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1 Introduction

The Inheritance Workshop at ECOOP 2002, which took place on Tuesday, 11
June, was the �rst ECOOP workshop focusing on inheritance after the successful
workshops in 1991 [41] and 1992 [48]. The workshop was intended as a forum
for designers and implementers of object-oriented languages, and for software
developers with an interest in inheritance. It was organized by Andrew P. Black,
Erik Ernst, Peter Grogono, and Markku Sakkinen.

Because of the size and diversity of the �eld, it is hard to come up with a
litmus test for \object orientation", but one of the most widely accepted ingre-
dients is inheritance. Indeed, in his 1987 characterization of the language design
space [58], Wegner made inheritance one of the two de�ning characteristics of
object-orientation.

Nevertheless, inheritance remains an active research area, because of prob-
lems like fragile base classes, the so-called inheritance anomaly, and the lack of
encapsulation between a class and its subclasses. We believe the abundant ac-
tivity demonstrates that inheritance is both hard to avoid and hard to get right.
The goal of this workshop was to advance the state of the art in the design of
inheritance mechanisms, and the judicious use of inheritance.

The number of submissions con�rmed the interest in this topic. We accepted
15 short position papers, written by a total of 28 authors from 11 di�erent
countries. We had particularly solicited reports from practitioners, but received
contributions only from researchers. However, they represent so many di�erent
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approaches and viewpoints that the workshop became a valuable forum for cross-
fertilization of ideas.

The papers can be roughly classi�ed as follows: language design and language
constructs [24, 27, 40, 49, 50, 56]; analysis and manipulation of inheritance hi-
erarchies [1, 19, 22, 29]; generalization in UML models [42]; language usage [5];
role models [51]; metaprogramming [16]; partial evaluation [7].

The submitted papers were reviewed by the workshop organizers, although
not formally refereed, and the accepted papers published in the workshop pro-
ceedings [6] were revised by the authors in the light of these reviews, with a
length limit of 7 pages. As real workshop papers, they are mostly less complete
and �nished than conference papers would be, but we believe that they compen-
sate for this lack of polish by providing access to fresh ideas and ongoing work.
We found that every paper had some interesting ideas, and we thank all authors
for their contributions.

In addition to these papers, we were happy to have Gilad Bracha (Sun Java
Software) as an invited speaker. His talk was entitled \Mixins in Strongtalk" [2].
It was not possible to publish the paper in the proceedings, but copies were
available at the workshop.

The website of the workshop is still accessible:
http://www.cs.auc.dk/ eernst/inhws/.
Both the papers from the proceedings and the invited paper are available there,
or directly at: http://www.cs.jyu.fi/ sakkinen/inhws/papers/.

According to the list that was collected at the workshop, there were 27 per-
sons present, 15 of whom were authors of workshop papers. The attendees came
from 10 di�erent countries, the largest attendance (5) coming from France. The
authors of 4 accepted papers were not able to attend the workshop.

Only 9 papers were selected for oral presentations at the workshop, in order
to have more time for discussion. After each paper another workshop participant
presented a short comment prepared in advance. These presentations took the
�rst half of the day.

The afternoon sessions started with the invited talk. After that, we spent
about two and one half hours in group discussions in three breakout groups. We
came together again for a �nal one hour plenary session in which the groups
tried to summarize their �ndings.

As so often happens, the day appeared to be too short for all the topics that
we would like to have discussed. There was a common feeling that an inheritance-
related workshop would be welcome also at some future ECOOP, perhaps as
soon as 2003 if there are active organizers. We felt that even a somewhat more
restrictive topic could attract suÆcient participation. There is a mailing list that
can be used for such suggestions:
http://majordomo.cc.jyu.fi/mailman/listinfo/inheritance-ecoop.

The rest of this report is divided into two parts, namely Sect. 2 which de-
scribes the outcome of the discussions in the hierarchy manipulation subwork-
shop, and Sect. 3 which describes the outcome of the discussions in the mixins



WS11. The Inheritance Workshop 3

subworkshop. The third group discussed dynamism, but did not produce written
results for this report.

