
DRAFT

Grace: the absence of (inessential) difficulty

Andrew P. Black
Portland State University

black@cs.pdx.edu

Kim. B. Bruce
Pomona College, CA
kim@cs.pomona.edu

Michael Homer
Victoria University of Wellington

mwh@ecs.vuw.ac.nz

James Noble
Victoria University of Wellington

kjx@ecs.vuw.ac.nz

Grace is the absence of everything that indicates
pain or difficulty, hesitation or incongruity.

William Hazlitt, The Round Table (1817)

Abstract
We are engaged in the design of a small, simple programming
language for teaching novices object-oriented programming.
This turns out to be far from a small, simple task. We focus
on three of the problems that we encountered, and how we
believe we have solved them. The problems are (1) gracefully
combining object initialization, inheritance, and immutable
objects, (2) reconciling apparently irreconcilable views on
type-checking, and (3) providing a family of languages, each
suitable for students at different levels of mastery, while
ensuring conceptual integrity of their designs. In each case
our solutions are based on existing research; our contribution
is, by design, consolidation rather than innovation.

1. Introduction
Although object-oriented programming is widely taught in
introductory computer science courses, no existing object-
oriented programming language is the obvious choice for
a teaching language. This makes it harder to transfer skills,
techniques, and teaching materials between courses and be-
tween institutions. During ECOOP 2010, a group of language
researchers and educators concluded that the time was ripe
for an effort to design a language focussed on teaching.

A “design manifesto” was presented at SPLASH 2010 [5],
in which we attempted to lay out design principles for such

[Copyright notice will appear here once ’preprint’ option is removed.]

a language; as we did so, it became clear that the principles
were often in conflict and that resolving these conflicts would
be challenging. Since then three of us (Black, Bruce and
Noble) have been meeting weekly to pursue the design of
the language, which we have named “Grace”, in honor of
Admiral Grace Hopper, and in the hope that the name would
serve as an admonition not to settle for less-than-graceful
solutions. Homer has built a preliminary implementation of
the core of Grace. which we review in Section 6.

From the beginning, our high-level goal has been to
integrate proven newer ideas in programming languages into
a simple teaching language whose features represent the key
concepts of object oriented-programming directly, simply and
gracefully. We feel that this is important because we want to
focus the attention of our students on the essential, rather than
the accidental, complexities of programming and modeling.
We hope that the design sketched here meets this goal.

The preliminary design for Grace has been discussed on
our blog1, and a draft specification is available at the same
site. The purpose of this paper is not primarily to review the
state of Grace, but rather to focus on three problem areas
where we believe we have found Graceful resolutions to what
seemed to be difficult problems: Section 3 discusses how we
construct objects, Section 4 explains how we treat types, and
Section 5 summarizes our approach to providing different
“levels” of Grace for teaching students at different stages
of mastery. Because a language is an ecosystem in which
everything is connected to everything else, these sections
cannot be independent. We therefore start with an overview
of Grace.

2. Grace in a Nutshell
Grace is an imperative object-oriented language with block
structure, single dispatch, and many familiar features. Our
design choices have been guided by the desire to make
Grace look as familiar as possible to instructors who know

1 http://www.gracelang.org

Grace Onward! paper 1 2012/5/16

http://www.gracelang.org

other object-oriented languages, and by the need to give
instructors and text-book authors the freedom to choose their
own teaching sequence. Thus, in Grace it is possible to start
using types from the first, or to introduce them later, or not
at all. It is also possible to start with objects, or with classes,
or with functions. Most importantly, instructors can move
from one approach to another while staying within the same
language.

Grace can be regarded as either a class-based or an object-
based language, with single inheritance. A Grace class is an
object with a single factory method that returns an object:

class aCat.named(n : String) {
def name = n
method meow { print "Meow" }

}
var theFirstCat:Cat := aCat.named "Timothy"

Here the class is called aCat and the factory method named().
After executing this code sequence, theFirstCat is bound to
an object with two attributes: a constant field (name), and a
method meow. The expression c.name answers the string
object "Timothy" and c.meow has the effect of printing
Meow.

An object can also be constructed using an object literal —
a particular form of Grace expression that creates a new
object when it is executed. In addition to fields and methods,
an object literal can also contain code, which is executed
when the object literal is evaluated. For example:

var theSecondCat := object {
def name = "Timothy"

method meow { print "Meow" }
print "Timothy now exists!"

}

This code has the effect of printing “Timothy now exists!”,
and binding the variable theSecondCat to a newly-created
object, which happens to be operationally equivalent to
theFirstCat.

As we will see in Section 3, a class is equivalent to an
object with a factory method that contains an object literal.
Thus, an instructor who wishes to start teaching with objects
need not talk about classes at all until later. Classes are in
the language because we felt that they were important for
convenience, and to help make the connection between Grace
and existing languages.

Mutable and immutable bindings are distinguished by
keyword: var defines a name with a variable binding, which
can be changed using the := operator, whereas def defines a
constant binding, initialized using =, as shown here.

var currentWord := "hello"

def world = "world"

...
currentWord := "new"

The keywords var and def are used to declare both local
bindings and fields inside objects.

An object’s methods are immutable, in the sense that
once an object is created, the code of its methods cannot
be changed. A field that is declared with def is constant;
the binding between the field name and the object cannot be
changed, although the object, if mutable, may change its state.
Each constant field declaration creates an accessor method
on the object. For example, the object club defined by

def club = object {
def members = MutableSet.empty

}

has a method called members that returns the current set of
members. The value of this set may change over time, for
example, after executing club.members.add(anApplicant).

Declaring a field with var creates two accessor methods,
one for fetching the currently bound object and one for
changing it. So, after the declaration

def car = object {
def numberOfSeats = 4
var speed: Number := 0.

}

the object car will have three methods called numberOfSeats,
speed, and speed:=(). When we use () in the name of a
method, it indicates the need to supply arguments. So, the last
method might be used by writing car.speed := 30. Variable
fields have no value until they are initialized. Because Grace
does not define a universal “nil” object, there is no default
value that could be used to initialize all variables. We expect
that most variable fields will be initialized when they are
declared, as in the example above. Attempting to access an
uninitialized field is an error that the implementation will
detect, and that will cause program termination.

