The AITO Test of Time Award 2023

1s awarded to

Nathanael
Stéphange

. Oscar

tes, Jul

. Committee

§Z

an dad
alzrman

Presiden

R

Why Programming L.anguages Matter:

an Improvisation in six languages

‘

Andrew P. Black

Portland State University
Portland, Oregon

Portland State

IIIIIIIIII

Why Programming L.anguages Matter:
an Improvisation in siX languages

geven

‘

Andrew P. Black

Portland State University
Portland, Oregon

Portland State

IIIIIIIIII

Program Design is Hard

‘

I want to make it easier

Portland State

IIIIIIIIII

=
@)
Q.
()
o
=>
=
| -
o
=
=
S
@)
S
Y
o
@)

Programming Language
Design is Meta-Hard

Portland State

IIIIIIIIII

Why So?

* A programming language is not just — or even
primarily — a means for programmers to
communicate with computers

* Itis also a means for programmers to

communicate with programmers — including
themselves

o It is asocial, as well as a technical, enabler

- language adoption is slow, like any social change

Portland State

IIIIIIIIII

Why So?

* A programming language is not just — or even
primarily — a means for programmers to
communicate with computers

* Itis also a means for programmers to

communicate with programmers — including
themselves

o It is asocial, as well as a technical, enabler

- language adoption is slow, like any social change

- but enjoys the “rooth monkey” effect

Portland State

IIIIIIIIII

Seven Languages

1977 UEA VWRS
1977-80 Oxford B. Shearing

1982 UW Eden Programmers
1983-6 UW Ourselves
2001- U Bern Smalltalk Programmers

2008 Sun Labs Engineers
2010- Cyberspace Novices

Portland State 7

IIIIIIIIII

1977: Algol H

Portland State

IIIIIIIIII

P

W

)

[

)
'

‘

T

it
18 ‘;_' *
land StatTeY
,".,f.u‘l\’IV'ERSI |

L

Academic Press
London pNe

o ——

-

—
N T 6 W M

-

- T T ——

-

e S e

—

- —

-~

-

. ————

o

.

R

—
-

-

————
SR

APIC Studies in Data Processing No. 8

II. Notes on Data Structuring *

C. A.R. Hoagre

and any barticular spoken i

be used to represent a par
situation,

*This monograph is pas,
Marktoberdorf, 1970.

e Algol 68: good

Portland State

IIIIIIIIII

e Algol 68:

e Hoare’s Structured Data:

Portland State

IIIIIIIIII

good
+ gOOd

10

e Algol 68: good

* Hoare’s Structured Data: + good

* Algol 68 + Hoare’s Structured Data:

Portland State

IIIIIIIIII

e Algol 68: good

* Hoare’s Structured Data: + good

e Algol 68 + Hoare’s Structured Data: + + good

Portland State

IIIIIIIIII

e Algol 68: good

* Hoare’s Structured Data: + good

* Algol 68 + Hoare’s Structured Data:

Portland State

IIIIIIIIII

e Algol 68: good

* Hoare’s Structured Data: + good

* Algol 68 + Hoare’s Structured Data:

¢¢

a closing of the gap between the data
structures of the program and the real-world
objects they represent. 29

A. P. Black and V. Rayward-Smith. Proposals for Algol H —a
superlanguage of Algol 68. Algol Bulletin, 42:36—49, May 1978.

Portland State 10

IIIIIIIIII

Lessons:

e Consolidation is harder than innovation

- Mostly, Hoare’s data and Algol 68 meshed well
» Both inspired by Algol 60

- The exception: tagged and untagged unions

* If you have a destination in mind, be careful
from where you start

Portland State 11

IIIIIIIIII

Recommended Reading

e C. H. Lindsey. A history of Algol 68. In Hzstory of
Programming Languages—I 1, pages 27—96. Association for
Computing Machinery, New York, NY, USA, 1996.

