
 1

Breaking the Barriers to Successful Refactoring
Emerson Murphy-Hill and Andrew P. Black

Portland State University, P.O. Box 751
Portland, OR 97201-0751

{emerson,black}@cs.pdx.edu

ABSTRACT

Refactoring, the process of changing the structure of code without

changing its behavior, can be semi-automated with the help of

tools. However, many tools do a poor job of communicating

errors triggered by the refactoring process. This poor

communication causes programmers to refactor slowly,

conservatively, and incorrectly. In this paper we demonstrate

problems with current refactoring tools, characterize three new

tools to assist in refactoring, and describe a user study that

compares these new tools against existing tools. The results of the

study show that the speed, accuracy, and user satisfaction can be

significantly increased The new tools have inspired a set of

usability recommendations that we hope will help build a new

generation of programmer-friendly refactoring tools.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques;

D.2.6 [Software Engineering]: Programming Environments.

General Terms
Design, Reliability, Human Factors

Keywords
Refactoring, tools, usability, environments

1. INTRODUCTION
Refactoring is the process of changing the structure of code

without changing the way the program behaves [7]. Many

activities fall under the heading of refactoring: changing variable

names, moving methods or fields up and down a class hierarchy,

substituting one algorithm for another, and removing dead code,

to name a few. Refactoring is important to software development

because it aids in program understanding and makes it easier to

add new features; thus, refactoring helps programmers to adapt

their software to changing requirements.

But performing a refactoring is not trivial, even for seemingly

simple refactorings such as changing variable names. After

changing a variable name, you must be sure to change every

reference to the new name, but not when the name appears in

string literals, in the middle of other variable names, or in

comments (unless the comment directly refers to the variable,

except when in casual use), and not when the name is shadowed

by a variable of the same name in a subclass, or by a local variable

of the same name. Moreover, even apparently simple refactoring

operations have complex rules, or preconditions, that must be

satisfied before we can be sure that a refactoring is safe to apply.

For several refactorings, Opdyke showed that program behavior is

preserved when certain preconditions are satisfied [17]. Later,

Roberts and colleagues developed the first tool that automatically

checks preconditions before refactoring [20], automating this

error-prone and time-consuming task. Roberts’ thesis describes

his experience building and using the Refactoring Browser, the

original refactoring tool [19]. Although Roberts extolled the

virtues of using refactoring tools, he noted that the original tool

was so unpopular that the designers did not even use it

themselves. Upon reflection, Roberts noted three usability

recommendations that every good refactoring tool should have:

speed, undo support, and tight IDE integration.

Most tools appear to have implemented Roberts’ usability

recommendations; our review of 16 refactoring tools shows very

little variation from the Refactoring Browser’s user interface.

However, despite their prevalence in modern development

environments, programmers do not use refactoring tools as often

as they should [15]. Why not? What usability problems do

modern refactoring tools have that we can observe empirically?

In addition to Roberts’ three usability recommendations, what

further guidelines will help improve the adoption and usage rates

of refactoring tools? To answer these questions, we decided to

start by studying a non-trivial refactoring.

1.1 Extract Method Refactoring
One refactoring that has enjoyed widespread tool support is called

Extract Method [9]. A tool that performs the Extract Method

refactoring essentially takes a sequence of statements, copies them

into a new method, and then replaces the original statements with

a call to the new method. This refactoring is useful when

duplicated code should be factored out and when a method

contains code segments that are conceptually separate.

In his influential book on refactoring, Fowler reports that Extract

Method is one of the most common refactorings that he

performs_[7]. Later, in the article “Crossing Refactoring’s

Rubicon,” Fowler says that Extract Method is “a key refactoring.

If you can do Extract Method, it probably means you can go on

[to] more refactorings” [6]. Because the Eclipse environment [4]

implements Extract Method and because little user-interface

variation exists between refactoring tools, we reason that Eclipse

is a representative, non-trivial refactoring tool worthy of study.

While Extract Method tools have become widespread, the human

interface to such tools remains stagnant. To use refactoring tool,

the programmer first selects code to be refactored, then configures

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICSE’08, May 10–18, 2008, Leipzig, Germany.

Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

 2

boolean canRideToday(){

 boolean tiresOk = !tires.areFlat();__

 boolean spouseOk = !spouse.isUpset();

 return tiresOk && spouseOk;

}

Figure 1. A code selection (above, in grey) that a

tool cannot extract into a new method.

0. The selected code must be a list of statements.

1. Within the selection, there must be no

assignments to variables that might be used

later in the flow of execution. For Java, this

can be relaxed to allow assignment to one

variable, the value of which can be returned

from the new method.

2. Within the selection, there must be no

conditional returns. In other words, the code in

the selection must either always return, or

always flow beginning to end.

3. Within the selection, there must be no branches

to code outside of the selection. For Java, this

means no break or continue statements, unless

the selection also contains their corresponding

targets.