2 Hierarchy Manipulation

An object oriented program is typically organized as a hierarchy of classes. Struc-
turally, the hierarchy may be a tree, a forest, or a directed acyclic graph. Se-
mantically, the hierarchy may be concerned with:

{ Specialization: the class hierarchy is guided by a classi�cation of concepts of
the application domain (close to an ontology);

{ Subtyping : in a type hierarchy, a type T1 is a subtype of T2 if an object of
T1 is always substitutable to an object of T2 without type error and other
semantic constraints (based on assertions, exceptions, etc.);

{ Economy of development : Inheritance is used to reduce code or structure
duplication.

These categories may overlap or be in con
ict with one another. Our discus-
sion includes all of these kinds of hierarchy.

At any stage in the software process, the developers may discover that the
class hierarchy is inappropriate and should be changed. We refer to such changes
as hierarchy manipulation and they are the subject of this report. We describe
some possible reasons for manipulating hierarchies, some contexts in which the
need to manipulate arises, the relation between hierarchy manipulation and
refactoring, and �nally some speci�c problems in hierarchy manipulation.

2.1 Why do we Manipulate Hierarchies?

We don't manipulate hierarchies only for fun but with a given objective. The
objective may be to try to improve the way that information is structured by
providing better factorization or better decomposition [29, 22], or it may be to
conform to some programming language constraints as the transformation from
multiple to single inheritance [19, 46]. There may be other objectives.

The reasons for manipulating hierarchies (as specialization of manipulating
software) can be placed into �ve main categories [17]. The �rst four normally
occur after development but the �fth occurs during development.

{ evolution: supporting changes on requirements

{ reuse: adapting for reusing purposes

{ maintenance: making corrections

{ quali�cation: looking for good characteristics

{ incremental refactoring: modi�cation of the hierarchy during develop-
ment
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New requirements or modi�cations of existing requirements may be func-
tional or non-functional. Non-functional requirements such as \improving eÆ-
ciency" can lead to hierarchymanipulation [55, page 99] which can be categorized
as refactoring (see Section 2.3). Satisfying new functional requirements may of-
ten enforce deeper changes, but previous refactoring may better prepare the
hierarchy for such changes.

The need to manipulate class hierarchies arises in several contexts:

1. Analysis reveals that the hierarchy is de�cient in some respect. For example,
classes might be redundant, or classes that should be present are not present.

2. A design review shows that classes are too tightly coupled, not cohesive, or
have too few or too many methods.

3. The hierarchy is hard to understand and use, due to a non-rational construc-
tion | for example, it might be the result of several di�erent development
styles.

4. An expert may �nd that the constructed hierarchy does not match a natural
specialization of the application domain.

5. Refactoring often involves changes to the class hierarchy.
6. When a hierarchy has to be extended or reused, it may be necessary to add

generalization classes in order to correctly insert new concepts. In the worst
case, the hierarchy may have to be entirely reconstructed to bene�t from a
systematic construction (a process similar to reverse engineering).

7. A hierarchy developed during design may have to be manipulated to match
restrictions in the implementation language. For example, a multiple in-
heritance hierarchy must be mapped to classes with single inheritance and
interfaces for Java implementation [19, 46].

Context 1 2 3 4 5 6 7

evolution � �

reuse � �

maintenance � �

quali�cation � � �

incremental � �

Table 1. The relationship between categories and contexts of hierarchy manipulation

Table 1 shows the relationship between the categories and contexts that we
have identi�ed. Clearly, there is considerable overlap between these contexts;
in fact, typical situations will involve a blend of several of them. The need to
modify the hierarchy may occur more than once during development.

Hierarchy analysis could be manual or automatic, but we are particularly
interested in automatic analysis using, for example, concept lattices (see Sec-
tion 2.2 below) or metrics (e.g., [15]). Crespo's classi�cation [17] of the \Method"
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of software (hierarchy) manipulation, asks \how does the manipulation start: by
inference or by demand?". Inference means what we are calling here \automatic
analysis" and demand, \manual analysis". There are other automatic analysis
techniques (or inference methods), such as program slicing [54], algorithms based
in heuristics [14, 39], and algorithms detecting violation of prede�ned rules (e.g.,
the Law of Demeter [35]).

