovation
- Mostly, Hoare’s data and Algol 68 meshed well

‣ Both inspired by Algol 60

- The exception: tagged and untagged unions

• If you have a destination in mind, be careful
from where you start

11

Recommended Reading
• C. H. Lindsey. A history of Algol 68. In History of

Programming Languages—II, pages 27–96. Association for
Computing Machinery, New York, NY, USA, 1996.

“2.3.4.1 Parameter Passing  

”
12

It is said that an Irishman, when asked how to get to some
remote place, answered that if you really wanted to get to
that place, then you shouldn’t start from here. In trying to
find an acceptable parameter-passing mechanism, WG 2.1
started from ALGOL 60 …

1978–80: 3R

• “Reading, ‘riteing, and ‘rithmetic”

• Programming language designed
for readability

- Names made up of multiple
words

• Flat (no nesting): Blocks and
Blocklets

- Blocks (procedures) can have
(multiple) arguments, e.g., delete
[i]th line of page[p]

- Blocklets have no arguments

• No loops !
- named code fragments

14

Influences

15

Influences

15

Influences

16

Influences
• Brian Shearing
- knew that he needed a language

- contracted to produce a description of an
algorithm that was both readable and executable

16

Influences
• Brian Shearing
- knew that he needed a language

- contracted to produce a description of an
algorithm that was both readable and executable

• Algol 60, Cobol?

16

Influences
• Brian Shearing
- knew that he needed a language

- contracted to produce a description of an
algorithm that was both readable and executable

• Algol 60, Cobol?

• Tony Hoare:
- Simplify, simplify, simplify until it hurts. Then

simplify some more.

16

Recommended Reading
• E. Hehner. do considered od: A contribution to the

programming calculus. Acta Informatica, 11(4):287– 304,
1979.

• Dijkstra’s Language of Guarded Commands

 

17

if
[] guard1 → stmt1  
[] guard2 → stmt2  
fi

do
[] guard1 → stmt1  
[] guard2 → stmt2  
od

Recommended Reading
• E. Hehner. do considered od: A contribution to the

programming calculus. Acta Informatica, 11(4):287– 304,
1979.

• Dijkstra’s Language of Guarded Commands

 

17

if
[] guard1 → stmt1  
[] guard2 → stmt2  
fi

do
[] guard1 → stmt1  
[] guard2 → stmt2  
od

Execute one of the stmts whose guard is true.
If there is none, abort

Recommended Reading
• E. Hehner. do considered od: A contribution to the

programming calculus. Acta Informatica, 11(4):287– 304,
1979.

• Dijkstra’s Language of Guarded Commands

 

18

if
[] guard1 → stmt1  
[] guard2 → stmt2  
fi

do
[] guard1 → stmt1  
[] guard2 → stmt2  
od

Execute one of the stmts whose guard is true,
and then execute the whole do..od again

If there is none, skip

Recommended Reading
• E. Hehner. do considered od: A contribution to the

programming calculus. Acta Informatica, 11(4):287– 304,
1979.

• Dijkstra’s Language of Guarded Commands

• Program development by stepwise refinement

- descriptive names are later elaborated into code
19

if
[] guard1 → stmt1  
[] guard2 → stmt2  
fi

do
[] guard1 → stmt1  
[] guard2 → stmt2  
od

20

21

21

Language as a Simplifier

22

23

23

1982–1984: Eden
Programming Language

• Eden Project (1980–1984) — early
attempt to build a “distributed,
integrated” computing system.

• EPL implemented by translation into
Concurrent Euclid (CE)

• EPL provided:
- synchronous (local or remote) object

invocation
- concurrency inside Eden objects
- capabilities to address objects
- strings (because CE didn’t!)

25

26

generated

27

generated

Reflections
• Eden saw itself as distributed systems

research
- no one on the project knew that they

needed a programming language!