“2.3.4.1

Parameter Passing

It 1s said that an Irishman, when asked how to get to some
remote place, answered that it you really wanted to get to
that place, then you shouldn’t start from here. In trying to

find an acceptable parameter-passing mechanism, WG 2.1
started from ALGOL 60 ... ’ ’

Portland State 12

IIIIIIIIII

1978—380: 3R

Portland State

IIIIIIIIII

* “Reading, ‘riteing, and ‘rithmetic”

* Programming language designed

tor readability

- Names made up of multiple
words

e Flat (no nesting): Blocks and
Blocklets

- Blocks (procedures) can have
(multiple) arguments, e.g., delete
[i]th line of page[p]

- Blocklets have no arguments

* No loops!

- named code fragments

Portland State 14

UNIVERSITY

Influences

Portland State

UNIVERSITY

I5

Influences

Portland State 15

UNIVERSITY

Influences

Portland State

IIIIIIIIII

Influences

® Brian Shearing
- knew that he needed a language

- contracted to produce a description of an
algorithm that was both readable and executable

Portland State 16

IIIIIIIIII

Influences

® Brian Shearing
- knew that he needed a language

- contracted to produce a description of an
algorithm that was both readable and executable

e Algol 60, Cobol?

Portland State 16

IIIIIIIIII

Influences

® Brian Shearing
- knew that he needed a language

- contracted to produce a description of an
algorithm that was both readable and executable

e Algol 60, Cobol?

* Jony Hoare:
- Simplity;, simplity, simplity until it hurts. Then

simplify some more.

Portland State 16

IIIIIIIIII

Recommended Reading

* E. Hehner. do considered od: A contribution to the
programming calculus. Acta Informatica, 11(4):287—- 304,

1979.
* Dijkstra’s Language of Guarded Commands

if do
[] guards — stmt; [] guards = stmt;
[] guard> = stmt» [] guardz — stmto
fi od

Portland State

IIIIIIIIII

17

Recommended Reading

* E. Hehner. do considered od: A contribution to the
programming calculus. Acta Informatica, 11(4):287—- 304,

1979.
* Dijkstra’s Language of Guarded Commands

if do
[] guards — stmt; [] guards = stmt;
[] guardz = stmto [] guardz = stmto
fi od

Execute one of the stmts whose guard is true.

If there 1s none,

Portland State

IIIIIIIIII

I7

Recommended Reading

* E. Hehner. do considered od: A contribution to the
programming calculus. Acta Informatica, 11(4):287—- 304,

1979.
* Dijkstra’s Language of Guarded Commands
if do
[l guardi — stmt; [] guardi — stmt;

[guardz — stmto [l guardz — stmtz
fi od

Execute one of the stmts whose guard is true,

and then execute the whole do..od again
If there 1s none,

Recommended Reading

* E. Hehner. do considered od: A contribution to the
programming calculus. Acta Informatica, 11(4):287—- 304,

1979.
* Dijkstra’s Language of Guarded Commands

if do
[] guards — stmt; [] guards = stmt;
[] guardz = stmto [] guardz = stmto
fi od

* Program development by stepwise refinement
- descriptive names are later elaborated into code

Portland State

IIIIIIIIII

I9

4.5. Scanning One Word

This block scans the current line and returns the next word or perhaps a null
string if one is not found. A word is a letter followed by zero or more letters,
digits, or underscore characters.

LET New Word := Get One Word BE

USES Current Character

RESULT New Word IS TEXT

INVARIABLE Underscore Character IS '

New Word .= "

Remove Front Blanks

IF' (Current Character >='a’ AND Current Character <='z’) OR ...
(Current Character >='A' AND Current Character <= 'Z")
New Word := New Word + Current Character
Get Next Character
Add Characters Until Delimiter

IF NOT (...
§Current Character >= 'a' AND Current Character <= 'z') OR ...