In metrics, coupling and cohesion have been intensively studied, but they do
not cover all speci�c aspects of the quality of class hierarchies. Well-known met-
rics directly connected to inheritance hierarchy measurement include NMO/NMI
(Number of Overridden/Inherited Methods), SIX (Specialization Index) [36], PII
(Pure Inheritance Index) [38], and MIF/AIF (Method/Attribute Inheritance
Factor) [11]. But these metrics do not address issues such as property redun-
dancy measurement or quality of method specialization, as investigated in [20].

2.2 Formal Concept Analysis

Formal concept analysis (FCA) [4, 3, 28] has several applications in the domain
of object-oriented software analysis and development.

{ ownership-based [30, 23, 59, 32]: concept analysis is based on the relation
that associates a class with a property (attribute/method) it owns (mainly
declares or inherits)

{ behaviour-based [1, 43, 44]: the relation now links a pair (class,selector) to
a composite property like \call mode (via self vs. via super)", concrete vs.
abstract implementation, etc.

{ usage-based [52]: a variable is associated with a property (attribute/method)
if the variable makes access to the property

{ orthogonal-variability based [44]: analyzing frameworks for improving design,
obtaining orthogonal dimensions on variability (hot spots)

{ object-reference based [31]: improving class associations analyzing object
references

{ combine ownership-based and usage-based [43]
{ combine ownership-based and object-referenced based [31]
{ other applications [1, 57], not necessarily related to hierarchy manipulation

2.3 Hierarchy Manipulation and Refactoring

The word \refactoring" was �rst used by Opdyke [39], who de�ned refactoring
as a kind of semantics-preserving program transformation that raises program
editing to a higher level and is not dependent on the semantics of a program. An
alternative de�nition by Koni-N'Sapu [34] says \Refactoring consists of changing
a software system in such a way that is does not alter the external behaviour of
the program. It is a disciplined way to clean up code.".

Hierarchy manipulation is related but not tied to refactoring. Important evo-
lution and reengineering operations can not be categorized as refactoring because
there is no preservation of behaviour. Whereas refactoring preserves semantics,
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we do not see this as a necessary property of hierarchy manipulation. For ex-
ample, if the hierarchy is modi�ed to meet new requirements, the semantics of
the program will change. Moreover, refactoring may impact aspects of object-
oriented systems that do not relate to class hierarchies.

Fowler et al. provide a catalog of refactoring transformations [26] but it is not
exhaustive. As a �rst step, however, the catalog could be used to identify hier-
archy manipulation operations and try to �nd out whether they can be inferred
and/or automated with FCA. \Inference" here is the key point, because FCA
can indicate when and how some transformation must be done. But automation
is more than that, because it covers code (or models) analysis and manipulation,
parsing techniques, and so on (cf. Section 2.7 below). Bearing in mind that, \if
you have a hammer, every problem looks like a nail", we should be careful to
avoid missing other analysis techniques.

Crespo [17] proposed a classi�cation for refactoring operations that can be
generalized to software manipulation, and can be extended, re�ned, and with
other categories such as optimization techniques [22]. Crespo's classi�cation con-
siders the reason for manipulation, as well as the direction, results, consequences,
method, human intervention and target of the manipulation, and can be re�ned
and extended either with other categories as de�ned in [29], or with the classi�-
cation of other works on hierarchy manipulation such as [22].

Environments that assist refactoring, such as The Refactoring Browser [45]
should also support hierarchy manipulation.

2.4 Problems in Hierarchy Manipulation

In the following we discuss the problems that we identi�ed in hierarchy manip-
ulation. Each problem is discussed in the framework proposed by the workshop
organizers: problem statement, who is a�ected, forms of solution, and possible
approaches.