Figure 2. Preconditions to the Extract Method

refactoring, based on Opdyke’s preconditions [17].

We have omitted preconditions that were not

encountered during the refactoring exercise.

the refactoring via a “refactoring wizard” or dialog box, then

presses “OK” to execute the refactoring. The browser then

presents the user with a generic textual error message if there is a

problem. Figure 1 displays an example of such an error message

in Eclipse. In this paper we demonstrate that user-interface

changes to refactoring tools can both reduce the number of errors

encountered by programmers and improve the programmers’

ability to understand the remaining errors.

1.2 An Formative Study in Refactoring
In our experience, error messages emitted by existing tools’ are

non-specific and unhelpful in diagnosing problems. We decided

to undertake a formative study to determine how often these

messages arise in practice and whether other programmers also

find them unhelpful.

We observed 11 programmers perform a number of Extract

Method refactorings. Six of the programmers were Ph.D. students

and two were professors from Portland State University; three

were commercial software developers.

We asked the participants to use the Eclipse Extract Method

Wizard to refactor parts of several large, open-source projects:

• Azureus, a peer-to-peer file-sharing client [3];

• GanttProject, a project scheduling application [22];

• JasperReports, a report generation library [10];

• Jython, a Java implementation of the Python programming

language [9];

• The Java 1.4.2 libraries [21].

We picked these projects because of their size and maturity, not

because they were particularly in need of refactoring.

Programmers were free to refactor whatever code they thought

necessary. To give some direction, the programmers were

allowed to use a tool to help find long methods, which are usually

good candidates for refactoring. However, the programmers

decided on which projects to run the long-method tool, and which

candidates to refactor. Each session with a programmer was

limited to 30 minutes, and programmers successfully extracted

between 2 and 16 methods during that time.

The study led to some interesting observations about how often

programmers can perform Extract Method successfully:

• In all, 9 out of 11 programmers experienced at least one error

message while trying to extract code. The two exceptions

performed some of the fewest extractions in the group, so

were among the least likely to encounter errors.

Furthermore, these two exceptions were some of the most

experienced programmers in the group, and seemed to avoid

code that might possibly generate error messages.

• Some programmers experienced many more error messages

than others. One programmer attempted to extract 34

methods and encountered errors during 23 of these attempts.

• Error messages regarding syntactic selection occurred about

as frequently as any other type of error message (violating

precondition 0, Figure 2). In other words, programmers

frequently had problems selecting a desired piece of code.

This was usually due to unusual formatting in the source

code or the programmer trying to select statements that

required the editor to scroll.

• The remaining error messages concerned multiple

assignments and control flow (violations of preconditions 1

through 3, Figure 2).

• The tool reported only one precondition violation, even if

multiple violations existed.

These observations suggest that, while trying to perform Extract

Method, programmers fairly frequently encounter a variety of

errors arising from violated refactoring preconditions. Based on

our observations of programmers struggling with refactoring error

messages, we conjecture as follows:

 3

• Error messages were insufficiently descriptive. Especially

among programmers who had not used refactoring tools

previously, a new error message may not be understandable.

When asked to explain what an error message was saying and

where the problem was located, several programmers gave

explanations unrelated to the problem.

• Error messages were misinterpreted. The errors were all

presented as graphically-identical text boxes with identically

formatted text. At times, programmers interpreted one error

message as an unrelated error message because the errors

appeared identical at a quick glance. The clarity of the

message text is irrelevant when the programmer does not

take the time to read it.

• Error messages discouraged programmers from refactoring at

all. For instance, if the tool said that a method could not be

extracted because there were multiple assignments to local

variables (Figure 1), the next time a programmer came across

any assignments to local variables, the programmer didn’t try

to refactor, even if no preconditions were violated.

This study revealed two types of improvements to Extract Method

tools. First, to prevent a large number of errors in the first place,

programmers need support in making a valid selection. Second,

to help programmers successfully recover from violated

preconditions, programmers need expressive, distinguishable, and

understandable feedback that conveys the meaning of

precondition violations.

2. NEW TOOLS FOR EXTRACT METHOD
In the following section, we describe three tools1 that we have

built for the Eclipse environment that address the problems

demonstrated in the formative study. Although built for the Java

programming language, the techniques embodied in these tools

apply to other object-oriented and imperative programming

languages.

2.1 Selection Assist
The Selection Assist tool helps programmers in selecting whole

statements by providing a visual cue of the textual extent of a

program statement. The programmer begins by placing the cursor

in the white space in front of a statement. A green highlight is

then displayed on top of the text, from the beginning to the end of

a statement (Figure 3). Using the green highlight as a guide, a

programmer can then select the statement normally with the

mouse or keyboard.