Grace will support visibility annotations that allow the
programmer to restrict access to fields and methods from
outside an object by marking them as public or confidential.
For simplicity, we do not discuss this further here, and omit
visibility annotations in all the sample code in this paper.

In Grace we say that a method is invoked using a “method
request”. We introduce this terminology to distinguish the
operation — fundamental to object-orientation — of asking
an object to do something, where the choice of what to do
is made by the object itself, from procedure or function
call, where the choice of operation is made by “the caller”.
This distinction is also conveyed by Smalltalk’s “message
send” terminology, but now that networks and distributed
systems are ubiquitous, “sending a message” has become an
ambiguous term.

All the attributes of an object (methods, variable fields,
and constant fields) exist in the same namespace and with
the same lookup rules. There is thus a potential ambiguity in
the interpretation of a name n. To resolve this, we disallow
“shadowing” of variable names in enclosing scopes; one or

Grace Onward! paper 2 2012/5/16

other of the variables must be renamed. Thus, if n is defined in
the local scope, it cannot also be imported from an enclosing
scope. It may be inherited, in which case the local definition
overrides the inherited one. If there is no local declaration of
n, you might wonder whether n is a reference to a variable (or
constant) declared in an enclosing (static) scope, or a request
self.n of an inherited method. To remove this ambiguity, we
disallow this situation too. We do not allow n to be declared
in a statically enclosing scope if it is also inherited. If that is
the case, the programmer must rename the variable n in the
enclosing scope.

Bracha has compared various options in this space [7].
Our choices might be too restrictive for an industrial-strength
programming language, but for teaching purposes we believe
them to be appropriate.

Making field access syntactically identical to a self method
request is deliberate, following the lead of Eiffel [25] and
Self [32]. This allows the programmer to override a field’s
implicitly-defined accessor method with a custom method,
and thus allows the programmer to handle interface changes,
implement bounds checking, or perform some other similar
task without affecting the interface of the object.

An object containing no mutable state is by default equal
to any other object with the same structure and values for its
fields. This follows Baker’s Egal predicate [2]. The equality
method that implements this test is generated automatically.

Grace method names may consist of multiple parts (“mix-
fix” notation) as in Smalltalk [16]. Separate lists of arguments
are interleaved between the parts of the name, allowing them
to be clearly labelled with their purpose. Thus we might
define on Number objects

method between (l:Number) and (u:Number) {
return (l < self) && (self < u)

}

The syntax of a method request is similar to that used
in Java, C++, and many other object-oriented languages:
obj.meth(arg1, arg2), but extended to allow meth to have
multiple parts. We could request the above method between
()and() on 7 by writing

7.between(5) and(9)

Single arguments that are literals do not require parentheses,
so alternatively we could write

7.between 5 and 9

Following many other languages, the receiver self can be
omitted. We have already seen several messages requested of
an implicit receiver; for example, print "Meow" is short for
self.print "Meow".

Grace also allows operator symbols (and sequences of
operator symbols) to be used to name methods. A method
name composed of operator symbols is used as a binary infix
operator, unless it is defined using the prefix keyword, in

which case it is a unary prefix operator. There is no ambi-
guity because the receiver must be explicit when requesting
operator methods. Thus, a − b is a request of the binary mi-
nus method on object a, while − b is a request of the prefix
negation method on object b.

Grace includes first-class blocks (lambda expressions). A
block is written between braces and contains some piece of
code for deferred execution. A block may have arguments,
which are separated from the code by −>, so the successor
function is {x −> 1+x}. A block can refer to names bound
in its surrounding lexical scope, and returns the value of the
last-evaluated expression in its body.

Control structures in Grace are methods. The built-in
structures are defined in the basic library, but an instructor
or library designer may replace or add to them. Control
structures are designed to look familiar to users of other
languages:

if (x > 5) then {
print "Greater than five"

} else {
print "Too small"

}

for (node.children) do { child −>
process(child)

}

Notice that the use of braces and parentheses is not arbitrary:
parenthesized expressions will always be evaluated exactly
once, whereas expressions in braces are blocks, and may thus
be evaluated zero, one, or many times. A return statement
inside a block terminates the method that lexically encloses
the block, so it is possible to program quick exits from a
method by returning from the then block of an if()then() or
the do block of a while()do().

Instructors could provide their own for()do() methods
with debugging enhancements or additional restrictions, ei-
ther to replace the built-in version or to sit alongside it. A
particular use of this facility is to define iterators that require
the student to specify loop invariants.

String literals, written between double quotes, support
interpolation, using a syntax similar to that of Ruby. Code
inside braces within a literal is evaluated when the string is;
the asString method is requested on the resulting object, and
the answer is inserted into the string literal at that point.

print "1 + 2 = {1 + 2}" // Prints "1 + 2 = 3"

While Grace uses braces to delimit blocks and other
literals, it also enforces correct indentation. Braces and
indentation may not be inconsistent with one another: the
body of a method, for example, must be indented. Enforcing
this in the language ensures that students will learn good
practice, and avoids the common problem of not being able
to find a mismatched brace because of the tendency of one’s
eye to believe the indentation rather than the braces.

Grace Onward! paper 3 2012/5/16

Grace code can also be written in “script” form, without
object or class definitions. We imagine such code as being
enclosed in a top-level object literal. Thus, methods can be
defined at the top level, and any code written at the top level
will be executed immediately. This supports imperative-first
teaching styles.

We recognize the growing importance of parallelism, and
recognize that Grace needs to support the teaching of parallel
and concurrent programming. Unfortunately, there is as yet no
consensus on the best way to teach these concepts. We intend
to use libraries to provide a variety of language mechanisms
for parallelism and concurrency. These efforts are very much
a work-in-progress, and are not discussed further here.

3. Constructing Objects
Having completed our overview of Grace, let us turn to the
first problem area: object construction and initialization. This
is often quite tricky, especially for objects that are defined
using inheritance. Many languages that are currently used for
teaching novices impose a lot of overhead on the process of
creating even the simplest objects.