2.5 Problem: Modelling and Automating Manipulation

Suppose that we wish to improve a hierarchy by analysis based on concept
lattices followed by refactoring. This requires solving two problems:

1. How do we formulate a model in terms of concept lattices? The problem is to
�nd the right predicate for the right purpose: a predicate is not intrinsically
good or bad, it may or may not be relevant for a given refactoring purpose.
What criteria can we use to ensure that the chosen predicate is appropriate?

2. Transforming the current hierarchy to the desired hierarchy by hand is te-
dious and error-prone. How can we automate the required refactoring?

Who is A�ected? Designers working with an iterative process model need cri-
teria and techniques for hierarchy analysis. Implementors performing hierarchy
manipulation need software tools to help them.
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Forms of Solution. The central problem here is that inference techniques
could lead to very complex transformations. We can distinguish atomic and
compound refactoring operations, but even compound refactoring operations can
be less complex than the required transformation. Perhaps a good combination
of that refactoring operations would suÆce. The problem, however, is to detect
the required combination automatically. We can speak about \refactoring plans"
(cf. \population migration plans" in database terminology). It may be possible to
formalize refactoring as graph rewriting, because refactoring combination could
be very well expressed in terms of graph rewriting. Building refactoring plans to
accomplish a given advice (or indication) from inference techniques can be seen
as future research direction.

Possible forms of solution include:

{ A set of rules or guidelines for assessing the usefulness of the predicate used
for concept analysis. Alternatively, Galois lattices (and sub-hierarchies) yield
inheritance hierarchies that are proven to satisfy the maximal factorization
criterion (among others) for properties among classes.

{ An algorithm for refactoring. The algorithm might have two components:
the �rst part would compare the current and desired hierarchies and build
a plan of changes; the second part would apply the changes. The solution
must also include an implementation of the algorithm, of course.

{ Incremental refactoring would manipulate the hierarchy each time it is mod-
i�ed by the designer [23].

Approaches.

{ There are many di�erent possible refactoring operations. A �rst step would
be to identify refactoring operations that can be automated by FCA. For
example:

� Attribute/method redundancy can be removed by ownership-based FCA

� sophisticated ownership analysis can correctly insert abstract methods

� \Concept pattern 2-case1" [1] of behaviour-based FCA indicates places
of possible common code in sibling classes, etc.

One approach would be to use a catalog such as Fowler's [26] and to analyze
for each refactoring operation, which operation can be discovered and/or
automated by which kind of FCA | this would probably involve inventing
new forms of FCA.

{ Think up several predicates and try them out on a variety of hierarchies.
If possible, the predicates should be based on well-de�ned benchmarks and
metrics.

{ Look for a series of small steps that, taken together, map the current hier-
archy to the desired hierarchy. Choose a suitable model or representation of
the source code for the implementation of the algorithm (this could be plain
text, a linked data structure, or some combination of these).
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2.6 Problem: Validating Transformations

Suppose that we have taken a current hierarchy Hc, applied a transformation to
it, and obtained the desired hierarchyHd. How do we validate Hd? This problem
has three components:

1. Is the objective of the manipulation ful�lled?
2. Does the structure of the new hierarchy accurately re
ect the desired struc-

ture of the application?
3. Does the new hierarchy provide the same functionality and performance as

the old one?

Who is A�ected? If development is understood as a seamless transition from
analysis to encoding, initial users (clients/experts of the application domain)
should recognize and approve validity of software artifacts that directly encode
concepts of the application domain. Natural specialization in the application
domain (ontologies) should be more or less re
ected in software artifacts.

Without validation, the implementors will have to test the new hierarchy
extremely thoroughly to ensure that it behaves in exactly the same way as the
old hierarchy and meets all of the system requirements.

If the required transformation can be obtained by means of refactoring, there
is no problem because refactoring operations preserve behaviour and we could
pass the problem to the refactoring de�nition and implementation. But, when
we start to work with combinations of refactoring operations, we must not only
be sure that refactoring combination preserve behaviour but we must also be
sure we choose the appropriate combination.

