Microlanguages for Operating System Specialization*

Calton Pu, Andrew Black, Crispin Cowan, Jonathan \alpole Charles Consel
Dept. of Computer Science and Engineering Dept. of Computer Science
Oregon Graduate Institute University of RennesIRISA
P.O. Box 91000, Portland, OR 97291-1000 email: consel @irisa.fr

email: {calton, black, crispin, walpole} @cse.ogi.edu

Abstract

Specializationis atechniquethat hasthe potential to provide operating system clients with the performance and func-
tionality that they need, while still retaining the advantages of a simple generic code base for the operating system
maintainer. However, at present the specialization processis labor-intensive and requires the knowledge of an expert
in the domain of application behavior. In order to realizethe full advantagesof specialization, we believe that the pro-
cessmust be automated. Thismeansbuilding toolsfor specialization, and also making the domain knowledge explicit
in some form or other.

A specialization toolkit has been developed jointly at the Oregon Graduate Institute and IRISA, aspart of the Syn-
thetix project. This paper discussesour preliminary ideas on the use of Microlanguagesto describe application be-
havior and to make that information available to the specialization tools.

1 Introduction

Modern operating systems have been growing in size and complexity due to constant pressure for additional function-
ality. Asthevariety of applicationswidens, and hardware platformsbecome increasingly powerful, operating systems
arerequiredtotakeonincreasingly diverseroles. Consequently, operating system implementations have been stretched
far beyond their original intent. For example, file systems designed for sequential access to fixed-size blocks are com-
pelled to support access to variable-sized frames of compressed video data in situations where only two out of three
frames are actually required by the application.

In an attempt to keep some bound on the size of the operating system kernel, application-specific functiondity is
often implemented by middleware: librariesand user-level servers. However, to support the necessary functionality on
top of akernel designed to meet other goa's, the middlewareisforced either to duplicate system functionality in amore
efficient or controllableway, or to use the system-call interface in ways that were never intended by its designers and
for which it may be poorly optimized. These tactics have appropriately been called “hematomas of duplication” and
“coding between the lines’ [16]. These forces result in uncontrolled growth in the size and complexity of the kernel
and the middleware.

Speciadization of the operating system kernel has emerged as a promising techniquefor addressing these problems;
Synthesis[20, 18], thez-kernel [19], SPIN [1, 2], and Synthetix [7, 21] &l allow theintroduction of custom or special-
ized code into the kernel. However, there are two limitationsto the wide application of specialization. First, athough
it has been applied successfully in specific domains, each domain seems different enough to require a large new ef-
fort. Second, attempts to make customization easy, such as SPIN, have yet to address the concerns of quality control,
interference with other kernel modules, maintainability, and system evolution.

*This work supported in part under DARPA grant N00014-94-1-0845, DARPA contract F19628-95-C-0193, Air Force contract F19628-93-C-
0069, and by the Intel corporation.

This paper takes the position that specialization can be directed through microlanguages, which exist at severa lev-
elsof abstraction. At thehighest level, they are application domain-specific but kernel and hardware independent: they
characterize how the application will usethe kernel interface. At alower-level, they are specific to theimplementation
of aparticular kernel; alow-level microlanguage may be thought of as aform of meta-interface language that controls
a particular system component, e.g., file system, network protocol stack, or memory alocator. From the application
programmer’s point of view, a sufficiently rich microlanguage provides a high-level declarative way to request system
customization. On the systems side, kernel designers determine the scope of the corresponding specializations during
the design and implementation of a microlanguage.

Programs written in the microlanguage are called, naturally, microprograms. Microprogramming is awell-known
termused in computer architecture; wefed that the conceptsintroduced here are the software anal ogs of the correspond-
ing hardware microprogramming concepts. Our microlanguages are small and specialized languages, as are hardware
micro-instruction sets. However, thereis an important difference: athough hardware micro-instruction sets may have
large numbers of primitives, they normally have small and simple semantics. In contrast, microlanguages are designed
to encapsulate information about specific application domains, so even though a microlanguage syntax may be small
and simple, it typically has deep domain-specific semantics.