• In hindsight, EPL was essential:
- it hid the messy, boring stuff (marshaling,

dispatch), and

- freed programers to focus on the interesting
and hard stuff (algorithms, concurrency)

28

1983–87: Emerald

The People
Andrew

Black
Norm

Hutchinson

Eric Jul Henry
(Hank) Levy

Andrew
Black

Norm
Hutchinson

Eric Jul Henry
(Hank) Levy

The People

31

Andrew
Black

Norm
Hutchinson

Eric Jul Henry
(Hank) Levy

The People

31

Simula 67,
Concurrent
Pascal

Exception
Handling

Simula 67

Capability
architectures,
systems

Emerald
• Addressed building a distributed system

as a language problem

• Separated “semantics” from “locatics”
- Local and remote objects had same

semantics: “Location-independent
invocation”

• Compiled code about as efficient as C
in local case,
- and 100 x faster than Eden in the remote

case

32

Emerald Language Features
• Innovations:
- Object constructors
‣ mutable & immutable objects

- Failure handling
- Parameterized types

• Conventional:
- Objects had processes (as in Simula)
- Hoare monitors for synchronization

• Simplifications:
- No classes, no inheritance

33

Reflections
• Emerald was about 20 years before its

time
- NSF called it “unimplementable”

- Still generating dissertations in 2023

34

Almost wasn’t Published

35

Almost wasn’t Published

35

My most influential paper (over 1200 citations)

Reflections
• Not widely used, but widely influential
- ANSA DPL, OMG CORBA, INRIA’s Guide,

Birrell et al.’s Network Objects, the ANSI
Smalltalk standard, Java RMI

• We were our own customers. We realized
that we needed a language …
- Dramatic simplification of the programmer’s

world (compared to Eden)

- Freed programmers to think about the hard
problems: object location, and concurrency.

36

2001–present: Traits

• Traits: a language feature, not a language

• a Trait is a Smalltalk class without any
instance variables

• Traits can be
- combined with +,

- modified with @ (alias) and – (exclusion)

- used in other traits and classes.

38

• Trait = set of
methods, without
instance vars

• Sum, alias, exclude
and uses as
combinators

39

composite subclass
definition

C subclass: #D
uses: T

var1

b a j
d a w
i a ↑var1

inheritance
trait

T

a a x
b a y
c a ↑self i

subclass

D

var0 var1

a a x
b a j
c a ↑self i
d a w
e a k
i a ↑var1

class

C

var0

a a m
d a n
e a k

trait

T

+

U

a

a

x

b

a

y

c

a

conflict

d

a

r

composite subclass
definition

C

subclass:

 #D

uses:

 T

var1

b

a

j

d

a

w

i

a

↑

var1

trait

T

a

a

x

b

a

y

c

a

↑

self

 i

sum

+

trait

V

a

a

x

b

a

y

c

a

p

d

a

v

overriding

trait

T

a

a

x

b

a

conflict

c

a

↑

self

 i

inheritance

These diagrams illustrate the three com-
position operations involving traits. The
ellipses depict the operations; the fat
arrows show their inputs and
outputs. The open arrow repre-
sents subclassing. The notation a

a

m

represents a method with name a

and
body

m

.
The

sum

 operation takes two traits

T

 and

U

 as input; the result is
a trait

T+U

 that contains the union of all of the non-conflicting
methods. Where

T

 and

U

 conflict (

e.g.

, at

c

), the resulting
method is an explicit conflict marker.
The

overriding

 operation combines some explicit definitions with
an existing trait. In the figure, the explicit definitions of methods b
and c override those obtained from the trait

T

, and the definition
of d is added. The resulting trait V contains no conflicts because
the definition of b has been overridden.
The

inheritance

 operation is used to create a new subclass D
from an existing superclass C, an existing trait T, and some new,
explicitly given, definitions. Explicit definitions (

e.g.,

 of b) override
those obtained from the trait; definitions in the trait (

e.g.

, of a)
override those obtained from the superclass.

trait

T

a

a

x

b

a

y

c

a

↑

self

 i

composite trait
definition

Trait

named:

 #V

uses:

 T

b

a

y

c

a

p

d

a

v

subclass

D

var0 var1

a

a

x

b

a

j

c

a

↑

self

 i
d

a

w

e

a

k

i

a

↑

var1

class

C

var0

a

a

m

d

a

n

e

a

k

trait

U

c

a

q

d

a

r

glue code

• Trait = set of
methods, without
instance vars

• Sum, alias, exclude
and uses as
combinators

39

composite subclass
definition

C subclass: #D
uses: T

var1

b a j
d a w
i a ↑var1

inheritance
trait

T

a a x
b a y
c a ↑self i

subclass

D

var0 var1

a a x
b a j
c a ↑self i
d a w
e a k
i a ↑var1

class

C

var0

a a m
d a n
e a k

trait

T

+

U

a

a

x

b

a

y

c

a

conflict

d

a

r

composite subclass
definition

C

subclass:

 #D

uses:

 T

var1

b

a

j

d

a

w

i

a

↑

var1

trait

T

a

a

x

b

a

y

c

a

↑

self

 i

sum

+

trait

V

a

a

x

b

a

y

c

a

p

d

a

v

overriding

trait

T

a

a

x

b

a

conflict

c

a

↑

self

 i

inheritance

These diagrams illustrate the three com-
position operations involving traits. The
ellipses depict the operations; the fat
arrows show their inputs and
outputs. The open arrow repre-
sents subclassing. The notation a

a

m

represents a method with name a

and
body

m

.
The

sum

 operation takes two traits

T

 and

U

 as input; the result is
a trait

T+U

 that contains the union of all of the non-conflicting
methods. Where

T

 and

U

 conflict (

e.g.

, at

c

), the resulting
method is an explicit conflict marker.
The

overriding

 operation combines some explicit definitions with
an existing trait. In the figure, the explicit definitions of methods b
and c override those obtained from the trait

T

, and the definition
of d is added. The resulting trait V contains no conflicts because
the definition of b has been overridden.
The

inheritance

 operation is used to create a new subclass D
from an existing superclass C, an existing trait T, and some new,
explicitly given, definitions. Explicit definitions (

e.g.,

 of b) override
those obtained from the trait; definitions in the trait (

e.g.

, of a)
override those obtained from the superclass.

trait

T

a

a

x

b

a

y

c

a

↑

self

 i

composite trait
definition

Trait

named:

 #V

uses:

 T

b

a

y

c

a

p

d

a

v

subclass

D

var0 var1

a

a

x

b

a

j

c

a

↑

self

 i
d

a

w

e

a

k

i

a

↑

var1

class

C

var0

a

a

m

d

a

n

e

a

k

trait

U

c

a

q

d

a

r

Influences
• Deep experience with Smalltalk

• The sad history of multiple inheritance
“multiple inheritance is good, but there is no
good way to do it”

Steve Cook channeling Alan Snyder

• Nathanael Schärli, who cut the gordian knot

• A little lattice theory

• Excellent toolbuilding environment & skills

40

Reflections
• Sma"est contribution

• Largest impact?
- Pearl 6, Java, Pharo, Visualworks, Fortress,

Racket, Ruby, C#, Scala, Joose, PHP,
ActionScript, …

• We underestimated the importance of
programming tools
- many of the properties we claimed for traits

depended also on tool support

41

Simplicity?

42

Simplicity?
• Did traits simplify the Smalltalk Language?

42

Simplicity?
• Did traits simplify the Smalltalk Language?
- No! They made it significantly more complicated!

42

Simplicity?
• Did traits simplify the Smalltalk Language?
- No! They made it significantly more complicated!

- But they removed complexity, redundancy, and misleading
structure from the Smalltalk system

42

Simplicity?
• Did traits simplify the Smalltalk Language?
- No! They made it significantly more complicated!

- But they removed complexity, redundancy, and misleading
structure from the Smalltalk system

• The overall programming system was simpler

42

Simplicity?
• Did traits simplify the Smalltalk Language?
- No! They made it significantly more complicated!

- But they removed complexity, redundancy, and misleading
structure from the Smalltalk system

• The overall programming system was simpler

• Traits would be simpler without, e.g., –

42

Simplicity?
• Did traits simplify the Smalltalk Language?
- No! They made it significantly more complicated!

- But they removed complexity, redundancy, and misleading
structure from the Smalltalk system

• The overall programming system was simpler

• Traits would be simpler without, e.g., –
- but programming with traits would be harder

42

Simplicity?
• Did traits simplify the Smalltalk Language?
- No! They made it significantly more complicated!

- But they removed complexity, redundancy, and misleading
structure from the Smalltalk system

• The overall programming system was simpler

• Traits would be simpler without, e.g., –
- but programming with traits would be harder

- A. P. Black, N. Schärli, and S. Ducasse. Applying traits to
the Smalltalk collection classes. In OOPSLA’03, pp 47–64

42

Recommended Reading
• R. P. Gabriel. The structure of a programming language

revolution. In Proc. ACM Int. Symp. on New Ideas, New
Paradigms, and Reflections on Programming and Software,
Onward! 2012, pages 195–214.

“
”

43

The real paradigm shift? Systems versus languages.