Forms of Solution.

{ A tool that evaluates a hierarchy according to stated criteria.
{ A tool that formally analyzes and/or runs tests on two hierarchies in order
to compare their behaviour and performance.

Approaches.

{ There is a subjective aspect to the second component of the problem being
described (the structure of the hierarchies): perhaps human judgment would
be required to assess the appropriateness of the new hierarchy. However,
there are two ways in which the assessment might be partly automated:

� design metrics and use them to compare the two hierarchies
� use AI techniques, such as a rule-based expert system, to assess the
hierarchies

{ It should be possible to establish functional equivalence by formal techniques:
for example, by showing that all calls in the new hierarchy have the same
e�ect as equivalent calls in the old hierarchy. However, it is hard to assess
performance by formal techniques.
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{ A more promising approach would be to construct a test suite automatically.
Benchmarking, as used in the parallel and high-performance computing com-
munity, might be a suitable approach.

2.7 Problem: Separation of Concerns

How can we separate language-dependent and language-independent issues in
hierarchy manipulation?

Who is A�ected? Without this separation, we would have to build a complete
set of tools for each programming or modelling language. Separating out the
language-independent issues would enable us to build tools that could do part
of the work of hierarchy manipulation for any programming language, or even
for multi-language systems.

Forms of Solution. A complete solution would consist of a list of language-
dependent issues in hierarchy manipulation, and a list of language-independent
issues.

Approaches. Build metamodels for languages. Group languages with similar
metamodels into families. Hierarchy manipulations expressed at the metamodel
level would apply to all languages in the corresponding family and would, to
that extent, be language independent. Manipulations that could be applied to
all metamodels would be fully language independent.

In addition to de�ning the metamodel, we have to de�ne \instantiation of the
meta-model": for applying a transformation to a C++ (for example) hierarchy,
�rst we have to interpret C++ artifacts as instances of the meta-model (this
can be diÆcult, and it may be necessary to omit aspects such as access control),
secondly; after application of the transformation, we have to re-generate correct
C++ code. Huchard et al. de�ned in their research [33]:

{ a general meta-model and a ownership-based FCA construction tool using
this meta-model;

{ a tool for extract from Java classes informations about their interface that
match the meta-model

{ a tool that uses result of the FCA construction algorithm for generate Java
code of an interface hierarchy (that compiles and can be linked to classes).

Crespo et al. de�ned a metamodel for a certain family of languages [17, 18].
A metamodel instantiation for Ei�el has been de�ned and a Java instantiation
is almost complete. The approach is via framework construction. The language-
independent part is encoded into the kernel of the framework, and the language-
dependent part is encoded as framework hot-spot instantiations. Similar work is
being done by the Software Composition Group at the University of Bern [53].



10 E. Ernst and others

Working at the analysis/design level might help tackling the language depen-
dency problem. UML is an object-oriented meta-model, so a possible solution
might be to use UML as much as possible. Other possibilities includes enriching
UML and using other analysis design formalisms, e.g., to express specialization
between properties|attributes or methods [21].

Some language dependent aspects might even be transformed into this lan-
guage independent level. Producing a list of OO languages artifacts and their
speci�c implementation in di�erent languages along with the possible transfor-
mations of one into another might be of great help. This of course may rely on
one or several metamodels.

2.8 Hierarchy Manipulation | Conclusion

The discussion demonstrated that hierarchy manipulation is a rich area in which
much research remains to be done. The members of this group feel that a Hier-
archy Manipulation Study Group should be established and intend to take steps
to form such a group.

3 Mixins

The traditional notion of inheritance binds each subclass very tightly to its
superclass(es). The concept of mixins can be used to make this connection more

exible.