This tool bears similarities to tools found in other development

environments. Dr. Scheme, for example, highlights the area

between two parentheses in a similar manner [5], although that

highlighting disappears whenever cursor selection begins, making

it inappropriate as a selection cue. Vi and other text editors have

mechanisms for bracket matching [11], but brackets do not

surround most statements, so these tools are not always useful for

selecting statements. Some environments, such as Eclipse, have

special keyboard commands to select statements, but during this

project, nearly every programmer under observation seemed to

1 The tools and a short screencast are available at:

http://www.multiview.cs.pdx.edu/refactoring.

prefer the mouse. Selection Assist allows the programmer to use

either the mouse or the keyboard for selection tasks,

accommodating both varieties of programmer.

2.2 Box View
We designed a second tool to assist with selection, called Box

View, that displays nested statements as a series of nested boxes.

Box View is a window shown adjacent to program text that

displays a uniform representation of the code (Figure 4). At the

top level, Box View represents a class as a box with labeled

method boxes inside of it. Inside of each method are a number of

nested boxes, each representing a nested statement. When the

programmer selects a part of a statement in the editor, the

corresponding box is colored orange. When the programmer

selects a whole statement in the editor, the corresponding box is

colored light blue. When the programmer selects a box, Box

View selects the corresponding program statement in the program

code.

Like Selection Assist, programmers can operate Box View using

the mouse or keyboard. Using the mouse, the programmer can

click on boxes to select code, or select code and glance at the

boxes to check that the selection includes only full statements

(contiguous light blue). Using the keyboard, the programmer can

select sibling, parent and child statements.

Box View scales fairly well as the level of statement nesting

increases. In methods with less than 10 levels of nesting, Box

View requires no more screen real estate than the standard Eclipse

Outline View. In more extreme cases, Box View can be expanded

horizontally to enable the selection of more deeply nested code.

Box View was inspired by a similar tool in Adobe GoLive [1] that

displays an outline of an HTML table.

Figure 3. The Selection Assist tool in the Eclipse

environment, shown covering the entire if statement, in

green. The user’s selection is partially overlaid, darker.

Figure 4. Box View tool in the Eclipse environment, to

the left of the program code.

 4

Figure 6. Refactoring Annotations display an

instance of a violation of refactoring precondition 1

(goOnVacation), precondition 2 (curbHop), and

precondition 3 (goForRide), described in Figure 2.

2.3 Refactoring Annotations
Refactoring Annotations communicate to the programmer control-

and data-flow for the Extract Method refactoring. Annotations

overlay program text to express information about a specific

extraction (Figure 5). Each variable is assigned a distinct color,

and each occurrence is highlighted. Across the top of the

selection an arrow points to the first use of a variable that will

have to be passed as an argument into the extracted method.

Across the bottom, an arrow points from the last assignment of a

variable that will have to be returned. L-values have black boxes

around them, while r-values do not. An arrow to the left of the

selection simply indicates that control flows from beginning to

end.

These annotations are intended to be most useful when

preconditions are violated. When the selection contains

assignments to more than one variable, multiple arrows are drawn

from the bottom showing multiple return values (Figure 6, top).

When a selection contains a conditional return, an arrow is drawn

from the return statement to the left, crossing the beginning-to-

end arrow (Figure 6, middle). When the selection contains a

branch statement, a line is drawn from the branch statement to its

corresponding target (Figure 6, bottom). In each case, Xs are

displayed over the arrows, indicating the location of the offending

code.

When code does not meet a precondition, Refactoring

Annotations are intended to give the programmer an idea of how

to correct the violation. Although refactoring while violating a

precondition may change program behavior, often the

programmer can enlarge or reduce the selection to allow the

extraction of a method. Other solutions include changing

program logic to eliminate break and continue statements,

another kind of refactoring.

Refactoring Annotations scale well as the amount of code to be

extracted increases. For code blocks of tens or hundreds of lines,

only a few variables are typically passed in or returned, and only

those variables are colored. In the case when a piece of code uses

or assigns many variables, the annotations become visually

complex. However, we reason that this is desirable: the more

variables that are passed in or returned, the less cohesive the

extracted method. Thus, we feel that code with visually complex

Refactoring Annotations should probably not have Extract

Method performed on it. As one developer has commented,

Refactoring Annotations visualize a useful complexity metric.

Refactoring Annotations are intended to assist the programmer in

finding these solutions in two ways. Firstly, because Refactoring

Annotations can indicate multiple precondition violations

simultaneously, the annotations give the programmer an idea of

the severity of the problem. Correcting for a conditional return

alone will be easier than correcting for a conditional return, and a

branch, and multiple assignments. Likewise, correcting two

assignments is likely easier than correcting six assignments.

Secondly, Refactoring Annotations give specific, spatial cues to

problem points to help the programmer diagnose the violated

preconditions accurately.

Figure 5. Refactoring Annotations overlaid on

program code. The programmer has selected two

lines (between the dotted lines) to extract. Here,

Refactoring Annotations show variable use: front

and rear will be parameters, and trued will be

returned.