Programming Systems & Complexity

• Programming System:
- Language + Libraries + Tools + project code

• A new feature adds complexity ...
- which must be paid for by removing more

complexity from the system as a whole

• “Feature Debt”

44

2008: Fortress

• Large language: aimed to displace Fortran

• Large team (by academic standards):
- Eric Allen, David Chase, Christine Flood, Victor

Luchangco, Jan-Willem Maessen, Sukyoung Ryu, and
Guy L. Steele Jr., plus visitors (me) and interns

• Support for mathematical notation
- Parsing depends on type inference, is space-

sensitive, and context dependent

- Extensible: new syntax, with semantics defined
in libraries

46

Mathematical Notation

• Math notation is familiar, but not simple

47

Mathematical Notation

• Math notation is familiar, but not simple
- We spend 15 or more years in school learning it

47

48

3x sin x cos 2x log log x

48

3x sin x cos 2x log log x

Juxtaposition

48

3x sin x cos 2x log log x

JuxtapositionJuxtaposition

48

3x sin x cos 2x log log x

JuxtapositionJuxtapositionJuxtaposition

48

3x sin x cos 2x log log x

x: Number
sin, cos, log: Number → Number

JuxtapositionJuxtapositionJuxtaposition

48

3x sin x cos 2x log log x

x: Number
sin, cos, log: Number → Number

49

3x sin x cos 2x log log x

x: Number
sin, cos, log: Number → Number

Application

juxt-operation

ApplicationApplicationFunctionApplication

juxt-operationjuxt-operationjuxtaposition-
operator

50

{ |x| | x ← mySet, 3|x }

S. Ryu. Parsing Fortress syntax. In Proc. 7th Int. Conf. Principles and Practice of Programming in Java, PPPJ ’09,
pages 76–84, New York, NY, USA, 2009. Association for Computing Machinery.

50

{ |x| | x ← mySet, 3|x }

enclosing operator

S. Ryu. Parsing Fortress syntax. In Proc. 7th Int. Conf. Principles and Practice of Programming in Java, PPPJ ’09,
pages 76–84, New York, NY, USA, 2009. Association for Computing Machinery.

50

{ |x| | x ← mySet, 3|x }

enclosing operator infix operator

S. Ryu. Parsing Fortress syntax. In Proc. 7th Int. Conf. Principles and Practice of Programming in Java, PPPJ ’09,
pages 76–84, New York, NY, USA, 2009. Association for Computing Machinery.

50

{ |x| | x ← mySet, 3|x }

enclosing operator infix operator

set-comprehension set-comprehension set-comprehension

S. Ryu. Parsing Fortress syntax. In Proc. 7th Int. Conf. Principles and Practice of Programming in Java, PPPJ ’09,
pages 76–84, New York, NY, USA, 2009. Association for Computing Machinery.

2010 – present: Grace

Grace

• Simple O-O language for teaching
- block-structured

- dialects, realized as enclosing modules

- optional, gradual types

- indentation matters

• An effort at consolidation, not innovation

• Open-source implementation

52

Reflections
• The consumer is a novice student
- but the customer is an instructor in a

introductory programming course

• Surprisingly challenging to please both
- e.g., clean object model or existing practice?

• Design skills ⇄ implementation skills

- The first language where I was the prime
implementor

53

Is Grace Simple?

• Simpler than Java, Python, C++, ...
- But not as simple as it might have been

• Like Fortress, we mistook familiarity for
simplicity

54

Operator Precedence

• The operators * and / have higher
precedence than + and -
- because in arithmetic, multiplication & division

have precedence over addition & subtraction.

- precedence is independent of the methods
that *, /, +, and - may cause to be executed

• Smalltalk is simpler: left to right execution

55

Traits and Classes

• Grace has both Traits and Classes
- Classes, because we wanted a form of

inheritance familiar to instructors
‣ We did eliminate super-requests

- Traits, because single class inheritance was
inadequate for building our own libraries

• I believe (now) that we could have devised a
traits-only mechanism that was both simpler
and more powerful than our hybrid

56

What keeps me coming back?

• I like fixing things

- there’s plenty to fix in programming!

• I like helping others to succeed
- Programming languages are an enabler

‣ for others (3R, EPL)
‣ for programmers (Traits)
‣ for students (Grace)

57

Why Do PLs Matter?

58

Why Do PLs Matter?