3.1 The Problem
Let’s look at making a simple AddressCard object in
Smalltalk and in Java. In Smalltalk, we need to define a
class AddressCard:

AddressCard (subclass of Object)
instance variable names: name address
methods:

name
↑ name

address
↑ address

email
EmailApp openComposerWindowTo: name

private methods:
setName: nm address: adr

name := nm.
address := add.
↑ self

and a metaclass AddressCard class:

AddressCard class
methods:

for: aName address: anAddress
↑ self basicNew

setName: aName address: anAddress

Then we can use an AddressCard object like this

| ww |
ww := AddressCard for: 'Wackiki Wabbit'

address: 'ww@WarnerBros.com'.
ww email

The weakness of the Smalltalk design, from the point
of view of teaching novices, is that there is quite a lot

to explain here, and we have to explain all of it before
our students can define and create the very simplest object.
AddressCard defines the instance variables and methods of
every AddressCard object. In contrast, AddressCard class
defines the behavior of the factory object that is used to
make new AddressCard objects; it has a method for:address:
that exists for this purpose. Although AddressCard objects
are intended to be immutable, there has to be a method (here
called setName:address:) whose only purpose is to allow the
for:address: method in AddressCard class to initialize the
instance variables of the newly created object.

Although we don’t have to explain the whole idea of
the class–metaclass hierarchy before students construct their
first objects, it is still hanging there as a teaser to the smart
students: if every object has a class, and every class is an
object, then what’s the class of the class’s class? And what of
that class?

The strength of the Smalltalk design is that once these
things have been understood, the students can apply what
they have learned, and discover that the same principles are
at work everywhere in the Smalltalk system. For example,
basicNew isn’t magic: students can look at its implementation
and see how it is implemented. Neither are classes magic: they
are just objects that ultimately inherit from Behavior. The
instance-variable-setting method setName:address: may be
inconvenient, but it has to exist because an object’s instance
variables are accessible only by that object; there is no
“special exception” for the object’s class, which is, after all,
just another object.

Java, following C++ and other languages, attempts to sim-
plify the situation by combining the class and the metaclass
into a single syntactic construct, the Java Class, and by re-
placing object encapsulation by class encapsulation. The cor-
responding Java class looks like this:

class AddressCard {
private String nameField;
private String addressField;
// constructor method //
public AddressCard(String nm, String adr) {

nameField = nm;
addressField = adr; }

public String address() {
return addressField; }

public String name() {
return nameField; }

public void email() {
EmailApp.openComposerWindowTo(nameField);

}
}

The strength of the Java design is that, because Java classes
are not objects, they don’t themselves have classes, so there
is no class–metaclass hierarchy and no danger of students
having their heads explode trying to figure it out. The Java
design has its own weaknesses, however. Jettisoning the idea
that classes are objects means that inheritance doesn’t work

Grace Onward! paper 4 2012/5/16

on static methods. Because of this, instead of each class
being equipped with a static method basicNew, Java needed —
and instructors must explain — two language primitives: the
operation new, which creates an object, and “constructor
methods”, the parameters of which come from new, but which
side-effect the newly constructed object. All of this is, from
the perspective of the student, “magic”. It cannot be deduced
from a few underlying principles: it is “just the way that
the language works”, and must be memorized. Moreover,
one of the overarching principles of object-orientation — that
information hiding applies to objects, not classes — has been
lost as an object can access the private instance variables of
other objects of the same class.

The process of object creation becomes even more com-
plicated when we add inheritance to the picture, although it
may be possible to postpone that for a few weeks, depending
on the teaching sequence. Once inheritance is introduced,
we have to explain how the inherited instance variables are
initialized, and how the initial values are passed from the
constructor of the inheriting class to its parent. Then we have
to teach programming patterns that make that reuse of the
parent robust to change.

3.2 Object Construction in Grace
Grace seeks to play on the strengths of both Smalltalk and
Java by giving the student a small number of underlying
principles that can be applied uniformly, and by simplifying
the syntax so that everything about an object can be specified
in a single construct. As a result, we believe that it presents a
much simpler picture of objects to the student.

Grace objects are self-contained: conceptually, each object
owns its own fields and methods. As in Emerald, O’Caml,
and JavaScript, objects are created by executing a language
expression, which in Grace is called an object literal. There is
no need to introduce classes. Here is how the above address
card object might be created in Grace:

object {
def name = "Wackiki Wabbit"
def address = "ww@WarnerBros.com"
method email
{ EmailApp.openComposerWindowTo(name) }

}

Execution of an object literal results in a new object with
the attributes between the braces. Object literals are naturally
first-class: they can be passed as arguments, returned as
results, and bound to variables, so we might give a name
to our object using a var or def declaration:

def ww = object {
def name = "Wackiki Wabbit"
def address = "ww@WarnerBros.com"
method email
{ EmailApp.openComposerWindowTo(name) }

}

Grace’s information hiding rules tell us that, from the
outside, the object ww above and the object ww' that follows

def ww' = object {
method name
{ "Wackiki Wabbit" }

method address
{ "ww@WarnerBros.com" }

method email
{ EmailApp.openComposerWindowTo(name) }

}

are indistinguishable: both appear to their clients to have
methods called name, address, and email. The fact that some
of these methods are implemented by field access and others
by executing code is no object’s business but ww and ww'
themselves.

Of course, it is quite common to want to create many
address cards, which will need to be initialized with different
values. To achieve this, we need to parameterize over the
values of the fields. In Grace, we do this in the same way that
we parameterize over anything else: we write a method with
parameters.

method for (nm) address (adr) {
object {

def name = nm
def address = adr
method email {

EmailApp.openComposerWindowTo(name) }
}

}

Such a method is conventionally called a factory method,
because it manufactures an object, but in Grace there is
nothing special about a factory method: it is just a method
that returns the result of executing an object literal, and is not
fundamentally different from any other code that makes an
object.