 5

Table 1. Total number of correctly selected and mis-selected if statements and mean correct selection time, with time

normalized to mouse/keyboard selection time, over all subjects for each tool.

 Total Mis-Selected

If Statements

Total Correctly

Selected If Statements

 Mean

Selection Time

Selection time as Percentage of

Mouse/Keyboard Selection Time

Mouse/Keyboard 37 303 10.2 seconds 100%

Selection Assist 6 355 5.5 seconds 54%

Box View 2 357 7.8 seconds 76%

Refactoring Annotations were inspired by a variety of prior ideas.

Our control flow annotations are visually similar to Control

Structure Diagrams [8]. However, unlike Control Structure

Diagrams, Refactoring Annotations depend on the programmer’s

selection, and include less noise. Variable highlighting is much

like the highlighting tool in Eclipse, where the programmer can

select an occurrence of a variable, and every other occurrence is

highlighted. Unlike Eclipse’s variable highlighter, Refactoring

Annotations distinguish between variables using different colors.

Furthermore, variables are highlighted automatically, when they

are used both inside and outside of the selection. In Refactoring

Annotations, the arrows drawn on parameters and return values

are similar to the arrows drawn in the Dr. Scheme

environment_[5], which draws arrows between a variable

declaration and each variable reference. Unlike the arrows in Dr.

Scheme, Refactoring Annotations draw only one arrow per

parameter and per return value, as needed.

3. USER STUDY
Having demonstrated that there are usability problems with

Extract Method tools and having proposed new tools as solutions,

we conducted a study that has helped to ascertain whether the new

tools overcome these usability problems. The study has two parts.

In the first part, programmers used the mouse and keyboard,

Selection Assist, and Box View to select program statements. In

the second part, programmers used the standard Eclipse Extract

Method Wizard and Refactoring Annotations to identify problems

in a selection that violated Extract Method preconditions. In both

parts, we evaluated their responses for speed and correctness.

3.1 Human Subjects
We drew subjects from Professor Andrew Black’s object-oriented

programming class. Professor Black gave every student the

option of either participating in the experiment or reading and

summarizing two papers about refactoring. In all, 16 out of 18

students elected to participate. Most students had around 5 years

of programming experience and three had about 20 years.

About half the students typically used integrated development

environments such as Eclipse, while the other half typically used

editors such as vi [11]. All students were at least somewhat

familiar with the practice of refactoring.

3.2 Experiment Design
The experiments were performed over the period of a week, and

lasted between ½ and 1½ hours per subject. The subjects first

used three selection tools: mouse and keyboard, Selection Assist,

and Box View (the “selection experiment”), then later the Eclipse

Extract Method Wizard and Refactoring Annotations (the

“precondition experiment”). For the selection experiment,

subjects were randomly assigned to one of five blocks; a different

random code presentation and tool usage order was used for each

block. For the precondition experiment, subjects were randomly

assigned to one of two blocks; a different random code

presentation order was used for each block. In both experiments,

we selected code from the open source projects described in

Section 1.2. Each subject used every tool.

When a subject began the selection experiment, the test

administrator showed her how to use one of the three selection

tools, depending on which block she was assigned to. The

administrator demonstrated the tool for about a minute, told the

subject that her task was to select all if statements in a method,

and allowed her to practice the task using the selection tool until

she was satisfied that she could complete the task (usually less

than 3 minutes). The subject then was told to perform the task in

3 different methods from different classes, about two dozen if

statements total. This experiment was then repeated for the two

other tools on two different code sets.

After the selection experiment was complete, the subject

performed the precondition experiment. The test administrator

first showed the programmer how the Extract Method refactoring

works using the standard Eclipse refactoring tool, the Eclipse

Extract Method Wizard. The administrator then demonstrated and

explained each error message produced by the Eclipse Wizard for

preconditions 1 through 3 in Figure 2, lasting about 5 minutes.

The subject was then told her task was to identify each and every

violated precondition in a given code selection, assisted by the

tool’s diagnostic error message. The subject was then allowed to

practice using the tool until she was satisfied that she could

complete the task (usually less than 5 minutes). The subject was

then told to perform the task on 4 different Extract Method

candidates from different classes. The experiment was then

repeated for Refactoring Annotations on a different code base.

4. RESULTS OF THE STUDY
Here we present the results of the study, including measurements

of the accuracy in completing the tasks, the time taken to

complete a task, and subjects’ perceptions of the tools2.

4.1 Measured Results
Table 1 shows the combined number of if statements that

subjects selected correctly and incorrectly for each tool. Table 1

also shows the mean time in seconds to select an if statement

2 Preliminary results were presented in an extended abstract at

the 2007 ACM Student Research Competition [14].

 6

across all participants, and the time normalized as a percentage of

the selection time for the mouse and keyboard.