Current Character >="'A’' AND Current Character <= 'Z"))

A ! ~| /“I "~y ‘I '\- 1]V\ -~ » !
‘ il AGO (i al U ¥, [J g I
Y } \.' # S
[F' (Current Char: *>= "a' AN] g haracter <= 'z') OR
f [1 ™ - ;/_' N ~ - 5% N
\Lurrent Lnaractue /- '] ' WL - J
B P o il g o | S —
:\ I‘-;‘ '\.lijl s L1 L] />_ (l \ l\ i) | \] {4 — N
! e ey 3 | - e —] rm \
:\‘ L CLIL \C1 | | ! (.
N\ ’-.'.“.' Or'(- 2 (-+ . 11 c |
Get Next Ch cle]
Add Charact til Delimite
\!() {
T] ., . I \ '
7 » < \
r\k‘l‘;\ ;) _.I_J 1] ¢ N — \ 3] l\ 1:‘ ' ~ :, |
/
™ - « N\

20

B AN rLl I g FO—) | Mg e s e
Unho Lurrent Lharactiel
oy T AT oo TAT o3 TCY YT
E{f.»\\ [J I | \s ew yworag I\\ l f 12\ i
I'A 1]
1
g Y

TN 1 TATRIARTIT Tl AAarne ALTA o Tarmnwma adame TQ 0
NVARIABLE Underscore Character 1S
-
l

\A N l" . ——

NG 1A, [o

T:,\ b Lt on ond (. . 3

ZCL1IDVE {1 U1 | Re N

[t . ¥+ Y] ~ 7 N \ - \ A 7 —

P: &3 UWIerne uUiarac Le S — \ (1] 143 -
;' l/-‘] -)v"f ~.t l\ 4(’ ; S \ - v _7‘-7 .
\ v A~ ALY L UK > - i \ —
-r." -fl »‘l _ - '
INEW ¥} ' —_— ew { S { .
™y N ! [.
{ k)t INE ! [(facCt {

a m . 1

‘i‘i U wilcdl LC A L) l .

-~ ! RT/ANTY [/

' NO'T |
(M 21 (A vy 1 v ANTTY ~ 4 b . P —
\urrent Lnaracter »>= a AND Lurren (N ¢
f (., P L N \ ’\ ; 's g
\(,IU} 'ed]l, Liiadl adalCC L 2= I\ | J | - Facier <\ —

PASS
OTHERWISE CHAOS

WHERE Add Characters Until Delimiter IS

IF {(Current Character >= "a" AND Current Character <= 'z') OR ..
(Current Character >= 'A' AND Current Character <="'A’) OR ...
ECurrent Character >= '0' AND Current Character <= '9") OR ...

Current Character = Underscore Character)
New Word := New Word + Current Character
Get Next Character
Add Characters Until Delimiter

IF NOT (.

Current Character >='a’' AND Current Character <='2') OR ..
Current Character >="'A’ AND Current Character <= "7’

(Current Character >= '0’ AND Current Character <="'9"

(Current Character = Underscore Character))
PASS

OTHERWISE CHAOS
END OF BLOCK { new word := get one word }

)
)0

OR

21

[THLE'Y Myarnmanrnt MM earnemad s
L oo Lurrent Lhnaraceel
[& r?,.- T T m " - - ‘ W ~ "\' TEYT
[{I n\\ L l 1} ;\ ew vy O l\,) l i 1.2\ l
TANVARTA L ' T Ton A A DTN o | SO ol RIS, | . [M
INVARIABLE Underscore Character 1S5 '
\\' 2 11‘, -~ | 20 ')
J'\l\f Y (| J. o
T;, —_— X7 Ny s 2 ~ 5
A\ -ril'\)'v' N aE '\/l iU L AL
T /7 VAW 2 L N e N = AT N —
‘x \1 UL eril 1AL L UK P = A LiN L/ [&1 L N
v‘"]f"] 2T AR & l\ Y N — ! ‘\"V\‘. Y o —
UL 1 1CLEL 2 — L C N\ -
L P TAT - o - R, ‘
;\1 L'_f ‘v‘r it s (o £ ’.K, J { { L_" L 1
e)
et Ne Charactiel
AAA M o 1
’\f (‘i Li :L'.' LIS \f { L D } Jl_ -
-1 " T /
[F' NOT ¢
o RIS W o | PR Ry B 0 A NTTY W Y . .
(CUT rent vnaracter >= a AND Lurrent ‘t, A ' L= 7
{’. b Yy v 4 N -~ YW AT /A TN "\ v~ 4 Yy \ A —
(urrerfiv {:H:’.Lt."\k_i,;,ij P 1 AN Pt L 'acler \—
]’ ASS
| TAT '1:'1 r A FNTY
lf' .11\7.‘ \ll '\-/}i'x.{x)\\/

