
Specialization Classes:

An Object Framework for Specialization �

Crispin Cowan, Andrew Black, Charles Krasic,
Calton Pu, and Jonathan Walpole

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

Charles Consel and Eugen-Nicolae Volanschi
University of Rennes / IRISA

(synthetix-request@cse.ogi.edu)

September 6, 1996

1 Introduction

Specialization is a growing area of interest in the op-
erating systems community. OS components special-
ized to some particular circumstance can o�er en-
hanced performance, functionality, or both. Compli-
mentary partial evaluation techniques for automati-
cally specializing programs are also reaching matu-
rity. However, the problem of managing specializa-
tion remains: how to specify a specialization, when
to apply it, and when to remove it. This problem
is particularly important for long-running programs
such as operating systems, where specializations are
likely to be temporary.
This paper presents an object-oriented framework

for specifying specializations in long-running pro-
grams such as operating systems. This model is based
on the following concepts:

� Inheritance allows replacement implementations
of of member functions. We thus use a graph of
sub-classes to specify a set of potential special-
izations of a given facility by replacing generic
implementations with specialized implementa-
tions.

� Specializations in long-running programs are
temporary, because the particular circumstances

�This research is partially supported by ARPA grants

N00014-94-1-0845 and F19628-95-C-0193, NSF grant CCR-

9224375, and grants from the Hewlett-Packard Company and

Tektronix.

that permit the use of a specialized implemen-
tation are likely to change eventually. We thus
support temporary and even optimistic special-
izations [16].

� Ensuring that it is valid to use a specialized im-
plementation can be more di�cult than creating
the specialized implementation [16]. We thus use
a formal method to specify when a specialization
is valid. This lets us automatically detect when
specialization circumstances have changed [8],
and also automatically generate specialized im-
plementations using partial evaluation [6, 5].

Section 2 describes our specialization model, which
is applicable both in OO operating systems and in
legacy kernels. Section 3 describes compilation tech-
niques for this model. Section 4 briey describes some
closely related work, and Section 5 concludes this po-
sition paper.

2 Specialization Classes

We �rst describe our model using an example, and
then explain some details. Figure 1 illustrates special-
ization of a �le system: the open �le object FS, which
understands the operations read() and write(), is
said to be the target of the specialization.
Following modern usage [1, 14], we use the term

type to refer to the interface exposed by an object
and the term class to refer to the method code and
the instance variables that implement that interface.

1



Hence, the type of the �le describes the fact that it
can be read and written; in an OO system the type is
merely the type of the FS object, and in a legacy OS
coded in a non-OO language it is the type signature
of the set of procedures that provides the �le system
functionality.
The specialization plan is a de�nition of all the ways

in which the �le system can be specialized. In each
specialization, some of the methods of the target are
replaced by various specialized implementations. The
methods specialized by the specialization plan are
the set of specializable functions that are replaced by
various specialized implementations. Thus the spe-
cialization plan encapsulates the specializations to be
applied to the system, independent of the degree of
encapsulation provided by the system's source lan-
guage.
The various specialization options within a plan

are organized into a partial order of specialization

classes according to the relation \more specialized
than." Each specialization class adds some degree of
specialization to the classes it inherits from, e.g. NFS
is a specialization of generic, and NFS/exclusive is a
specialization of both NFS and exclusive. Each spe-
cialization class describes a specialization state that
the specialized facility can achieve. The \generic" -
specialized state is the unique top of the partial order
of specialization classes.
Each specialization class speci�es the conditions

that make the specialization applicable, and a sub-
set of the members in the specialization plan to be
replaced with specialized methods. The conditions of
a specialization class imply the conditions of each of
its parents. The truth of the conditions can change
over time, and thus must be monitored as described
in Section 2.1.
Specialization plans are compiled into specialized

object generators, which when new'd create special-
ized objects as shown in Figure 1. A specialized ob-
ject is a wrapper around the object being specialized.
The specialized object represents the state of an in-
stance of a specialization plan, i.e., bindings from the
values in the conditions to data in the target, and
bindings from the specializable functions to the spe-
cialized methods. We view the type of the target ob-
ject as being unchanged by the specialization; from
the point of view of the client, the same set of mes-
sages is understood, and they have the same e�ects.
Thus, the type of the specialization object is stati-
cally determined by the type of the target.
In contrast, the class of the object changes dynam-

ically according to the truth of the conditions, and
causes changes in the method code bound to the spe-

cializable functions. Looking a little more closely,
it may in fact the the case that the type changes:
for example, if the conditions indicate that a certain
message will never be sent, we might create a special-
ized object that eliminates that method altogether!
However, our methodology guarantees that any such
changes in type will be invisible to the client.