From Table 1, we can see that there were far more mis-selections

using the mouse and keyboard than using Selection Assist, and

that Box View had the fewest mis-selections. Table 1 also

indicates that Selection Assist improved selection speed by 46%,

and that Box View improved selection speed by 24%. Both speed

increases are statistically significant (p.<.0.001, using a t-test with

a logarithmic transform to normalize long selection-time outliers).

The top graph in Figure 7 shows individual subjects’ mean times

for selecting if statements using the mouse and keyboard against

Selection Assist. Here we can see that all subjects but one

(labeled ‘a’) were faster using the Selection Assist than using the

mouse and keyboard (subjects below the dotted line). We can

also see that all subjects but one (labeled ‘b’) were more error

prone using the mouse and keyboard than with Selection Assist.

The difference in error-rate was statistically significant (p.<.0.01,

using a Wilcoxon signed ranks test).

The bottom graph in Figure 7 compares the mouse and keyboard

against Box View. Here we see that 11 of the 16 subjects are

faster using Box View than using the mouse and keyboard. We

can also see that all subjects except one (labeled ‘c’) are less error

prone with Box View. The error-rate difference was statistically

significant (p.<.0.01, using a Wilcoxon signed ranks test).

Table 2 shows two kinds of problems that subjects encountered

during the Extract Method task. “Missed Violation” means that a

subject failed to recognize that one or more preconditions were

being violated. “Irrelevant Code” means that a subject marked

some piece of code that was irrelevant to the violated

precondition, such as marking a break statement when the

problem was a conditional return.

Table 2 tells us that programmers made fewer mistakes with

Refactoring Annotations than with the Eclipse Wizard. Using

Refactoring Annotations, subjects were much more likely to

recognize all precondition violations and identify the assigned

variable in the selection. Subjects were also much less likely to

misidentify the precondition violations. The difference in error-

rate was statistically significant (p.<.0.01, using a Wilcoxon

signed ranks test).

Table 2 also shows the mean time to find all precondition

violations correctly, across all participants. On average, subjects

recognized precondition violations more than three times faster

using Refactoring Annotations than using the Eclipse Wizard. The

recognition time improvement was statistically significant

(p.<.0.001 using a t-test with a logarithmic transform to remedy

long recognition time outliers).

Figure 8 shows the mean time to identify all precondition

violations correctly for each tool and each user. Note that we

omitted two participants from the plot, because they did not

correctly identify precondition violations for any code using the

Eclipse Wizard. Again, note that the dotted line represents equal

mean speed using either tool. In Figure 8, we notice that all users

are faster with Refactoring Annotations. We also notice that most

users were more accurate using Refactoring Annotations.

In all, 45 out of 64 uses of Refactoring Annotations helped the

subjects to mark every precondition violation. Only 26 out of 64

uses of the Eclipse Wizard allowed the subjects to identify every

precondition violation.

3

5

7

9

11

13

15

17

3 5 7 9 11 13 15 17

Mean Selection time (seconds) with Mouse/Keyboard

M
e
a
n
 S
e
le
c
ti
o
n
 t
im
e
 (
s
e
c
o
n
d
s
)
w
it
h
 B
o
x
 V
ie
w

Figure 7. Mean time in seconds to select if statements

using the mouse and keyboard versus Selection Assist

(top) and Box View (bottom). Each subject is represented

as a whole or partial X. The distance between the bottom

legs represents the number of mis-selections using the

mouse and keyboard. The distance between the top arms

represents the number of mis-selections using Selection

Assist (top) or Box View (bottom). Points without arms or

legs represent subjects who did not make mistakes with

either tool.

3

5

7

9

11

13

15

17

3 5 7 9 11 13 15 17

Mean Selection time (seconds) with Mouse/Keyboard
M
e
a
n
 S
e
le
c
ti
o
n
 t
im
e
 (
s
e
c
o
n
d
s
)
w
it
h
 S
e
le
c
ti
o
n
 A
s
s
is
t

Example: Participant A

Performance with Keyboard/Mouse

 Mean Selection Time: 13.8 seconds

 Mis-selections: 1

Performance with Selection Assist

 Mean Selection Time: 6 seconds

 Mis-selections: 0

 c

 a

 b

 7

Overall, compared against traditional tools, subjects performed

better in terms of speed and accuracy for all three tools that we

have created: Selection Assist, Box View, and Refactoring

Annotations.

4.2 Questionnaire Results
We administered a post-test questionnaire that allowed the

subjects to express their preferences for the five tools they tried.

The survey itself and a summary of the responses can be found in

our technical report [13]. Significance levels are reported with

p.<.0.01, using a Wilcoxon signed ranks test.