WHERE Add Characters Until Delimiter IS

IF {(Current Character >= "a" AND Current Character <= 'z') OR ..
(Current Character >= 'A' AND Current Character <="'A’) OR ...
éCurrent Character >='0' AND Current Character <='9") OR ..

Current Character = Underscore Character)
New Word := New Word + Current Character
Get Next Character
Add Characters Until Delimiter

IF NOT (.

Curren.i Character >='a’' AND Current Character <='2') OR ..
Current Character >="'A" AND Current Character <="'7Z'
(Current Character >= '0’ AND Current Character <="'9"

(Current Character = Underscore Character))
PASS
OTHERWISE CHAQOS
END OF BLOCK { new word := get one word }

)
)0

OR

21

Language as a Simplifier

Portland State

IIIIIIIIII

1982-1984: Eden
Programming l.anguage

Portland State

IIIIIIIIII

* Eden Project (1980-1984) — early
attempt to build a “distributed,
integrated” computing system.

e EPL implemented by translation into
Concurrent Euclid (CE)

e EPL provided:

Portland State

IIIIIIIIII

synchronous (local or remote) object
invocation

concurrency inside Eden objects
capabilities to address objects

strings (because CE didn’t!)

25

: : ted
Sending an Invocation e

Client Process Directory Stub Procedure

procedure Lookup(...)

RootDirectory.Lookup(

{Pack arguments into ESCII)
UserName, LoginDirectory,

Dispatcher.Synchinvoke(...)

Status
‘ {unpack results}

end

Invocation

Receiving an Invocation

Invocation
Directory Code

invocation procedure Lookup(...) =
Dispatcher .ReceiveOperations
and find the requested key) CalllnvocationProcedure(l)
end Lookup end loop
Call
and
Call Retum
and
CIP for Directory d
Retum procedure CalllnvocationProcedure gener ate
(I: Invocationliandle) =
begin
{Fetch values from ESCII.
if OperationName is "Lookup” then)
Directory.Lookup(...)
{Pack results into reply ESCII)
Dispatcher ReplyMsg(l, Results) m‘;‘;’“‘““

Reflections

* Eden saw itself as distributed systems
research

- no one on the project knew that they
needed a programming language!

* In hindsight, EPL was essential:

- it hid the messy, boring stuff (marshaling,
dispatch), and

- freed programers to focus on the interesting
and hard stuff (algorithms, concurrency)

Portland State

IIIIIIIIII

28

1983—87: Emerald

Portland State

IIIIIIIIII

The People

The People

Andrew

Black

Norm - " .
Hutchinson g

Eric Jul

The People

Black ‘ Hutchinson
Exception Simula 67
Handling
Eric Jul Henry

(Hank) Levy %

L&

Simula 67, Capability
Concurrent architectures,
Pascal

systems

Emerald

* Addressed building a distributed system

as a language problem

* Separated “semantics” from “locatics”

- Local and remote objects had same
semantics: “Location-independent
invocation”

 Compiled code about as efficient as C
in local case,

- and 100 x faster than Eden in the remote
case

Portland State

IIIIIIIIII

32

Emerald Language Features

* Innovations:

- Object constructors

» mutable & immutable objects

- Failure handling

- Parameterized types
e Conventional:

- Objects had processes (as in Simula)