2.1 Conditions: Quasi-Invariants

Conditions specify invariants. A true invariant is a
classical invariant: a property of the system that is
guaranteed to be true at all times, stated as an ex-
pression using system variables that must evaluate to
\true." A quasi-invariant is a property that is likely
to remain true, but may become false at some future
time. Specifying conditions using invariants allows
the following key steps in the specialization process
to be automated.
Invariants can be used by partial evaluators to

automatically prepare a specialized implementation
that has been optimized using the invariants. Our use
of invariants for specialization was originally inspired
by the invariant input speci�cation for Tempo [6, 5],
a powerful partial evaluator for C. Partial evaluation
to exploit specialization gives us a formal relationship
between the conditions and the optimized implemen-
tation.
Partial evaluation is independent of whether a con-

dition is an invariant or a quasi-invariant. How-
ever, specializations that depend on quasi-invariants
are not always valid, but instead depend on some
temporary circumstance that begins when the quasi-
invariants become true, and ends when the quasi-
invariants become false. For instance, �le system ac-
cess can be optimized using a quasi-invariant that the
�le is not shared [16], but this condition can change
unexpectedly if a separate process opens the �le.
Our hand-specialization experiments showed that

locating all components of the kernel that a�ect the
state of quasi-invariants can be more di�cult than
the task of crafting specialized implementations. We
have thus developed tools for locating kernel compo-
nents that can potentially invalidate quasi-invariants,
described in the following section.

2.2 Guarding for Changes in Quasi-
Invariants

We have developed two ways to locate kernel compo-
nents that can potentially alter quasi-invariant state.
One is based on type-checking the kernel source code,



read()

write()

for FO
Specialization Class

Generic

NFS Local

Loc/Excl.read()
write()

Specialized Object

Replugging Interface

Indirection Table of

Specialized Functions

def. by current Class

FO

New

All writes to guarded values

Class is
dynamic

Type of functional interface is static

change Class

violated quasi-invariants

Guarded Write Interface

Exclusive

NFS/Excl.

Semi-lattice
Specializes
File Object

FO

Specialization Plan

Figure 1: Example: Specialization of a File Object

and the other is based on �ne-grained virtual mem-
ory protection. These techniques are discussed at
length in [8], but what they produce is a list of ker-
nel source code statements that may violate quasi-
invariant state. These writes to quasi-invariant state
must be guarded.
However, frequently such statements are access-

ing heap-allocated data structures, and only a few of
many of these structures actually control a specializa-
tion, e.g. the quasi-invariant inode.refcount == 1

may be true of some particular inode, but there are
thousands of instances of the inode struct in the run-
ning kernel. The guards placed around writes decide
whether the write is to an actual quasi-invariant, or
only a write to a value of the same type as a quasi-
invariant.
We distinguish among structs of the same type be-

tween those that contain quasi-invariant terms and
those that do not by inserting a Specialization IDen-

ti�er �eld (SID). In the case that the inode struct
is the instance referred to in the quasi-invariant ex-
pression, the SID �eld points to the specialized object
that depends on that quasi-invariant.1 The special-
ized object then performs the guarded write. For
example, consider this update to inode.refcount:

inode.refcount = some_value;

1A more complex scheme is used when struct instances

are shared among multiple specializations, which we omit for

simplicity.

A guarded update of the inode.refcount would be
written as:

inode_set_refcount(some_value, SID);

The inode set refcount function writes the
inode.refcount �eld in any case, but also atom-
ically adjusts any specialized components that
depend on quasi-invariant expressions that depend
on this inode.refcount value.

2.3 Responding to Quasi-Invariant
Changes: Replugging

When a quasi-invariant is violated, the specialized
object must adapt its specialized implementation of
the facility to the new circumstance without relying
on the quasi-invariant. One very common action to
be taken by the specialized object is to replace the
dependent specialized components with other, di�er-
ently specialized components, or with generic com-
ponents. This replacement is called replugging, and
requires fast, safe, concurrent dynamic linking. The
problem is to facilitate very low latency execution of
a function via an indirect function pointer, while con-
currently allowing the pointer to be changed. Locks
could be used, but locks may also substantially de-
grade performance. In [7], we describe a portable
algorithm that supports low-latency invocation of re-
placeable functions while allowing concurrent update
of pointers to those functions.