Most users did not find the keyboard or mouse alone helpful in

selecting if statements, and rated the mouse and keyboard

significantly lower than either Box View or Selection Assist. The

difference preferences for both Box View and Selection Assist

over the keyboard and mouse were statistically significant. All

users were either neutral or positive about the helpfulness of Box

View, but were divided about whether they were likely to use it

again. Selection Assist scored the highest of the selection tools,

with 15 of 16 users reporting that it was helpful and they were

likely to use it again.

Subjects were unanimously positive on the helpfulness of

Refactoring Annotations and all subjects said they were likely to

use them again, while the reviews of standard Eclipse Extract

Method Wizard were mixed. Differences in helpfulness and

likeliness to use again were both statistically significant.

Concerning the standard Eclipse Extract Method Wizard, subjects

reported that they “still have to find out what the problem is” and

are “confused about the error message[s].” In reference to the

error message the Eclipse tool produced, one subject quipped,

“who reads alert boxes?”

Overall, the subjects’ responses showed that they found the

Selection Assist, Box View, and Refactoring Annotations superior

to their traditional counterparts for the tasks given to them. More

importantly, the responses also showed that the subjects felt that

the new tools would be helpful outside of the context of the study.

4.3 Limitations of Findings
Although the quantitative results discussed in this section are

encouraging, several factors must be considered in interpreting the

results.

In the selection experiment, each subject used every tool on each

code set. Unfortunately, a flaw in the design of our study caused

the distribution of tools to code sets to be uneven. In the most

extreme instance, one code set was traversed only twice with the

mouse and keyboard while another code set was traversed eight

times using the Selection Assist. However, because each code set

was chosen to be of roughly equal content and difficulty, we do

not believe this biased the results in favor of any particular tool.

In the precondition diagnosis experiment, every subject first used

the Eclipse Extract Method Wizard then used Refactoring

Annotations. We originally reasoned that the fixed order was

necessary to educate programmers about how Extract Method is

performed because our tool did not transform the code itself.

Unfortunately, the fixed order may have biased the results to favor

Refactoring Annotations due to a learning effect. In hindsight, we

should have made more of an effort to vary the tool usage order.

However, we believe that the magnitude of the differences of

errors and speed, coupled with the strong subject preference,

suggest that Refactoring Annotations are preferable to refactoring

error dialog boxes.

Table 2. At left, number and type of mistakes when finding problems during the Extract Method refactoring over all subjects,

for each tool. At right, the mean time to correctly identify all violated preconditions, in seconds. Smaller numbers indicate

better performance.

 Missed Violation Irrelevant Code Mean Identification Time

Eclipse Wizard 11 28 164 seconds

Refactoring Annotations 1 6 46 seconds

Figure 8. For each subject, mean time to identify precondition violations correctly using the Eclipse Wizard versus

Refactoring Annotations. Each subject is represented as an X, where the distance between the bottom legs represents

the number of imperfect identifications using the Eclipse Wizard and the distance between the top arms represents the

number of imperfect identifications using Refactoring Annotations.

0

100

0 100 200 300 400 500

Violation Indentification Time (seconds) w ith Eclipse Wizard

V
io
la
ti
o
n
 I
n
d
e
n
ti
fi
c
a
ti
o
n
 T
im
e

(s
e
c
o
n
d
s
)
w
it
h
 R
e
fa
c
to
ri
n
g

A
n
n
o
ta
ti
o
n
s

`

 8

In both experiments, we tested the core of selection and

precondition recognition tasks, but one must consider their

context in a real-world programming situation. For example,

while Box View is more accurate than Selection Assist, Box View

takes up more screen real estate and requires switching between

the editor and a separate view, which may be disorienting. In

short, each tool has usability tradeoffs that are not visible in these

results.

Finally, the code samples selected in these experiments may not

be representative. We tried to mitigate this by choosing code

from large, mature software projects. Likewise, the programmers

in this experiment may not be representative, although the

subjects reported a wide variety of programming experience.

5. DISCUSSION
During this study, we have observed that new tools can improve

programmer accuracy and speed in refactoring.

An effective statement selection tool is critical to a successful

Extract Method refactoring. Programmers can use both Box View

and Selection Assist to improve code selection. Box View

appears to be preferable when the probability of mis-selection is

high, such as when statements span several lines or are formatted

irregularly. Selection Assist appears to be preferable when a more

lightweight mechanism is required and statements are less than a

few lines long.

Refactoring Annotations are preferable to an error-message-based

approach for showing precondition violations during the Extract

Method refactoring. The results of this study indicate that

Refactoring Annotations communicate the precondition violations

effectively. When a programmer has a better understanding of

refactoring problems, we believe the programmer is likely to be

able to correct the problems and successfully perform the

refactoring.

5.1 Recommendations for Future Tools
The tools described in this paper are demonstrably faster, more

accurate, and more satisfying to use. However, they represent

only a small contribution; they are improvements to only one out

of dozens of refactoring tools. Nevertheless, we reason that the

interaction techniques embodied in these tools are applicable to

all refactoring tools. Every refactoring tool requires the

programmer to select a piece of code to be refactored and every

refactoring tool requires the programmer to interpret the meaning

of a violated precondition. By studying how programmers use

existing refactoring tools and the new tools that we have

described in this paper, we have deduced a number of desirable

general properties for all refactoring tools.