It’s usually convenient to put such a method in a named
object, so that it can be re-used easily:

def anAddressCard = object {
method for (nm) address (adr) {

object {
def name = nm
def address = adr
method email {

EmailApp
.openComposerWindowTo(name) }

}
}

}

Now the student can write:

def ww = anAddressCard.for "Wackiki Wabbit"
address "ww@WarnerBros.com"

def fjl = anAddressCard.for "Foghorn Leghorn"
address "fjl@WarnerBros.com"

Grace Onward! paper 5 2012/5/16

We expect that this pattern — an object containing a
single factory method — will be common. Although it’s
quite simple, it does depend on nesting (an object literal
in a method in an object literal), and that can be hard for
novice students to understand at first. For instructors who
want to delay a discussion of nesting, or who just prefer a
more concise or more familiar syntax, the following class
declaration accomplishes the same thing:

class anAddressCard.for (nm) address (adr) {
def name = nm
def address = adr
method email
{ EmailApp.openComposerWindowTo(name) }

}

Thus, a Grace class is really just a factory object. In
other languages, classes play a multitude of rôles; Borning
lists no less than eight [6]. Grace classes are not meta-
objects that describe their instances; nor are they types. We
agree that meta-objects and types are important. Indeed, we
think that they are sufficiently important to have their own
representations in Grace, leaving classes to be generators of
new objects.

3.3 Adding Inheritance
Students of language design will see that there is nothing new
here: Grace’s object literals are clearly based on Emerald’s
object constructors [4]. Emerald did not support inheritance,
and Grace must. How can we add inheritance to the picture?

Our solution draws from the original use of prefix classes
in Simula, which defined the meaning of class prefixing
in term of concatenation [27], and the work of Taivalsaari
on delegation [30]. In a conventional class-based language,
derived objects share the methods of their base class, but have
their own independent set of fields. Taivalsaari observed that
in an object-based language, the effect of inheritance could
be obtained by concatenating a conceptual copy of the base
object, both methods and fields, to the methods and fields of
the derived object. It’s vitally important that each object has
its own set of fields; whether the methods are actually copied
or shared is semantically irrelevant, since they are immutable.

In Grace, one inherits from an object, as shown in the
following example.

def wwPhoneCard =
object {

inherits anAddressCard.for "Wackiki Wabbit"
address "ww@WarnerBros.com"

def phoneNumber = "866−373−4389"
method call {

PhoneDialer.dial(phoneNumber) }
}

The object wwPhoneCard inherits all of the (public and
confidential) methods and fields of anAddressCard.for
"Wackiki Wabbit" address "ww@WarnerBros.com". To
these it adds a new field phoneNumber and a new method

call. It’s also possible for the derived object to override inher-
ited methods, and to make super-calls to overridden methods.
Inheritance can also be used with the class syntax; the mean-
ing is that the object constructed by the factory method
inherits from the object that follows the inherits keyword.

class aPhoneCard.for(nm)address(adr)phone(nbr) {
inherits anAddressCard.for (nm) address (adr)
def phoneNumber = nbr
method call {

PhoneDialer.dial(phoneNumber)
}

}

Grace restricts the expression that appears after inherits
to be “definitively static”. The normal use case is that this
expression is a method request on a factory object. This
restriction means that it is always possible to ascertain
statically which attributes (fields and methods) are being
inherited, and allows the compiler or the IDE to warn the
programmer if methods are being overridden without override
annotations, or vice versa.

Notice that the attributes of an object never change over
that object’s lifetime. Here Grace stands in contrast to lan-
guages like JavaScript, Python, and Ruby, where fields can be
added to objects at any time. While this may make Grace less
dynamic than these languages, we also think it makes Grace
programs easier to design and to understand than programs
in more dynamic languages. Crucially, this also means that
Grace programs can be type-checked with a straightforward
type system.

4. Type Checking
To separate the concepts of class and type, and to allow
different styles of teaching that introduce these concepts in
different orders, a Grace class is not a type, nor does a Grace
class or object implicitly define a type. When programmers
need types they must define them explicitly.

Most Grace types are structural — sets of method names
and signatures. The keyword method is omitted in type
literals, since only methods can be in a type. Thus, the object
ww from Section 3.2

def ww = object {
def name = "Wackiki Wabbit"
def address = "ww@WarnerBros.com"
method email
{ EmailApp.openComposerWindowTo(name) }

}

has the (anonymous) type

{
name −> String
address −> String
email −> Nothing

}

Grace Onward! paper 6 2012/5/16

Recall that, from the outside, fields are indistinguishable from
methods.

A type declaration can be used to name this type:

type AddressCard = {
name −> String
address −> String
email −> Nothing

}

The key relation between types is conformance. We write
B <: A to mean B conforms to A; we say that the “subtype”
B conforms to the “supertype” A. Grace’s conformance
relationship is standard: a subtype must contain all the
methods of a supertype, result types are covariant, and
argument types contravariant.

Because Grace types are structural, any object that has
methods with conforming method signatures conforms to the
type: no inheritance relationships or implements declarations
are necessary. The various address card and phone card
objects from Section 3 all conform to the AddressCard type
declared above, but they will also conform to the smaller type
{ name −> String }, which requires a conforming object to
have a name method that returns a String.

Grace method declarations can include the types for
their arguments and results. For example, the method
doubleUpNames below takes as argument any object that
has a name method that returns a String.

method doubleUpNames(
namedObject : { name −> String }) −> String
{ namedObject.name ++ namedObject.name }

Classes can be tied into the type system simply by giving
their factory method a return type:

class anAddressCard.for (nm) address (adr)
−> AddressCard { ... }

class aPhoneCard.for(nm)address(adr)phone(nbr)
−> PhoneCard { ... }

This shows the power of a simple mechanism used consis-
tently.

As examples in earlier sections have shown, local vari-
ables, methods and fields are not required to declare their
types. Grace is gradually typed: omitted types of local vari-
ables and constants, and method results are inferred; but
omitted argument types are treated as the predefined type
Dynamic. This ensures that any requests are dynamically
checked, as in C# [3]. In this way, Grace supports both stati-
cally and dynamically-typed code; indeed, programmers can
choose at the level of an individual declaration.