3 Translation & Specialization

Our previous e�orts have manually applied our var-
ious specialization tools [7, 8, 16, 17]. Automatic
translation of specialization plans should convert the
high level speci�cation of how to specialize the system
into running code that integrates the various compo-
nents.

3.1 Specialization Plans

The specialization plan describes all possible ways in
which the facility can be specialized. Given a list
of quasi-invariants, there is an exponential number of
combinations of such invariants, resulting in an expo-
nential number of specialized functions. Specializa-
tion classes allow the programmer to specify which
combinations are important, and thus should be ex-
ploited.
The specialization plan is translated into a code

template for a specialized object, and two lists. The
code manages the data structures described in Fig-
ure 1. The lists describe each specialization class, and
are fed to other specialization tools as follows:

specializable
functions

The list of specializable func-
tions is taken from the spe-
cialization plan and built into
the specialized object, and is
fed to the Tempo partial eval-
uator (see Section 3.2).

quasi-
invariants

The list of quasi-invariants is
fed to the guarding tools, and
to Tempo.

3.2 Partial Evaluation

A specialization class declares an opportunity
for specialization, and is described by a list of
(quasi-)invariants. If all the predicate condi-
tions are of the form variable = const value or
struct.field name = const value, the specialized
implementations can be automatically derived by a
partial evaluator. Notice that such an automatic
tool could be extended to deal with other classes of
predicate conditions, e.g. of the form variable <

const value. If the complexity of the predicates is
beyond the current capabilities of the partial evalua-
tor, the programmer can still provide a hand-written
implementation.
We are using Tempo, a partial evaluator for C pro-

grams developed at IRISA, [5, 6, 4]. Given a program

and part of its inputs, it generates a specialized ver-
sion of the program in which all the computations de-
pending on the known inputs are performed. Tempo
processes a program in two phases.
First, an analysis is performed, to decide which

parts of the program are to be reduced (eliminated),
and which other are to be left in the specialized
program. Note that the analysis phase doesn't
need the concrete values, it just propagates the
known/unknown information. The interface to this
�rst phase is the analysis context, which contains:

� a list of the known inputs, which can be either
variables or struct �eld names

� a list of the functions to be specialized

In a second phase, the program is specialized, based
on the annotations produced by the �rst phase and
some concrete values for each known input previously
declared. The interface to this second phase is the
specialization context, binding an actual value to each
invariant variable.

4 Related Work

Object-oriented OS research has advanced the state
of the art in the interface provided to applica-
tions, and advanced the ability of operating sys-
tems to be dynamically con�gured. In particular,
Choices [2, 11], AL-1/D [15], and Apertos [18] have
investigated ways in which object-orientation can be
used for OS re-con�guration. Kiczales has been ex-
ploring the general question of how objects can be
used as a meta-interface [13].
OS customization has also been studied outside the

OO community. The SPIN project allows replace-
ment OS components to be loaded into the kernel.
SPIN uses a combination of static type checking and
run-time checks to bound the damage potential of re-
placement components, but leaves the correctness of
applying a specialization up to the application. The
Aegis project provides more customizability by plac-
ing most OS functionality in a user-level library at-
tached to user applications [10]. We discuss some of
these approaches in [9].
At the language level, specialization classes are

similar to Chambers' predicate classes [3], which al-
low, for example, the class of a bu�er object to de-
pend on whether the bu�er is full, partially-full, or
empty. Specialization classes can be thought of as an
implementation of predicate classes in which guard-
ing is used to change the class of an object in response



to independent, concurrent events; this idea is hinted
at in reference [3], but was not fully worked out or
implemented. Specialization classes can also be ap-
plied to systems written in a language such as C, in
which the objects are more conceptual than real.
Specialization plans are similar to the Aster

distributed application con�guration language [12].
Aster operates at a higher level, using predicates that
cannot be checked mechanically, but can be reasoned
about mechanically.

5 Future Research

We have proposed an object-oriented, mostly declar-
ative model for specifying specializations in long-
running programs such as operating systems. In the
near term, we expect to demonstrate the utility of
this programmingmodel for enhancing exibility and
performance in operating systems through specializa-
tion. Subsequently, we hope that this model will
prove itself to be a valuable addition to the family
of modularity techniques.