- Hoare monitors for synchronization
e Simplifications:

- No classes, no inheritance

Portland State

IIIIIIIIII

33

Reflections

* Emerald was about 20 years before its
time

- INSF called it “unimplementable”

- Still generating dissertations in 2023

Portland State

IIIIIIIIII

34

Almost wasn’t Published

——

i 9';"";"‘4 Motililey im. tha Emnald Systom"
Raferneds Rapnts

This l o straightforward, implomontsd '

0f o wemple dea. Tt W fad 15 Aag what

Portland State)

IIIIIIIIII

Almost wasn’t Published

Reflections

* Not widely used, but widely influential

- ANSA DPL, OMG CORBA, INRIAs Guide,
Birrell et al.’s Network Objects, the ANSI
Smalltalk standard, Java RMI

e We were our own customers. We realized

Portland State

IIIIIIIIII

that we needed a language ...

- Dramatic simplification of the programmer’s
world (compared to Eden)

- Freed programmers to think about the hard
problems: object location, and concurrency:

2001-present: Iraits

Portland State

IIIIIIIIII

* Traits: a language feature, not a language

* a Tiast is a Smalltalk class without any
instance variables

® ’Traits can be
- combined with +,

- modified with @ (alias) and — (exclusion)

- ysed in other traits and classes.

Portland State

IIIIIIIIII

e 'Trait = set of o Sum, alias, exclude

methods, without and wuses as
instance vars combinators
class trait trait trait
Z =X a X C g
a4 b —y
c —1selfi _ d —r
c —1selfi
composite subclass
subclass definition
C subclass: #D
uses: T trait
vari T+U
e '_)j a —X
d -w b
i tvart =y
¢ — conflict
d or

glue code
Portland State

UNIVER SITY

e 'Jrait = set of
methods, without
instance vars

class trait

T

da X
b —y
c o 1selfi

composite subclass
definition

C subclass: #D
uses: T

subclass

vari

b —jJ
d »w
i - tvari

Portland State

UNIVER SITY

o Sum, alias, exclude

and uses as
combinators
trait trait
T U
da B X C ¢
b -y d —r
c —tselfi
trait
T+U
a X
b —y
c — conflict
d r

39

Influences

* Deep experience with Smalltalk

® The sad history of multiple inheritance

“multiple inheritance is good, but there is no
good way to do it”

Steve Cook channeling Alan Snyder
* Nathanael Schirli, who cut the gordian knot
e A little lattice theory

* Excellent toolbuilding environment & skills

Portland State

IIIIIIIIII

40

Reflections

® Smallest contribution
e [argest impact?

- Pearl 6, Java, Pharo, Visualworks, Fortress,
Racket, Ruby, C#, Scala, Joose, PHP,
ActionScript, ...

* We underestimated the importance of
programming tools

- many of the properties we claimed for traits
depended also on tool support

Portland State

IIIIIIIIII

41

Simplicity?

Portland State

IIIIIIIIII

Simplicity?

* Did traits simplify the Smalltalk LL.anguage?

Portland State

IIIIIIIIII

42

Simplicity?

* Did traits simplify the Smalltalk LL.anguage?

- No! They made it significantly more complicated!

Portland State

IIIIIIIIII

42

Simplicity?

* Did traits simplify the Smalltalk LL.anguage?
- No! They made it significantly more complicated!

- But they removed complexity, redundancy,; and misleading
structure from the Smalltalk system

Portland State 42

IIIIIIIIII

Simplicity?

* Did traits simplify the Smalltalk LL.anguage?
- No! They made it significantly more complicated!

- But they removed complexity, redundancy,; and misleading
structure from the Smalltalk system

* The overall programming system was simpler

Portland State 42

IIIIIIIIII

Simplicity?

* Did traits simplify the Smalltalk LL.anguage?
- No! They made it significantly more complicated!

- But they removed complexity, redundancy,; and misleading
structure from the Smalltalk system

* The overall programming system was simpler

e 'Traits would be simpler without, e.g., —

Portland State 42

IIIIIIIIII

Simplicity?