A quick survey of the members of
IFIP WG 2.16 on language design …

58

Creating

“The power to create out of pure thought”
Jonathan Edwards

“In the beginning was the word”
Cristina Lopes

59

60
Michelangelo: The Creation of Adam

Magic
Programmers are like wizards … except that
the magic is real!
PLs are “spell systems”

Sean McDirmid

“Any sufficiently-advanced technology is
indistinguishable from magic”

Arthur C . Clarke

61

62

Foundational

✴ Software is the most important infrastructure
for ... basically everything

✴ Software is totally dependent on
programming languages

✴ Hence: programming languages are the most
important infrastructure for anything and
everything!

James Noble

63

Are we there yet?

64

Are we there yet?

64

No!

Are we there yet?

Since Fortran, people have been saying that
we don’t need new languages.
Yet, languages continue to evolve … and few
of us would want to go back to Fortran.

Roberto Ierusalimschy

64

No!

Language as “Law Enforcement”

65

Language as “Law Enforcement”

The value of a language can be in what it
prevents you from doing

Hence: libraries are not the answer

65

Language as “Law Enforcement”

The value of a language can be in what it
prevents you from doing

Hence: libraries are not the answer

✤ No library is ever going to ensure that there
are no race conditions in my Java program

65

Languages shape thought

66

Languages shape thought

Whorfianism, or “Linguistic Relativity”

66

Languages shape thought

Whorfianism, or “Linguistic Relativity”
Learning a new language “changes the path of
least resistance”

Tom van Cutsem

66

Languages shape thought

Whorfianism, or “Linguistic Relativity”
Learning a new language “changes the path of
least resistance”

Tom van Cutsem

66

Languages shape thought

67

Languages shape thought

67

http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

“You can’t trust the opinions of others,
because of the Blub paradox: they’re satisfied
with whatever language they happen to use,
because it dictates the way they think about
programs.”

Paul Graham

67

http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

68

“pow
er”

Machine code

Assembler

Blub

Scala
Haskel

…
…

Languages shape thought

69

Languages shape thought

69

http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

“A language that doesn’t affect the way you
think about programming,
is not worth knowing”

Alan Perlis

69

http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

70

Languages shape thought

70

http://worrydream.com/LearnableProgramming/

Languages shape thought

“A programming system has two parts. The
programming ‘environment’ is the part that’s
installed on the computer. The programming
‘language’ is the part that’s installed in the
programmer’s head.”

Brett Victor

70

http://worrydream.com/LearnableProgramming/

Languages shape thought

71

Languages shape thought

My Recommendation:

71

Languages shape thought

My Recommendation:

✤ Do program in a pure functional language
✤ Do program with pure objects (Smalltalk)

71

Languages shape thought

My Recommendation:

✤ Do program in a pure functional language
✤ Do program with pure objects (Smalltalk)
✤ Do program with CSP

71

Languages shape thought

My Recommendation:

✤ Do program in a pure functional language
✤ Do program with pure objects (Smalltalk)
✤ Do program with CSP
✤ Do try Logic Programming (but not Prolog!)

71

Languages shape thought

My Recommendation:

✤ Do program in a pure functional language
✤ Do program with pure objects (Smalltalk)
✤ Do program with CSP
✤ Do try Logic Programming (but not Prolog!)

Use them for a serious project

71

PL Reading List
1. Notation as a tool of thought. Iverson
2. Programming as Theory-building. Naur
3. Beating the Averages. Graham (and commentary thereon at

c2.com)
4. The Development of the Emerald Programming Language. Black et

al. HoPL III
5. Algol 60 Report. Naur et al

6. Sma"talk. BYTE Magazine, August 1981
7. Lisp: Good News, Bad News, How to Win Big. Gabriel
8. Babel-17. Delany
9. An exploration of program as language. Baniassad and Myers

72

http://www.paulgraham.com/avg.html
https://wiki.c2.com/?BeatingTheAverages

References
A. P. Black and V. Rayward-Smith. Proposals for Algol H — a
superlanguage of Algol 68. Algol Bulletin, 42:36–49, May 1978.

E. W. Dijkstra. A Discipline of Programming. Prentice Hall,
1976.

E. Hehner. do considered od: A contribution to the
programming calculus. Acta Informatica, 11(4):287– 304, 1979.

N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits:
Composable units of behavior. In L. Cardelli (ed), ECOOP,
LNCS vol 2743, pages 248–274, Darmstadt, Germany, 2003.

73