Within dynamically-typed code, types need not be men-
tioned at all, and so their introduction can be delayed until
late in the teaching sequence. When instructors do introduce
types, they may do so in the language they are already us-
ing, as opposed to, for example, starting teaching in Python
and then transitioning to Java. A simple static type checker

will support instructors who wish to require that all student
programs are fully typed.

Grace defines a type Any that defines no methods and to
which any object conforms, and a type None that defines all
methods and to which no object conforms. The type Nothing
is a placeholder for methods that do not return a result. These
types help ensure that every expression has a principal type,
and every type can be denoted in the language. We hope this
will give us a chance of explaining every type in students’
programs in terms that they can understand.

As well as type literals, Grace provides a small selection
of type operators. T1 & T2 is the type of all objects that
contain the methods in T1 as well as the methods in T2. In
contrast, T1 + T2 is the type of objects that have all the
methods common to both T1 and T2.

These type operators allow more complex types to be
built up from simpler types. As a consequence, Grace’s type
system needs no special support for inheritance, because &
types are all we need. For example, the type of a phone card
object can be defined by “anding” the type of an address card
and the type of the methods added by the subclass:

type PhoneCard = AddressCard & {
phoneNumber −> Number
call −> Nothing

}

Grace’s type system has two non-structural features to
support multi-way branches and pattern matching: variant
types and singleton types. Variant types [19], which are
written T1 | T2, are similar to structural sum types T1 +
T2 in terms of the requests they permit on objects of the

type. In both cases, only those requests common to both T1
and T2 may be made. The difference is that, whereas any
object supporting just these common requests would conform
to T1+T2, only subtypes of T1 and subtypes of T2 conform
to the variant type T1 | T2.

For example, an object that responds to nothing but an
email method conforms to the structural sum type

AddressCard + {email −> Nothing; url −> String}

because that sum type is equivalent to the structural type

{email −> Nothing}

Such an object would not conform to the variant type

AddressCard | {email −> Nothing; url −> String}

because neither

{email −> Nothing} <: AddressCard

nor

{email −> Nothing} <:
{email −> Nothing; url −> String}

even though the only request that can be made via a reference
of the variant type is precisely {email −> Nothing}.

Grace Onward! paper 7 2012/5/16

Variant types let the typechecker guarantee that multi-way
branches are exhaustive. Inspired by Scala, a Grace match
statement (itself defined as a library method) takes an object
and selects one of a series of single-argument blocks:

method handle(x :
AddressCard | {email −> Nothing; url −> String})

{
match (x)

case { a : AddressCard −>
print "Name: {a.name}" }

case { u : {email −> Nothing; url −> String} −>
print "URL: {u.url}" }

}

By checking that each leg of the variant type is handled by
one of the cases, the typechecker can ensure that this match
is exhaustive, so that no catch-all clause needs to be supplied,
and a missing case exception cannot be generated.

Similar to Scala, singleton types denote individual objects
(although unlike Scala, Grace’s singleton types do not admit
null). Once we have defined a “missing value” object that
will act as a singleton

def missing = object {
method asString { "Missing Value" }

}

we can use this in other types to represent potentially missing
data:

class databaseRecord.new(id', name') {
var id : Number | singleton(missing) := id'
var name : String | singleton(missing) := name'

}

Some simple objects, notably strings and numbers, can act
as their own singleton type, supporting very concise multi-
way branches

method howMany(n : Number) −> String {
match (n)

case { 1 −> "One" }
case { 2 −> "Two" }
case { −> "Lots of" }

}

and to implement simple enumerations:

type Colour = "red" | "blue" | "green" |
"cyan" | "magenta" | "yellow" | "puce"

Types are gradual: dynamically-typed and statically-typed
code can co-exist in the same program. When objects move
from dynamic to static code, a run-time type check is per-
formed, and an error may be given. Types can be introduced
into an existing program gradually, without needing to add
types everywhere before the program can be executed.

There are several options for interpreting types in a gradual
system. In a safe static type system, the compiler guarantees
in advance that no type errors will occur at run-time. In a
safe dynamically typed system, the run-time system also

guarantees (though this time by inserting dynamic checks)
that no type errors will occur at run-time.

What is the meaning of a type annotation in a dynamically-
typed system? As suggested above, one can set up the system
so that dynamic checks are inserted when objects move from
static to dynamic code. What should happen when such a test
fails? Certainly, at a minimum, the system should report that
failure. It could at that point terminate the execution of the
program; however, it could be the annotation that is wrong.
In that case it might make more sense to continue execution
after the error report in order to determine if there is a later
catastrophic error (e.g., a “method request not understood”
error) that will result from that earlier failure. We intend
to design run-time systems that will allow programmers to
choose from these options.

5. Language Levels
Grace will include “language levels” similar to those found
in DrRacket [31] (formerly DrScheme). DrRacket includes
five different language levels designed for teaching. Moving
up from the basic level, successive languages introduce
list constructs, local bindings and higher-order functions,
anonymous functions, and mutable state.

Findler and colleagues have argued persuasively for the
value of language levels [15]. Starting teaching in a restricted
language allows the compiler or IDE to help the student
by catching mistakes that might otherwise be interpreted as
esoteric advanced features. It also allows error reports and
suggestions for corrections to be more specific and helpful.
DrRacket supports its language levels using a module system
and by using macros to translate higher-level features into
core-Racket. We intend to use library modules to support
language levels in Grace.

Each Grace module will specify the level in which it is
written with a using clause, the target of which is a library
that defines a language level.

using BasicGrace
def o = object {

method m(...) {... basicMethod ...}
}

In the above, basicMethod represents a method imported
from object BasicGrace. The using construct imports all
public names in the specified object. Because basicMethod
is a public method of BasicGrace, it may be accessed via a
method request to self just as if it were defined at the top-
level of this example. Because self as the target of a method
request can be left implicit, we can write basicMethod rather
than self.basicMethod. This is especially useful for methods
that implement new control structures.