* Did traits simplify the Smalltalk LL.anguage?
- No! They made it significantly more complicated!

- But they removed complexity, redundancy,; and misleading
structure from the Smalltalk system

* The overall programming system was simpler
e 'Traits would be simpler without, e.g., —

- but programming with traits would be harder

Portland State 42

IIIIIIIIII

Simplicity?

* Did traits simplify the Smalltalk LL.anguage?
- No! They made it significantly more complicated!

- But they removed complexity, redundancy,; and misleading
structure from the Smalltalk system

* The overall programming system was simpler
e 'Traits would be simpler without, e.g., —

- but programming with traits would be harder

- A. P. Black, N. Schirli, and S. Ducasse. Applying traits to
the Smalltalk collection classes. In OOPSLA 03, pp 47-64

Portland State 42

IIIIIIIIII

Recommended Reading

* R. P Gabriel. The structure of a programming language
revolution. In Proc. ACM Int. Symp. on New Ideas, New
Paradigms, and Reflections on Programming and Software,
Onward! 2012, pages 195—214.

¢¢

The real paradigm shift? Systems versus languages.

7))

Portland State

IIIIIIIIII

43

Programming Systems & Complexity

* Programming System:
- Language + Libraries + Tools + project code
* A new feature adds complexity ...

- which must be paid for by removing more
complexity from the system as a whole

e “Feature Debt”

Portland State 44

IIIIIIIIII

2008: Fortress

Portland State

IIIIIIIIII

e Large language: aimed to displace Fortran

e Large team (by academic standards):

- Eric Allen, David Chase, Christine Flood, Victor
Luchangco, Jan-Willem Maessen, Sukyoung Ryu, and

Guy L. Steele Jr., plus visitors (me) and interns
* Support for mathematical notation

- Parsing depends on type inference, is space-
sensitive, and context dependent

- Extensible: new syntax, with semantics defined
in libraries

Portland State 46

IIIIIIIIII

Mathematical Notation

* Math notation is familiar, but not simple

Portland State

IIIIIIIIII

47

Mathematical Notation

* Math notation is familiar, but not simple

- We spend 15 or more years in school learning it

Portland State

IIIIIIIIII

47

3x sin x cos 2x log log x

Portland State

UNIVERSITY

3x sin x cos 2x log log x

Portland State

UNIVERSITY

3x sin x cos 2x log log x

Portland State

UNIVERSITY

3x sin x cos 2x log log x

Portland State

UNIVERSITY

Juxtaposition

3x sin x 'cos 2x log log x

x: Number
sin, cos, log: Number = Number

Portland State

IIIIIIIIII

3x sin x cos 2x log log x

x: Number
sin, cos, log: Number = Number

Portland State

IIIIIIIIII

x: Number
sin, cos, log: Number = Number

Portland State

UNIVER SITY

4

{xl | x <= mySet, 3lx }

S. Ryu. Parsing Fortress syntax. In Proc. 7th Int. Conf. Principles and Practice of Programming in Java, PPPJ *09,
pages 76—84, New York, NY, USA, 2009. Association for Computing Machinery.

Portland State 50

UNIVERSITY

{xl | x <= mySet, 3lx }

enclosing operator

S. Ryu. Parsing Fortress syntax. In Proc. 7th Int. Conf. Principles and Practice of Programming in Java, PPPJ *09,
pages 76—84, New York, NY, USA, 2009. Association for Computing Machinery.

Portland State 50

UNIVERSITY

{Ixl | x <= mySet, 3lx }

S. Ryu. Parsing Fortress syntax. In Proc. 7th Int. Conf. Principles and Practice of Programming in Java, PPPJ *09,
pages 7684, New York, NY, USA, 2009. Association for Computing Machinery.