Tools that assist in the selection of code should:

• Be lightweight: users can normally select code quickly and

efficiently, and any tool to assist selection should not add

overhead to slow down the common case.

• Help the programmer overcome unfamiliar or unusual code

formatting.

• Allow the programmer to select code in a manner specific to

the task they are performing. While bracket matching can be

helpful, bracketed statements are not the only meaningful

program construct that a programmer needs to select.

Tools that display violations of refactoring preconditions should:

• Be lightweight: the full, round-trip time to complete a tool-

assisted refactoring should not take longer than a manual

refactoring.

• Indicate the location(s) of precondition violations. A tool

should tell the programmer what it just discovered, rather

than needing “to basically compile the whole snippet in my

head,” as one Eclipse bug reporter complained regarding an

Extract Method error message [2].

• Show all violated preconditions at once. This helps the

programmer in assessing the severity of the violations.

• Help programmers distinguish precondition violations

(showstoppers) from warnings and advisories. Programmers

should not have to wonder whether there is a problem with

the refactoring.

• Give some indication of the amount of work required to fix

the problem. The programmer should be able to tell whether

a violation means that the code can be refactored with a few

minor changes, or that the refactoring is nearly hopeless.

• Display the violation relationally, when appropriate.

Violations are often not caused at a single character position,

but arise from a number of related pieces of source code.

Relations can be represented using arrows and colors, for

example.

• Use different, distinguishable representations for different

types of violations. Programmers should not confuse one

error for another and waste time tracking down and trying to

fix a violation that does not exist.

While these recommendations may seem self-evident, they are

rarely implemented in contemporary refactoring tools.

6. RELATED WORK
Many tools provide support for the Extract Method refactoring,

but few deviate from the wizard-and-error-message interface

described in Section 1.2. However, some tools silently resolve

some precondition violations. For instance, when you try to

extract an invalid selection in Code Guide, the environment

expands the selection to a valid list of statements [15]. You may

then end up extracting more than you intended. With Xrefactory,

if you try to use Extract Method on code that would return more

than one value, the tool generates a new tuple class [23]. Again,

this tool makes strong assumptions about what the programmer

wants.

O’Connor and colleagues implement Extract Method using a

graph notation to help the programmer recognize and eliminate

code duplication [18], but they do not specify what happens when

a precondition is violated. This approach avoids selection

mistakes by presenting program structure as an abstract syntax

tree, where nodes are the only valid selections.

Mealy and colleagues [12] have compiled a list of 38 usability

guidelines for building refactoring tools. Unlike our research, the

authors’ guidelines are derived theoretically by refining existing

guidelines and using general human-computer interaction models.

While their goal is to build tools that support all of the refactoring

process, our goal is to empirically find and remedy usability

 9

deficiencies in existing refactoring tools to make them more

palatable to the end-programmer.

7. FUTURE WORK
In the future, we plan on generalizing our selection tools and

Refactoring Annotations. While we have shown that these tools

are useful for one particular refactoring, they are only worth

programmers’ time to learn if they are applicable in all

refactorings. We are currently investigating how Box View can

be made applicable to all refactorings and overlaid on code like

Selection Assist. We will also be using techniques similar to

Refactoring Annotations to communicate violations of

preconditions for other refactorings.

After generalizing our tools to other refactorings, we should be

able to cross-validate our recommendations for future tools. For

instance, it will be useful to determine what other violated

preconditions should be displayed relationally. We expect that

new recommendations will emerge as well.

We also plan to expand our recommendations by addressing other

stages of the programmers’ refactoring process. For example, we

plan on investigating how to improve the process of configuring

refactorings.

Finally, we would like to evaluate our tools in a larger case study.

Our small experiments are useful in evaluating some aspects of

our tools, but a long-term case study can help us evaluate how

programmers’ behavior changes with more usable tools. In the

long term, we hope more usable tools foster increased adoption

and use.

8. CONCLUSIONS
In this paper, we have presented three tools that help programmers

avoid selection errors and understand refactoring precondition

violations.

With Selection Assist and Box View, we were able to reduce code

selection errors several fold. Likewise, with Refactoring

Annotations, we were able to improve the refactoring

precondition diagnosis by several fold. For each of our new

refactoring tools, speed and user satisfaction was significantly

increased. We were surprised to see that such simple

improvements to existing refactoring tools yielded such dramatic

usability improvements.

However, the contribution of this research is not the tools

themselves, but the qualities embodied in the tools that produce

the demonstrated benefits. Therefore, to increase the usability of

new refactoring tools, we have distilled our observations into a set

of usability recommendations. We hope that builders of future

refactoring tools will heed our recommendations and build tools

that help programmers refactor quickly, errorlessly, and

pleasurably.