The keyword using invokes a simple variant of inheritance
that imports only the public attributes of the “used” object.
It is essentially the same mechanism that Dahl and Nygaard
used to incorporate the simulation language Simula I into

Grace Onward! paper 8 2012/5/16

the general-purpose language Simula 67, about which Dahl
wrote:

One way of using a class, which appeared important
to us, was to collect concepts in the form of classes,
procedures, etc., under a single hat. The resulting
construct could be understood as a kind of “application
language” defined on top of the basic one. It would
typically be used as a prefix to an in-line block making
up the application program. [13]

Because Grace incorporates closures and multi-part
method names, what in other languages would be built-in
control structures, such as while . . . do . . . , are defined as
methods. The using construct lets Grace provide different
control structures in different language levels. What using
does not do is restrict the use of basic language features, like
var declarations. If we find such restrictions necessary, we
plan to implement them using annotations that are understood
by the compiler.

While we have not yet specified the language levels
for Grace, we imagine a lattice of languages rather than
a sequence, so “sublanguages” is a more accurate term
than language levels. For example, one instructor might
start teaching with simple immutable objects operating on
numbers, while another might start with a library of graphical
objects that are updated in response to user interaction.

One possible lattice of sub-languages is shown in Figure 1.
There might even be higher languages not shown in the
figure, such as a language that loosens Grace’s restrictions on
shadowing variable names, a restriction that is appropriate for
introductory teaching, but which might prove inconvenient
for large programs. We expect that several such hierarchies
might be necessary to meet the needs of different instructors.

6. Implementation
Homer has written a prototype self-hosted compiler for Grace,
known as Minigrace. Minigrace is able to generate both C,
which can then be compiled to native code, and JavaScript,
which can be run in a web browser, and recently has gained
experimental support for generating Java. Minigrace currently
accepts almost all of the specified parts of Grace, and includes
a static structural type-checker. The same compiler front-end
supports all the backends; the C backend is designed to work
on any POSIX-compatible system that is equipped with gcc,
such as Linux, NetBSD, and Mac OS X.

Minigrace comprises about 10,000 lines of Grace, dis-
tributed as shown in Table 1, along with a small runtime
library in each of the target languages. The compiler com-
piles itself, and exercises most of the features of Grace.

To bootstrap the compiler, Homer built a simple prototype
for a small subset of Grace which used the Parrot Compiler
Toolkit and ran on on the Parrot virtual machine; the current
compiler was compiled by that prototype until it was able
to compile itself. The implementation process raised some

BasicGrace
def declarations
var declarations
if…then…else
while…do
object literals
inheritance from system objects

FunctionalGrace
def declarations
object literals

PrimitiveGrace
numbers
booleans
method definitions
method requests

BasicCollections
mutable collection objects
control structures over collections

ImmutableCollections
immutable collection objects
control structures over collections

CollectionGrace
type parameters

InheritanceGrace
full inheritance

PatternGrace
match statement

Figure 1. A possible lattice of sublanguages; the arrows
indicate containment. Each sublanguage includes the features
listed in its box and the union of all of the features of the
sublanguages that it contains.

language design issues, which in turn influenced the language
specification.

The C backend was preceded by an LLVM backend, but
debugging was overly difficult and the runtime library, in C,
expanded such that it became clear that a higher level would
be a better target. Both used the same runtime library, and
implementation of the new backend progressed much faster
than the original. C is also more portable, allowing source
tarballs to be pregenerated and distributed. The JavaScript
backend was originally a toy developed while other work had
lapsed, but became fully functional. The C backend is the
primary development target, supporting all of the features,
while the JavaScript backend is updated subsequently to
include new functionality subject to the limitations of the
platform.

Efficiency is not a goal of Minigrace, beyond practicality
of execution. Small- to mid-sized programs compile and run
quickly. The native compiler incorporates garbage collection

Grace Onward! paper 9 2012/5/16

Component Lines
Compiler driver 100
Utility and interface functions 300
Lexer 700
Parser 1700
AST 600
Typechecker 1600
C backend 1300
JavaScript backend 700
Java backend 1000
LLVM backend 1500

Table 1. Distribution of Minigrace source lines

and (optionally) optimizes tail-calls. Error reporting is cur-
rently inadequate, and at times invalid code may misbehave
rather than reporting an error. Nevertheless, Minigrace is able
to compile itself, its test suite, and various sample programs
in reasonable time and operates correctly on these programs.

Implementation of the language gave rise to some chal-
lenges. One difficulty was Grace’s semantics for non-local
returns — that a return statement inside a block returns from
the method in which the block is defined. Because of this,
some, but not all, executions of return in a block must jump
up the call stack. In C we are able to use setjmp and store
the return point in the block object, with special handling
for method dispatch on blocks. In JavaScript we did not
have this option, and instead used the only form of non-local
control-flow available: throwing an exception. This greatly
complicates the generated code: every dynamic execution of
a method body must have a unique identifier to distinguish its
own returns from others, which we implement as a counter,
and the method must be prepared to catch a return exception
and either perform a local return or rethrow the exception.

The implementation process also gave us some insights
into the language design. For example, at first we used the
type None to indicate a command with no return value.
Because None is uninhabited, this made the result of such
commands unassignable, thus enabling the implementation to
alert students to a common error. However, this typing made it
impossible to write code that was polymorphic over whether
or not an object was returned. For example, it was impossible
to apply a generic block and store the result. In response, we
changed the language specification so that commands return
Nothing. On another occasion we found that the method
request syntax was ambiguous, and so we changed it so that
it has a single clear interpretation.

Minigrace can be compiled into JavaScript, and run in a
web page (see Figure 2). A simple client-side web implemen-
tation is available [18], and is a reasonable way of trying out
small programs, but not suitable for wider use: it provides no
way of saving your code, and performance, correctness, and
error reporting are very limited compared to the stand-alone
compiler. The web interface also provides access to the test

suite, which demonstrates the implemented features, and to
various modes showing the parsing and subtyping determined
for the code.

Tarballs of the compiler source can be downloaded from
http://ecs.vuw.ac.nz/∼mwh/minigrace/dist/ and built us-
ing ./configure ; make. A Grace program may be executed
like a script with minigrace −−run program.grace. Other
modes, options, and limitations are described in the documen-
tation.