Portland State 50

UNIVERSITY

{Ixl | x <= mySet, 3lx }

S. Ryu. Parsing Fortress syntax. In Proc. 7th Int. Conf. Principles and Practice of Programming in Java, PPPJ *09,
pages 7684, New York, NY, USA, 2009. Association for Computing Machinery.

Portland State 50

UNIVERSITY

2010 —present: (Grace

Portland State

IIIIIIIIII

g’zace

e Simple O-O language for teaching

- block-structured

- dialects, realized as enclosing modules
- optional, gradual types

- indentation matters
e An effort at consolidation, not innovation

e Open-source implementation

Portland State

IIIIIIIIII

Reflections

e The consumer is a novice student

- but the customer is an instructor in a
introductory programming course

o Surprisingly challenging to please both
- e.g., clean object model or existing practice?

* Design skills 2 implementation skills

- The first language where I was the prime
implementor

Portland State

IIIIIIIIII

53

Is Grace Simple?

* Simpler than Java, Python, C++, ...
- But not as simple as it might have been

* Like Fortress, we mistook familiarity for
simplicity

Portland State

IIIIIIIIII

54

Operator Precedence

* The operators * and / have higher

precedence than + and -

- because in arithmetic, multiplication & division
have precedence over addition & subtraction.

- precedence is independent of the methods
that *, /, +, and - may cause to be executed

e Smalltalk is simpler: left to right execution

Portland State 55

IIIIIIIIII

Traits and Classes

e (5race has both Traits and Classes

- Classes, because we wanted a form of
inheritance familiar to instructors

» We did eliminate super-requests

- 'Traits, because single class inheritance was
inadequate for building our own libraries

* I believe (now) that we could have devised a
traits-only mechanism that was both simpler
and more powerful than our hybrid

Portland State 56

IIIIIIIIII

What keeps me coming back?

o | like fixzng things
- there’s plenty to fix in programming!
* | like helping others to succeed

- Programming languages are an enabler
» for others 3R, EPL)
» for programmers (Traits)
y for students (Guace)

Portland State

IIIIIIIIII

57

Why Do PLs Matter?

Portland State

IIIIIIIIII

Why Do PLs Matter?

A quick survey of the members of
IFIP WG 2.16 on language design ...

Portland State

IIIIIIIIII

Creating

“The power to create out of pure thought”
Jonathan Edwards
“In the beginning was the word”

Cristina Lopes

Portland State

IIIIIIIIII

59

- - - .
- .
. : : " f, 5 s .
. o a o X
’ :"\"_')_' Y S A
A 3 - Mk Y
.‘ o M.. ’AZ: e Y ;l*’u
. A 0 Y
i ."'4' A : " Mo
- IR
. : .
B R,
A"“ ' 5
Fy
I -
’

AN
. . »
'.-1 'n' -

ST e TS

Magic
Programmers are like wizards ... except that

the magic is real!

PLs are “spell systems”

Sean McDirmid

“Any sufhiciently-advanced technology is
indistinguishable from magic”

Arthur C . Clarke

Portland State 61

IIIIIIIIII

Portland State

Foundational

* Software is the most important infrastructure
for ... basically everything

* Software is totally dependent on
programming languages

* Hence: programming languages are the most
important infrastructure for anything and
everything!

James Noble

Portland State 63

IIIIIIIIII

Are we there yet?

Portland State

IIIIIIIIII

Are we there yet?

Portland State

IIIIIIIIII

No!

Are we there yet? No!

Since Fortran, people have been saying that
we don’t need new languages.

Yet, languages continue to evolve ... and few
of us would want to go back to Fortran.

