Position Paper for ECOOP’92 Workshop on Multiple Inheritance and Multiple Subtyping

Multiple Inheritance and Type System Design

Andrew P. Black
black@crl.dec.com
Digital Equipment Corporation
Cambridge Research Laboratory

It is now widely accepted that inheritance is not subtyping [5], and that “inheritance is a relationship between
implementations, while conformity is a relationship between interfaces” [1]. But like most maxims, these two are
something of an oversimplification.

Inheritance: Mechanism or Relation?

As realized in Simula and Smalltalk, inheritance is a mechanism for generating new pieces of program from old
pieces of program. As such it is of tremendous value to those who write programs (as opposed to those who write
papers). In contrast, subtyping is a relation between objects; whether or not one object’s type conforms to another
object’s type depends on the interface of those objects but not on the code that created them. In this sense it is
obvious that inheritance is not subtyping. But in a wider sense, inheritance gives rise to a relation that is similar to
subtyping. Following Bruce[2] we will call this relation inh; figure 1 shows how inh is related to inheritance.

Suppose that we have a piece of program .« from which we construct through the mechanism of inheritance
another piece of program 47B. As Cook [4] has shown, 4 and 47 must be thought of not as classes, but as class
generators, 1.e., as functions from classes to classes. In programming language terms, this means that .4 and 4%

generator .4 inheritance generator 4%
fix fix
class A class AB
new new
object a object ab
type of type of
type A inh type AB

Figure 1. Generator 43 is created from generator .4 by the mechanism of inheritance. Taking the fixpoint of .«
closes it up to give the class A. Applying new to A generates an object a, which can be characterized by the
type A. If the corresponding operations create object ab with type AB, then AB inh A.

contain local names (such as myclass) that must be given a meaning before any objects can be created, but which
must remain uninterpreted if inheritance is to take place.

Formally, classes are made from generators by taking fixpoints; informally we can think of an operation fix that
takes a generator and creates from it the corresponding class by fixing the meaning of the name myclass to be the very
class just created.

Given the classes A and AB, there will be some mechanism (called new in figure 1) by which they can be used
to create objects a and ab, which can be characterized by the types A and AB. The relationship between these types
is shown by the solid horizontal line labeled inh. The exact relation that inh denotes depends on two things: the
characteristics of objects that are captured by the type system, and the changes that are allowed by the inheritance
mechanism. We will consider each in turn.

Generalized Type Systems

We have long argued that the role of types in object-oriented languages is to prevent “message not understood” errors
[1]. To accomplish this, types must describe the operations that objects do understand, and the arguments and results
of those operations, and so on recursively. Types that serve in this role might be called “interface types”. An
interface type system is then a formal tool for reasoning about object interfaces.

The view that types define implementation data layouts goes back at least to the early days of Fortran. It is just
as much mistake to reject this kind of type as overly pragmatic as it is to reject formal specifications just because they
need to be interpreted by people. Someone, usually the compiler writer, must reason about data layouts, and there is
no reason not to give him or her a formal system as an aid to such reasoning. Types that have this role might be
called “data layout types”.

Interface types and data layout types are just two points in a large space of “generalized types”. “Specification
types” that formally define the semantics of the operations are a third point. There are as many different kinds of
type system as there are sorts of programs properties about which one might wish to reason. Nevertheless, for the
purposes of this paper, these three will be sufficient.

Modification by Inheritance

Different programming languages allow different sorts of modifications to be made when inheriting existing code.
Choosing the “right” set of modifications is a tricky design problem. On the one hand, if there are many restrictions
on the kind of modification that is possible, then inheritance looses much of its value. On the other hand, if there are
no restrictions at all on inheritance, then a program created through inheritance might be completely unrelated to its
parent. We will use the three kinds of types described above to look at various kinds of modifications.

Considering first the changes that can be measured by interface types, the following appear to be reasonable:
e reinterpreting the meaning of the self-reference mytype;
e adding a new operation; and
e subtyping the signature of an operation.

Adding a new method and reinterpreting self-references are in some sense the “essence” of inheritance, and it is
exactly this combination of modifications that causes the inh relation induced by inheritance to differ from the
subtyping relation in an interface type system[5]. Allowing the subtyping of an operation signature, but disallowing
more general changes, does not help to make inh the same as subtyping; these relations would differ even if operation
signatures could not be modified at all. The motivation for the restriction on the changes that can be made to the
signature of an operation ® are that more general changes might invalidate calls of ® from within the body of another
operation. Given the subtyping restriction, Bruce [2] shows

Vp. (generator 4B(p) < generator 4) = (type AB inh type A)

In words: if, after the self-references in the generators have been replaced by the same arbitrary parameter, the
generators are related by subtyping, then the types of the objects that they manufacture will be related by inh. Note
that this definition allows AB inh A if objects with types A and AB could have been created from generators .4 and
A 3; there is no requirement that 4 or AB even exist.