The concept was �rst introduced as mixin classes, a programming convention
in languages such as Flavors [13] and CLOS [8]. A mixin class is an ordinary
class that is by convention used in a special manner, namely as one of several
superclasses. The idea is that the mixin class adds certain facilities to some of
its fellow superclasses, possibly using other facilities of those fellow superclasses.
Hence, a mixin class may use features not available in the class itself, because
these features are expected to be provided by other classes. It is possible to write
a mixin class in Flavors and in CLOS because the LISP family of languages is
not statically type checked; but it is also possible to produce run-time type errors
(`message not understood'), if the mixin class uses a feature that should be|but
is not|provided by any of its fellow superclasses.

To make the mixin concept more robust it was necessary to develop it as a
separate concept, a step taken by Bracha and Cook in 1990 [10]. The mixin as a
concept and a language construct has been further developed and re�ned many
times since then, e.g., in [25, 9, 37].

Generally, a mixin is a building block for classes. A mixinM can be applied to
a class C, thereby producing a subclass C 0 of C. With a suitable interpretation of
classes and �, this could be formalized as C 0= C�M . Flatt et al. [25] formalize
mixins as functions from classes to classes, but there is no deep con
ict in these
points of view because the function would simply be �C : C �M .

A mixin such as M can be reused with several classes. For example, M may
also be applied to D, producing a subclass D0. Using traditional inheritance,
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we would need two identical copies of the text corresponding to M , in order to
create C 0 from C as well as D0 from D. This textual redundancy demonstrates
the inferior support for reuse with traditional inheritance, and it introduces a
potential for inconsistencies. Moreover, C 0 and D0 will be unrelated with tradi-
tional inheritance and name based type equivalence, whereas they would have a
common elementM when using mixins. It may be possible to write polymorphic
code that is capable of working on instances of either C 0 or D0 using features
from M ; with traditional inheritance it would again be necessary to create two
textually identical copies, one working on C 0 and another working on D0. Since
this is concerned with client code, the duplication of code could penetrate deeply
into the rest of any system using C 0 and D0.

To summarize: mixins can be used to open the doors to a number of new
abstraction and reuse opportunities. However, the introduction of mixins does
not only solve problems, it also raises new problems. We identi�ed three core
problems at the workshop which are described below.

3.1 Problem: Mixing Things From Di�erent Sources

When mixins are used it will often be the case that mixin composition (�) is
used to combine entities written in di�erent contexts. Indeed, it seems to be one
of the important bene�ts of mixins that they could be used to combine a class
C from one vendor, Va, with a mixin M from another vendor, Vb. After all, it
may well be that C is better for the given purpose than any class delivered by
Vb, but M is better than any mixin delivered by Va.

However, it is not enough that C has exactly the right semantics for the
desired superclass, and M provides exactly the right semantic adjustment for
the desired mixin. The two must also agree on a number of more mundane
properties associated with the expression of the class C and the mixin M . In
other words, classes and mixins are not abstract semantic entities, they depend
on such seemingly accidental details as the choice of names, access or visibility
speci�cations, const, final, and other modi�ers, and more.

Who is A�ected? This problem a�ects programmers working on complex,
real-life projects.

Possible Solutions.

Encapsulation. It may be possible to use encapsulation to make both classes
and mixins more abstract. In particular, it may be possible to hide the di�er-
ence between stored and computed results, at least in some cases. This would,
e.g., make it possible for an instance variable of type T in M to (dynamically!)
override a method in C returning a value of type T , as is possible in ordinary
inheritance in Ei�el. Overriding an instance variable v in C by two methods in
M , having signatures similar to a `getter' and a `setter' method for v, might also
be feasible in some languages. Since there is no general approach that allows us
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to use a method (or two) where an object is expected, or vice versa, it might
be necessary to depart more radically from main-stream semantics, in order to
make stored and computed state freely interchangeable.

In the same vein, it might be useful to let a method in M override two
methods in C, or vice versa. This introduces the question of naming, which is
discussed below in the last problem.

Disambiguation by origin. If the problem is a name clash in superclasses, i.e.,
among mixins used to build the superclasses, then it may be possible to solve
the problem by explicitly selecting a feature from a particular mixin. This could
be similar to the SomeClass::SomeFeature syntax in C++. Note that the name
clash would have to be resolved at mixin application, unless the language allows
some knowledge about the actual superclass to be made available at the mixin
declaration.