References

[1] A. Black, N. Hutchinson, E. Jul, H. Levy, and
L. Carter. Distribution and Abstract Types in Emer-
ald. IEEE Transactions on Software Engineering,
pages 65{76, January 1987.

[2] R. H. Campbell, N. Islam, and P. Madany. Choices:
Frameworks and Re�nement. Computing Systems,
5(3):217{257, 1992.

[3] C. Chambers. Predicate Classes. In Proceedings of
the European Conference on Object-Oriented Pro-
gramming (ECOOP'93), Kaiserstautern, Germany,
July 1993.

[4] C. Consel and O. Danvy. Tutorial notes on partial
evaluation. In ACM Symposium on Principles of
Programming Languages, pages 493{501, 1993.

[5] C. Consel, L. Horno�, J. Noye, F. No�el, and E.-
N. Volanschi. A Uniform Approach for Compile-
Time and Run-Time Specialization. In International
Workshop on Partial Evaluation, Dagstuhl Castle,
Germany, February 1996. Springer-Verlag LNCS.

[6] C. Consel and F. No�el. A general approach to run-
time specialization and its application to C. In 23rd
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL'96),
St. Petersburgh Beach, FL, January 1996.

[7] C. Cowan, T. Autrey, C. Krasic, C. Pu, and
J. Walpole. Fast Concurrent Dynamic Linking for an

Adaptive Operating System. In International Con-
ference on Con�gurable Distributed Systems (IC-
CDS'96), Annapolis, MD, May 1996.

[8] C. Cowan, A. Black, C. Krasic, C. Pu, and
J. Walpole. Automated Guarding Tools for Adap-
tive Operating Systems. Work in progress, December
1996.

[9] C. Cowan, J. Walpole, A. Black, J. Inouye, C. Pu,
and S. Cen. Adaptable Operating Systems. In
R. Campbell and N. Islam, editors, Modern Op-
erating Systems Research. IEEE Computer Society
Press, 1996. To appear.

[10] D. R. Engler, M. F. Kaashoek, and J. O. Jr. Ex-
okernel: An Operating System Architecture for
Application-level Resource Management. In Sympo-
sium on Operating Systems Principles (SOSP), Cop-
per Mountain, Colorado, December 1995.

[11] A. Gopal, N. Islam, B.-H. Lim, and B. Mukher-
jee. Structuring Operating Systems using Adap-
tive Objects for Improving Performance. In Pro-
ceedings of the Fourth International Workshop on
Object-Orientation in Operating Systems (IWOOOS
'95), pages 130{133, Lund, Sweden, August 1995.

[12] V. Issarny and C. Bidan. Aster: A Framework
for Sound Customization of Distributed Runtime
Systems. In 16th International Conference on
Distributed Computing Systems (ICDCS'96), pages
586{593, Hong Kong, May 1996.

[13] G. Kiczales, J. des Rivi�eres, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, 1991.

[14] W. LaLonde and J. Pugh. Subclassing 6= subtyp-
ing 6= is-a. Journal of Object-Oriented Programming,
3(5), January 1991.

[15] H. Okamura, Y. Ishikawa, and M. Tokoro. AL-1/D:
A Distributed Programming System with Multi-
Model Reection Framework. In A. Yonezawa and
B. C. Smith, editors, Proceedings of the International
Workshop on New Models for Software Architecture
'92, Reection and Metalevel Architecture, pages 36{
47, Tokoyo, Japan, November 4-7 1992.

[16] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan,
J. Inouye, L. Kethana, J. Walpole, and K. Zhang.
Optimistic Incremental Specialization: Streamlining
a Commercial Operating System. In Symposium
on Operating Systems Principles (SOSP), Copper
Mountain, Colorado, December 1995.

[17] E.-N. Volanschi, G. Muller, and C. Consel. Safe
Operating system Specialization: The RPC Case
Study. In Proceedings of the First Annual Workshop
on Compiler Support for System Software, Tuscon,
AZ, February 1996.

[18] Y. Yokote, G. Kiczales, and J. Lamping. Separation
of Concerns and Operating Systems for Highly Het-
erogeneous Distributed Computing. In Proceedings



of the European ACM SIGOPS Workshop, Septem-
ber 1994.