7. Discussion and Related Work
Arguably harking back at least to Algol-60, educational pro-
gramming languages form a long and illustrious lineage. Cer-
tainly Pascal has left its marks on Grace: we’ve consciously
reverted back to Pascal’s rational and explicable type syntax,
rather than C’s “Clockwise Spiral Rule” [1]; Grace’s variable
and constant field declarations are basically the same as in
Modula-2 — except that we replaced “const” with “def”, be-
cause we wanted constant declarations to be no longer than
variable declarations. Scala’s design choices are also a clear
influence on Grace’s syntax [28].

In terms of object-oriented teaching languages — or at
least languages explicitly designed for teaching — Eiffel [23,
24] is the most well known, and a customized first-year
course tailored to Eiffel has been designed recently [25].
Compared with Eiffel, and other efforts such as Object-
Oriented Turing [17] and Blue [20, 21], we have intentionally
designed Grace to look like a “curly bracket language” (as
Ward Cunningham once put it). This is not simply a matter
of choice. Rather, we recognize that students will need to
transition to other languages — particularly Java and C++,
but also Python, and Ruby, and perhaps Scala, Ceylon, and
Dart. Grace’s operator syntax, including both prefix operators
and square brackets as an operator to access collections, has
been designed so that Grace expressions look like Java or C
expressions. Unfortunately, everything has a cost, and much
of the complexity of Grace’s syntax comes from this stylistic
compatibility.

In terms of recent educational languages, Racket has also
strongly influenced Grace [14]. The idea of a language tai-
lored to education that is supported by a programming envi-
ronment, where both the language and the environment sup-
port a series of language levels, comes directly from Racket.
Racket is also gradually typed. Nevertheless, although our
aims are similar, many of Grace’s design decisions are very
different from Racket’s.

As we’ve described above, Grace’s syntax is intentionally
close to Java and C, while Racket is based on Scheme and
adopts S-expression syntax. Racket’s language levels are
implemented using its own powerful macro facilities [31],
whereas Grace relies on careful syntax design to admit as
much C-like syntax as possible, on a language substrate
closer to Self [32] or Newspeak [8]. On the one hand, this
means that some features of Grace — notably the “class”

Grace Onward! paper 10 2012/5/16

http://ecs.vuw.ac.nz/~mwh/minigrace/dist/

Figure 2. The Minigrace JavaScript frontend running in a web browser

syntax — cannot be implemented as extensions in Grace
itself, but must be special-cased in the compiler. On the other
hand, Grace’s multi-part method names and operator syntax
supports significant flexibility and extensibility, including the
ability to define basic control-flow constructs and providing
support for parser combinators in the base language. Thus,
we have not felt a compelling need to introduce macros as a
language construct. In this context, we note that Scala is also
introducing support for macros [9].

Grace shares features of both class-based languages and
prototype-based languages [26]. On the one hand, like class-
based languages, Grace has an explicit class construct; more-
over, Grace’s object literals behave much more like classes
than prototypes. In Self or Scala, each “evaluation” of an
object literal returns the same object, whereas in Grace, as in
O’Caml, and Emerald, each evaluation returns a distinct ob-
ject (assuming the objects are designed and initialized so they
they are distinguishable) [22, 32]. On the other hand, Grace
objects can be created without writing any class declarations,
and each Grace object conceptually stands alone without de-
pending on a class. This is much closer to the prototype-based
style.

Finally, as far as we can tell, Grace seems to be the first
purely object-oriented, structurally typed language that has
been designed since the late 1980s (since Trellis/OWL in
fact [29]). O’CAML and Modula-3 (along with Java and
its vast legacy) are what used to be called“hybrid” object-
oriented languages, and while Eiffel is pure, it is nominally
(and covariantly) typed with a subtle multiple-inheritance
scheme [10, 22, 24]. In some respects, Grace feels to us like
the “road not taken”: connected at least as much to Pascal,
Emerald, Self, or Eiffel, as it is to Java, C], or Scala. In many
ways, much of Grace could well have been designed back
in 1990 — or perhaps in 1995 for gradual typing. That it
has taken until now says more about the many factors that
influence programming language choice than says about any
technical features of the language design.

8. Conclusion
The main aspects of Grace’s design have been pounded out
between three academic researchers with very different views
on both language design and teaching programming, so few
decisions were uncontroversial. We have been inspired by

Grace Onward! paper 11 2012/5/16

Barry Commoner’s Five Laws of Ecology, the first four of
which appeared in his book “The Closing Circle” [11]:

Everything is connected to everything else.
Everything must go somewhere.
Nature knows best.
There is no such thing as a free lunch.
If you don’t put something in the ecology, it’s not there.

The fifth law, which was added later, seems most obviously
appropriate to language design: “If you don’t put something
in the language, it’s not there”. As with pollutants, once a
feature is in the language, it’s close to impossible to get rid
of it, so we have tried to reduce the features of Grace to the
bare minimum, knowing that it will be much easier to add a
feature later than it will be to remove one.

One example of this is pattern matching, a powerful fa-
cility from ML and Haskell that has been popularized by
hybrid languages like Scala. Some would argue that pattern
matching is fundamentally at odds with object-oriented pro-
gramming, since it interrogates the structure of an object
rather than requesting that the object perform some method.

However, “Everything is connected to everything else”.
Once we admit types to the language, and decide that types do
not automatically include a null value, we are led to include
variant types, as described in Section 4. Pattern matching is
certainly not the only way of handling variants, but it is a way
that at least some instructors will wish to teach, especially
as it is included in the strawman ACM curriculum [12].
Even those who feel that a pure-object-oriented approach
is superior might want to compare and contrast the two
approaches. Moreover, most of pattern matching can be
defined in library objects, so, strictly, it doesn’t rank as a
language feature at all. However, to get the full benefit of
pattern matching, patterns need to bind variables, and that
cannot be done in a library. It is still not clear to us how to
resolve these conflicting forces.