Since a naive semantics for this mechanism would imply that late binding of
method implementations is disabled, there is a need to de�ne more sophisticated
semantics of such an explicit selection by origin, such as the `titles' suggested for
C++ in [47]. This is all the more important because the superclass from which
the feature must be selected is not statically known inside the mixin de�nition.

Disambiguation by type. With the same the problem, i.e., a name clash in su-
perclasses, it may be possible to use disambiguation by type as a solution. This
means that exactly one of the available de�nitions is chosen, because it matches
a given type better than all the others. This probably implies that the usage
context (what we called M earlier) must contain a speci�cation of the type of
the feature, such that the comparison between this requested type and all the
available types (in what we called C) can be based on a visible criterion.

In many languages it would actually be possible to infer the type of a named
entity from the expression(s) in which it is used, but this seems to be a rather
error-prone basis to build on, because the programmer might never realize that
there was a name clash, and because seemingly benign changes of the program
may change the semantics drastically.

3.2 Problem: How to Specify the Requirements of a Mixin

When composing a class and a mixin it is important that the class satis�es
the requirements of the mixin|otherwise they should not be composed. Such
requirements may take many forms.

There are the automatically checkable requirements, such as `any class with
which this mixin is composed must de�ne an instance variable named x of type
int', or `it must de�ne a method foo conforming to [a speci�c signature]'. The
reason we might want to make such simple requirements explicit is that we
may not know exactly what class C and mixinM are being composed at a given
mixin application site. Being explicit about requirements will make it possible to
ensure that these simple requirements are satis�ed|like an ordinary type system
keeping track of the consistency of types of values without actually keeping track
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of the values themselves. This amounts to giving classes and mixins types with
respect to mixin application, and checking the types at mixin application. Note
that such type checking may require explicit type declarations, and possibly a
more verbose mixin composition language.

There are also precisely speci�able requirements based on correctness crite-
ria that cannot be automatically checked, e.g.: `this mixin method may call the
method lock once and then select or update some number of times, and then
unlock once, and that must be an appropriate usage of these methods from the
class with which this mixin is composed'. Whether such a method protocol is
actually respected by a piece of code is of course undecidable, though it can be
checked at run-time. It is even further away from decidability|and it cannot
be checked at run-time|whether it is application-correct to treat the superclass
methods lock, select, update, and unlock as described. Nevertheless, pro-
grammers may be allowed to specify such requirements explicitly, and it might
then be possible to check the consistency of these annotations, e.g., that there
exists a method protocol that satis�es all the requirements.

Finally, the requirements of a mixin on its superclass may have to be de-
scribed in natural language, and it is then up to programmers to check that
mixin applications do not violate these requirements. There may be tool-support
for presenting such requirements to programmers when they write the mixin ap-
plication expression.

Who is A�ected? This problem a�ects anybody who wants to reuse a given
mixin with a given class: A reuser of code needs concise and explicit speci�cations
of constraints on the usage, because (s)he cannot be expected to know how the
reused code works in great detail.

Possible solutions.

Specify the requirements. An explicit requirements speci�cation implies more
work at mixin de�nition time, but it also serves as documentation of the exact
intentions in this area. If it turns out that the requirements are not satis�ed in
some case where they `should' be satis�ed, the programmer will have to think
about the requirements speci�cation once more. After changing the speci�cation,
(s)he should reconsider whether the implementation of the mixin actually �ts
the new requirements, or|in the case of automatically checkable requirements|
(s)he should let the language processing system re-check the requirements.

Infer the requirements. As opposed to the explicitly speci�ed requirements, in-
ferred ones are very easy on programmers at de�nition time. Programmers can
just write the code with some functionality, and both the painstaking derivation
of requirements, the tedious typing of them, and the reading-unfriendly ver-
bosity of the resulting code is avoided. Language processing tools may give the
programmer the opportunity to inspect the requirements and see if they conform
to his wishes, but they do not force the programmer to do so. On the other hand,
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purely inferred requirements could never include such things as constraints on
method protocols and other, more complex issues.