The z-kernel [19] and Horus[26] both achieved clean modular decompositionsof thekernel’scommunication func-
tion. The z-kernd carefully analyzed network protocols, dividing them into microprotocols that were composed at
runtime to process messages in a flexible and efficient way. However, because the composition of the protocol stack
was specified by the application, the application programmer needed to be deeply aware of the protocol decomposition
insidethekernel. Horus hasimplemented group communication primitivesusing asimilar decomposition. The module
composition languages of the z-kernel and Horus might be considered to be low-level microlanguages restricted to the
description of theinternal structure of the kernel. In this paper we a so envisage higher level microlanguages that are
designed to describe the needs of the application.

A alternative approach to customization has been taken by the SPIN project [1, 2], which provides application pro-
grammers with ageneral -purpose programming languagein which they write extensionsthat areloaded into thekernel.
Although the language is type-checked and pointer safe, its expressiveness makes it difficult to guarantee the safety,
overall performance, reiability and fault tolerance of the resulting kernel, and to protect the kernel and other users
from interference caused by the newly inserted code. In our approach, the expressive power of the microlanguageis
restricted to the fundamental concepts of the application domain. As aconsequence, verifying that a program written
in amicrolanguage will not break the system isamuch easier task.

Initialy, we will focus on microlanguages that describe the way that a client program will use (or not use) certain
functionality of the kernel. Most of the time, the microlanguage does not change the kernel’sfunctional interface. For
example, afilesysteminterface will still supportr ead andwr i t e. Rather, the microlanguage will address the meta-
interface (in the meta-object protocol sense[17]) of a system component. Using the microlanguage, the client will tell
the operating system how the base functiondity will be used. When severa aternative specidized implementations
exist, the microlanguage will control which should be chosen.

2 Overview of our Methodology

Our work on microlangaugesispart of alarger research program designed to improve operating system maintainability
and performance. Our approach can bedividedintofour stages: microlanguagedesign, microlanguageimplementation,
evaluation, and refinement. In this paper we will focus on design and implementation.

2.1 Microlangauge Design

A microlanguageis designed for a specific domai n—some particular area of system functionality. Our goa isamicro-
language that uses a minima set of primitives, parameters, and constraints to express application behavior and needs
inasimpleand controlled way. We expect that most of the design effort will be expended in domain analysis: effective

mi crolanguage design requires athorough understanding of thecommonalities and variabilitiesin application behavior,
for thisiswhat the language must seek to express.

We intend that our high-level microlanguages be portable (from one kernel to another) and extensible. Our belief
is that we can achieve portability by designing microlanguages to characterize application behavior, and letting the
implementation define the kernel’sresponse. Thisisin contrast to a microlanguage that provides explicit control over
what the kernel should do, such as specifying which file system pages should be pre-fetched into the kerndl’s buffers
a what time. Although this might be adequate to obtain improved performance, such alanguage would be specific to
aparticular kernel implementation: changing thefile system block size or the size of the buffer cache would invalidate
the microprogram.

The need for extensibility is perhaps less obvious. A microlanguage will describe an application’s needs and be-
havior in amanner appropriate to the state-of-the-technology at itsdesign time. As new classes of applicationsare de-
vel oped, the microlanguage will need to be maintained and updated. Typicaly, itiseasier to extend alanguage based
only on declarations and constraintsthan one that isimperative or computationally unrestricted. We plan to define mi-
crolanguagesrigoroudly, so that microprograms are amenabl e to accurate program ana ysesto determine propertiesthat
are critical to operating systems.