Roberto lerusalimschy

Portland State 64

IIIIIIIIII

[.anguage as “Law Enforcement”

Portland State

IIIIIIIIII

[.anguage as “Law Enforcement”

The value of a language can be in what it
prevents you from doing

Hence: libraries are not the answer

Portland State

IIIIIIIIII

[.anguage as “Law Enforcement”

The value of a language can be in what it
prevents you from doing

Hence: libraries are not the answer

% No library is ever going to ensure that there
are no race conditions in my Java program

Portland State 65

IIIIIIIIII

Languages shape thought

Portland State

IIIIIIIIII

66

Languages shape thought

Whorfianism, or “Linguistic Relativity”

Portland State

IIIIIIIIII

66

Languages shape thought

Whorfianism, or “Linguistic Relativity”

[earning a new language “changes the path of
least resistance”
Tom van Cutsem

Portland State 66

IIIIIIIIII

Languages shape thought

Whorfianism, or “Linguistic Relativity”

[earning a new language “changes the path of
least resistance”
Tom van Cutsem

Portland State 66

IIIIIIIIII

Languages shape thought

Portland State

IIIIIIIIII

Languages shape thought

Portland State

IIIIIIIIII

http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

“You can’t trust the opinions of others,
because of the Blub paradox: they’re satisfied
with whatever language they happen to use,
because it dictates the way they think about
programs.”

Paul Grabam

Portland State

IIIIIIIIII

http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

Scala
Haskel

Blub

Assembler

Machine code

Portland State

IIIIIIIIII

Jamod,

68

Languages shape thought

Portland State

IIIIIIIIII

Languages shape thought

Portland State

IIIIIIIIII

http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

“A language that doesn’t affect the way you
think about programming,
is not worth knowing”

Alan Perlis

Portland State

IIIIIIIIII

http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

Portland State

IIIIIIIIII

Languages shape thought

Portland State

IIIIIIIIII

http://worrydream.com/LearnableProgramming/

Languages shape thought

“A programming system has two parts. The
programming ‘environment’ is the part that’s
installed on the computer. The programming
‘language’ is the part that’s installed in the
programmer’s head.”

Brett Victor

Portland State 70

IIIIIIIIII

http://worrydream.com/LearnableProgramming/

Languages shape thought

Portland State

IIIIIIIIII

Languages shape thought

My Recommendation:

Portland State

IIIIIIIIII

Languages shape thought

My Recommendation:

* Do program in a pure functional language

% Do program with pure objects (Smalltalk)

Portland State

IIIIIIIIII

71

Languages shape thought

My Recommendation:

* Do program in a pure functional language
% Do program with pure objects (Smalltalk)

* Do program with CSP

Portland State

IIIIIIIIII

71

Languages shape thought

My Recommendation:

* Do program in a pure functional language
% Do program with pure objects (Smalltalk)
* Do program with CSP

+ Do try Logic Programming (but not Prolog!)

Portland State 71

IIIIIIIIII

Languages shape thought

My Recommendation:

* Do program in a pure functional language
% Do program with pure objects (Smalltalk)
* Do program with CSP

+ Do try Logic Programming (but not Prolog!)

Use them for a serious project

Portland State 71

IIIIIIIIII

PL Reading List

1. Notation as a tool of thought. Iverson
2. Programming as Theory-building. Naur

3. Beating the Averages. Graham (and commentary thereon at
c2.com)

4. The Development of the Emerald Programming Language. Black et
al. HoPL 111

5. Algol 60 Report. Naur et a/

6. Smalltalk. BYTE Magazine, August 1981

7. Lisp: Good News, Bad News, How to Win Big. Gabriel

8. Babel-17. Delany

9. An exploration of program as language. Baniassad and Myers

Portland State 72

IIIIIIIIII

http://www.paulgraham.com/avg.html
https://wiki.c2.com/?BeatingTheAverages

References

A. P. Black and V. Rayward-Smith. Proposals for Algol H — a

superlanguage of Algol 68. Algol Bulletin, 42:36—49, May 1978.

E. W. Dijkstra. A Discipline of Programming. Prentice Hall,
1970.

E. Hehner. do considered od: A contribution to the

programming calculus. Acta Informatica, 11(4):287— 304, 1979.

N. Schairli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits:
Composable units of behavior. In L. Cardelli (ed), ECOOP,
LINCS vol 2743, pages 248274, Darmstadt, Germany, 2003.

Portland State

IIIIIIIIII

73