-3

There are several ways in which inh and subtyping can be made to coincide. One is to prohibit the
reinterpretation of self-references; Modula-3’s inheritance mechanism does just this: the inh and subtyping relations
for Modula-3 are the same[3,6]. A better alternative is to allow self-references in positive (result or post-condition)
positions to be reinterpreted, but to prohibit self-references in negative (argument or pre-condition) positions. We
have previously argued that the interface types of arguments ought to be specified fairly tightly[7]; for example, the
distanceFrom operation on a point should not require an argument of type Point, but rather an argument of type XY,
where the only operations that are permitted on an XY are x and y, the operations that extract the x and y coordinates.
This is exactly what is required to determine distance. The same reasoning tells us that the types of arguments should
not usually be described by a self-reference, but instead by a type that accurately describes the operations that are
actually used in the operation body.

Let us now consider the sort of modifications permitted by inheritance using the viewpoint of data layout types.
The usual criteria are that new fields can be added to the data layout of the target, but the sizes and offsets of the
existing fields must not be changed. This has the consequence that any assertion of the form “field x is at offset n”
that is true of «{ will also be true of 5.

In a strongly encapsulated system, code cannot depend on the data layout of any object other than self, but it is
still necessary to propagate data layout types of arguments and results. For example, an operation that returns the
nearer of two argument points p (of type P) and g (of type Q) will have a data layout type for its result that is the
disjunction of P and Q; if P asserts that the x field is at offset 7, and Q asserts that the value of the x field can be
obtained by calling the procedure stored at offset 324, the disjunction may well not have enough information to ensure
that the compiler can generate efficient code to access the result directly.

Because of this problem, languages that use types as a mechanism for communicating data layout information
as well as interface information usually insist that each interface have exactly one implementation. This removes one
of the great benefits of object-orientation: the ability for differing implementations of the same interface to be treated
identically.

Multiple Inheritance

The above discussion has been about inheritance in the abstract; it is as true for multiple inheritance as for single
inheritance. If a generator 4%¢ inherits from .4 and #, then we expect type ABC inh type A and type ABC inh type
B. Such expressions can be simplified if there are conjunction and disjunction operations on the various kinds of

types.

For example, when dealing with interface types, the conjunction of a type Z that has operations ® and y and an
type Y that has operations Wy and % is the type Y+Z with operations y, ¥ and ®. Although some information is lost in
working with such upper bounds, it the loss is usually not significant. If the interface type system is constructed with
care, we can ensure that all the conjunctions and disjunctions exist; the interface types then form a lattice. (This
requires, for example, that the same object can possess both an operation + with zero arguments and an operation +
with one argument. There are various ways to achieve this.)

However, when working with data layout types, it is hard to see how the types can be embedded in a lattice in
such a way that much useful information will be retained. What is the conjunction of P and Q above? They are
contradictory, so it seems that the answer must be false. This does not provide much information for the compiler.

Conclusion

In the presence of multiple inheritance, we are thus led to the conclusion that the interface and data layout type
systems should be distinct. Even the most obdurate language designer, one who has sacrificed object autonomy by
refusing to separate these type systems in a language with single inheritance, can hardly be unmoved when faced with
the task of incorporating multiple inheritance. Multiple inheritance is therefor to be praised, not only because of the
power that it offers to programmers, but because of the salutary lesson that it provides for language designers.

References

(1]

(2]

(3]

[4]

[5]

[6]
[7]

Black, A. P., Hutchinson, N., Jul, E., Levy, H. M. and Carter, L. “Distribution and Abstract Types in
Emerald”. IEEE Trans. on Software Eng. SE-13, I (January 1987), pp.65-76.

Bruce, K. “A Paradigmatic Object-Oriented Programming Language: Design, Static Typing and Sematics”.
Tech. Rep. CS-92-01, Williams College, Williamstown, MA, January 1992.

Cardelli, L., Donahue, J., Jordan, M., Kalsow, B. and Nelson, G. “The Modula-3 Type System”. Conf. Rec.
16th ACM Symp. on Prin. of Prog. Lang., January 1989, pp.202-212.

Cook, W. R. “A Denotational Semantics of Inheritance”. CS-89-33, Dept. of Computer Science, Brown
University, Providence, Rhode Island, May 1989.

Cook, W. R., Hill, W. L. and Canning, P. S. “Inheritance is Not Subtyping”. Conf. Rec. 17th ACM Symp. on
Prin. of Prog. Lang., January 1990, pp.125-135.

G. Nelson, ed., Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991.

Raj, R. K., Tempero, E. D., Levy, H. M., Black, A. P., Hutchinson, N. C. and Jul, E. “Emerald: A General
Purpose Programming Language”. Software — Practice & Experience 21, 1 (January 1991), pp.91-118.