It has also become apparent that “There is no such thing
as a free lunch”. Every feature that we include in Grace adds
a cost, in terms of complexity of the language description
and the teaching sequence. There is also an implementation
cost, although we have not let that become a major concern.
The design of Grace’s sublanguages is incomplete. While
it is certainly true that “everything must go somewhere”,
instructors will have different views on where that should
be, since they will wish to introduce features in different
sequences, or perhaps not at all.

We are still searching for an analog for Commoner’s “Na-
ture Knows Best”. We are certainly not under the illusion that
the self-appointed Grace design committee knows best. For
this reason we invite comments, criticism and participation.
Go to http://www.gracelang.org to find out how to get in-
volved. Perhaps the analogous law of language design will
turn out to be “Experience is the best teacher”. Whatever
we choose as good ingredients for a teaching language, only

experience using Grace to teach programming will tell us
whether we have chosen wisely.

References
[1] D. Anderson. The Clockwise/Spiral Rule. Posted to comp.

lang.c, May 1994. http://c-faq.com/decl/spiral.

anderson.html.

[2] H. G. Baker. Equal rights for functional objects or, the more
things change, the more they are the same. OOPS Messenger,
4(4), Oct. 1993.

[3] G. M. Bierman, E. Meijer, and M. Torgersen. Lost in trans-
lation: formalizing proposed extensions to C]. In OOPSLA,
2007.

[4] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structure
in the Emerald system. In Proceedings of the First ACM
Conf. on Object-Oriented Programming Systems, Languages
and Applications, volume 21, pages 78–86, Portland, Oregon,
October 1986. ACM. Published as SIGPLAN Notices 21(11),
November 1986.

[5] A. P. Black, K. B. Bruce, and J. Noble. Panel: designing the
next educational programming language. In SPLASH/OOPSLA
Companion, pages 201–204. ACM, 2010.

[6] A. Borning. Classes versus prototypes in object-oriented
languages. In FJCC, pages 36–40. IEEE Computer Society,
1986.

[7] G. Bracha. On the interaction of method lookup and scope
with inheritance and nesting. In 3rd ECOOP Workshop on
Dynamic Languages and Applications (DYLA), 2007.

[8] G. Bracha. Newspeak programming language draft specifica-
tion version 0.0. Technical report, Ministry of Truth, 2009.

[9] E. Burmako, M. Odersky, C. Vogt, S. Zeiger, and A. Moors.
Scala macros. scalamacros.org, Apr. 2012.

[10] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow,
and G. Nelson. Modula-3 reference manual. Technical Report
Research Report 53, DEC Systems Research Center (SRC),
1995.

[11] B. Commoner. The closing circle: nature, man, and technology.
Knopf, New York, NY, 1971.

[12] CS2013 Steering Committee. Computer Science Curricula
2013 (Strawman Draft), Feb. 2012.

[13] O.-J. Dahl. The roots of object-oriented programming: the
Simula language. In M. Broy and E. Denert, editors, Software
Pioneers: Contributions to Software Engineering, pages 79–90.
Springer-Verlag, Berlin, Heidelberg, 2002.

[14] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi.
How To Design Programs. MIT Press, 2001.

[15] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishna-
murthi, P. Steckler, and M. Felleisen. DrScheme: a program-
ming environment for Scheme. J. Funct. Program., 12(2):159–
182, 2002.

[16] A. Goldberg and D. Robson. Smalltalk–80: The language and
its implementation. Addison Wesley, 1983.

[17] R. Holt and T. West. OBJECT ORIENTED TURING REF-
ERENCE MANUAL seventh edition version 1.0. Technical
report, Holt Software Associates Inc., 1999.

Grace Onward! paper 12 2012/5/16

http://www.gracelang.org

[18] M. Homer. Minigrace to JavaScript compiler. http://ecs.vuw.
ac.nz/∼mwh/minigrace/js/, 2011. Most recently accessed
April 2012.

[19] A. Igarashi and H. Nagira. Union types for object-oriented
programming. In Proceedings of the 2006 ACM symposium
on Applied computing, SAC ’06, pages 1435–1441, New York,
NY, USA, 2006. ACM.

[20] M. Kölling, B. Koch, and J. Rosenberg. Requirements for a first
year object-oriented teaching language. In ACM Conference
on Computer Science Education (SIGCSE), 1995.

[21] M. Kölling and J. Rosenberg. Blue — a language for teaching
object-oriented programming. In ACM Conference on Com-
puter Science Education (SIGCSE), 1996.

[22] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and
J. Vouillon. The OCaml system release 3.12 documentation
and user’s manual, July 2011.

[23] B. Meyer. Object-oriented Software Construction. Prentice
Hall, 1988.

[24] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[25] B. Meyer. Touch of Class: Learning to Program Well with
Object and Contracts. Springer-Verlag, 2009.

[26] J. Noble, A. Taivalsaari, and I. Moore, editors. Prototype-Based
Programming: Concepts, Languages, Applications. Springer-
Verlag, 1997.

[27] K. Nygaard and O.-J. Dahl. The development of the SIMULA
languages. In R. L. Wexelblat, editor, History of programming
languages I, chapter IX, pages 439–480. ACM, New York, NY,
USA, 1981.

[28] M. Odersky and M. Zenger. Scalable component abstractions.
In OOPSLA, 2005.

[29] C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt.
An introduction to Trellis/OWL. In OOPSLA, 1986.

[30] A. Taivalsaari. Delegation versus concatenation, or cloning is
inheritance too. SIGPLAN OOPS Mess., 6:20–49, July 1995.

[31] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. In PLDI, 2011.

[32] D. Ungar and R. B. Smith. SELF: the Power of Simplicity.
Lisp and Symbolic Computation, 4(3), June 1991.

Grace Onward! paper 13 2012/5/16

http://ecs.vuw.ac.nz/~mwh/minigrace/js/
http://ecs.vuw.ac.nz/~mwh/minigrace/js/

	Introduction
	Grace in a Nutshell
	Constructing Objects
	The Problem
	Object Construction in Grace
	Adding Inheritance

	Type Checking
	Language Levels
	Implementation
	Discussion and Related Work
	Conclusion