9. ACKNOWLEDGMENTS
For their reviews and advice, we would like to thank Barry

Anderson, Robert Bauer, Paul Berry, Iavor Diatchki, Tom Harke,

Brian Huffman, Mark Jones, Jim Larson, Chuan-kai Lin, Ralph

London, Philip Quitslund, Suresh Singh, Tim Sheard, and

Aravind Subhash. Special thanks to participants in the user study

and our anonymous reviewers for detailed, insightful criticism.

Also, thanks to the National Science Foundation for partially

funding this research under grant CCF-0520346.

10. REFERENCES
[1] Adobe Systems Incorporated. 2007. Adobe GoLive.

http://www.adobe.com/products/golive.

[2] Andersen, T.R. 2005. “Extract Method: Error Message

Should Indicate Offending Variables.”

https://bugs.eclipse.org/bugs/show_bug.cgi?id=89942.

[3] Azureus Incorporated. 2005. Azureus.

http://azureus.sourceforge.net.

[4] The Eclipse Foundation. 2007. Eclipse. http://eclipse.org.

[5] Findler, R., Clements, J., Flatt, M., Krishnamurthi, S.,

Steckler, P., and Felleisen, M. 2002. “DrScheme: A

Programming Environment for Scheme.” Journal of

Functional Programming, vol. 12, pp. 159-182.

[6] Fowler, M. 2001. “Crossing Refactoring's Rubicon,”

http://martinfowler.com/articles/refactoringRubicon.html.

[7] Fowler, M. 1999. Refactoring: Improving the Design of

Existing Code. Addison-Wesley Longman Publishing Co.,

Inc.

[8] Hendrix, T. D., Cross, J. H., Maghsoodloo, S., and

McKinney, M. L. 2000. Do visualizations improve program

comprehensibility? experiments with control structure

diagrams for Java. In Proceedings of the Thirty-First

SIGCSE Technical Symposium on Computer Science

Education. (Austin, Texas, United States, March 07 - 12,

2000). ACM Press, New York, NY, 382-386.

[9] Hugunin, J. and Warsaw, B. 2005. Jython,

http://www.jython.org.

[10] JasperSoft Corporation. 2005. JasperReports.

http://jasperreports.sourceforge.net.

[11] Joy, W. and Horton, M. 1984. “An Introduction to Display

Editing with Vi.”

[12] Mealy, E., Carrington, D., Strooper, P., and Wyeth, P. 2007.

Improving Usability of Software Refactoring Tools. In

Proceedings of the 2007 Australian Software Engineering

Conference (April 10 - 13, 2007). ASWEC. IEEE Computer

Society, Washington, DC, 307-318.

[13] Murphy-Hill, E. 2006. Improving Refactoring with

Alternate Program Views. Research Proficiency Exam, TR-

06-086, Portland State University,

http://multiview.cs.pdx.edu/publications/rpe.pdf, Portland,

OR.

[14] Murphy-Hill, E. “Improving Usability of Refactoring Tools.”

ACM Student Research Competition.

http://www.acm.org/src/subpages/murphy-

hill/acm_src_final.html

[15] Murphy-Hill, E. and Black, A. 2007. Why don’t people use

refactoring tools? In Proceedings of the 1st Workshop on

Refactoring Tools. ECOOP ’07. TU Berlin, ISSN 1436-

9915.

[16] Omnicore Software. 2007. CodeGuide.

http://www.omnicore.com.

 10

[17] Opdyke, W. F. 1992. Refactoring Object-Oriented

Frameworks. Technical Report. UMI Order Number:

UIUCDCS-R-92-1759., University of Illinois at Urbana-

Champaign.

[18] O'Connor, A., Shonle, M., and Griswold, W. 2005. Star

diagram with automated refactorings for Eclipse. In

Proceedings of the 2005 OOPSLA Workshop on Eclipse

Technology Exchange (San Diego, California, October 16 -

17, 2005). ETX '05. ACM Press, New York, NY, 16-20.

[19] Roberts, D. B. 1999 Practical Analysis for Refactoring.

Technical Report. UMI Order Number: UIUCDCS-R-99-

2092., University of Illinois at Urbana-Champaign.

[20] Roberts, D., Brant, J., and Johnson, R. 1997. A refactoring

tool for Smalltalk. Theory and Practice of Object Systems 3,

4 (October 1997), 253–263.

[21] Sun Microsystems Incorporated. 2005. Java 1.4.2 Standard

Libraries, http://java.sun.com/j2se/1.4.2/.

[22] Thomas, A. and Bareshev, D. 2005. GanttProject,

http://ganttproject.sourceforge.net.

[23] Xref-Tech. 2005. Xrefactory, http://www.xref-tech.com.