Intermediate solutions. It would be possible to give an explicit requirements
speci�cation that is to be treated as an upper bound on the actual demands of
any future version of the mixin. Similarly, a class might be annotated with a
speci�cation that is to be considered a lower bound on what any future version
of the class will provide. This kind of approximate requirements speci�cation will
provide some support for safer code evolution. Moreover, it might be possible to
combine such incomplete speci�cations with inferred speci�cations, giving rise
to warnings from compilers and other tools when there is a con
ict.

3.3 Problem: Dependence on Names

One particularly thorny issue is the choice of names for features. Each name is
chosen by a programmer at some point in the development of a given piece of
software, when the future usage contexts are unknown. In particular, code that
is intended to be highly reusable might be used in many unforseen contexts, and
ironically it is in exactly this kind of code that the right choice of name is most
important. Since a mixin generally performs white-box reuse of the class with
which it is composed, the mixin depends on a wider set of names and properties in
the superclass than client code does. In Java terminology, the mixin would have
access to the protected interface, rather than being restricted to the public

interface.
Compared to traditional inheritance, a given mixin is much more vulnerable

to name mismatches than an ordinary subclass. The traditional subclass will
always be written using exactly the name space that is actually available in its
superclass. The mixin may turn out to be very useful with superclasses with
di�erent name spaces, except that it can only be applied to superclasses whose
features happen to have exactly those names that the mixin expects.

Note, however, that a subclass and a mixin are equally vulnerable to name
mismatches arising from evolution of the (actual) superclasses. Change a name
in a class, and typically both subclasses and applied mixins will break. This
illustrates that the dependence on names is a problem with a wide scope.

Who is A�ected? This problem also a�ects anybody who wants to reuse a
given mixin with a given class: reuse may be possible or impossible depending
on the chosen names for features in the class and in the mixin, rather than on
the inherent semantics of the class and the mixin.

Possible solutions.

Explicit renaming. It is possible to use a mechanism such as Ei�el feature re-
naming to adapt a given mixin M to a given class C: as a subclass C 0 is being
created by applying M to C, each feature of the mixin that needs to have a
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di�erent name according to the requirements of the class is �rst renamed. In
some cases, features of C could be renamed instead.

Coloring. Coloring is a way of resolving name con
icts. If there are two methods
foo that con
ict, and we need to access them both, then we color one as \the
green foo" and the other as \the blue foo" and now we can talk about them
both. Scope rules may be manipulated to direct all usages of names in a given
area of source code to prefer the \blue" names, etc. This might also be combined
with renaming, so the green foo might be renamed and exported as grass foo

while the blue foo might be renamed as sky foo.

Call-by-declaration. In [24], the concept of `call-by-declaration' is introduced. It
is named according to the traditional phrases used to describe parameter trans-
fer mechanisms for procedures and methods, because the mechanism is similar
to such parameter transfers in several ways. However, it is a mechanism that in-
troduces explicit parameterization of a mixin with the declarations upon which
it depends. It is then possible to bind these formal declarations to actual dec-
larations in the actual superclass at mixin application time. Call by declaration
provides support for feature renaming at mixin application, without a�ecting
the declarations of the class or of the mixin.

Explicit parameterization. It is possible to use a broader notion of explicit param-
eterization than the one inherent in the call-by-declaration approach. It might
for instance be possible to parameterize the mixin with the methods it should
provide: If a given method foo is declared in the mixin de�nition but not chosen
at parameterization (con�guration) time, the method foo would simply not be
included. As a consequence, requirements on the superclass derived from the
implementation of foo would vanish. However, the mixin would still have to be
consistent, so if some other method bar in the mixin calls foo then bar must
also be excluded, or some other implementation of bar that does not use foo

must be provided as a parameter.

3.4 Mixins | Conclusion

The discussions about mixins illustrated that there are several deep problems
yet to be solved, and also that the participants in this subworkshop are working
actively on the problems, along with other researchers.
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