2.2 Implementing Microlanguages

The second stage of our research isto implement a microcompiler and the run-time microengine (a better word might
have been microkernel, but that term is taken). The microcompiler trang ates the high-level microprogram into alow-
level microprogram, which is then executed by the microengine. Like a conventional compiler, a microcompiler is
driven both by the semantics of the language that it implements and by its target architecture. In our example, the
microcompiler will understand the way in which the kernel manages its buffer cache, and will trandate a high-level
description of the application’s|/O needsinto alow-level microprogram that tellsthe kernel when and what to prefetch
and to flush.

Microenginesexecute thelow-level microprograms. Whereas “execution” of aseries of prefetch and flush requests
might require no more than making calls to an appropriate kernd meta-interface, execution of amicroprogram can be
significantly more complicated. In particular, weintend that low-level microprograms be used to control the Synthetix
speciaization machinery.

Specidization is an implementation technique that has been shown effective in the optimization of kerndl calls[1,
2, 20, 21]. However, undisciplined use of specialization can increase the complexity of kernel code significantly. The
kernel maintainer isfaced withwhat could become a software engineering nightmare: many versions of amodul e that
are supposed to have identical effects and which must be maintained in tandem, but each of which relies on different
constraints for its correctness.

We bdlieve that the solution to this problemisautomation. In Synthetix, the relationship between the unspecialized
genera-case code and the various specializationsis made explicit. We use invariants and quasi-invariantsto describe
when aspecialized moduleisapplicable, and guardsand repluggersto detect theviol ation of theseinvariantsand switch
specialization accordingly. The microcompiler generates alow-level microprogram that directs the underlying kernel
specialization; themicroengineinterpretsthisprogram and if necessary generates the specialized operating system code
at run-time.

2.3 Evaluation and Refinement

The third stage is to use the microlanguage to describe the activities of higher level software and evauate the appro-
priateness of the microlanguage and the improvements achieved. Note that it isunlikely that automated customization
will obtain al of the performance benefits that could be obtained by inserting new, hand crafted code directly into the
operating system kernel. That isnot our goa: rather, we aim to retain a simple and straightforwardly maintainable
code base for the operating system, while a the same time gaining most (but not al) of the benefits of custom code.
Thisgoal issimilar to that achieved when high-level system implementation languages replaced assembly languagein

system kernels. The protagonists of assembly language claimed that high-level 1anguages would never be as efficient.
They were right, but it did not matter: programmer productivity was much more important than machine efficiency.

In the past, the specialization of an operating system kernel has been primarily evaluated using microbenchmarks
that compare kernel calls before and after optimization. However, such microbenchmarks only show the effects on the
particular kernel call, isolated from the rest of the system. In redlity, it isthe “whole system” or “end-to-end” perfor-
mance that is of most interest to the user. Since microlanguages can facilitate cross-layer optimization, we plan to use
benchmarksthat will compare the performance of whole mi crol anguage-based systems to those without customization.

Thefourth stageisto use the evaluation resultsto refine the microlanguage and itsattendant tools. Having done the
experimental evaluation of systemswith microlanguages, wewill use the resultsto refine thelanguage, the experiment
and the system.

3 An Example Microlanguage

To illustrate these concepts, we present an example microlanguage designed to describe the needs of a family of ap-
plications that use file systems, an area where we have significant experience [21]. We start with an application-level
microlanguage, and then use a microcompiler to trandate this to a system-level microlanguage primarily concerned
with customizing OS implementation details.

Our godl isto specify the application’s data needs to the file system in order to maximize effective use of thefile
system’s buffer cache. Prior knowledge of an application’sdata needs enables the file system to prefetch the data, thus
minimizing I/O latency.

The meaning of amicroprogram in the file-system microlanguage can be given using atrace semantics. The trace
is a bounded or unbounded sequence of operations on the file-system interface, intended to represent the operations
that the microprogram predicts that the application will carry out. In the following examples, we generate this trace
explicitly using an imperative microprogram. This program shares variables with the parent application program; this
providesthe connection between them. Thewi | | keyword prefixesan action that the mi croprogram predi ctsthe appli-
cation programwill take, and has the effect of adding thisaction to thetrace. Theimplementation of the microprogram
should be such that correct predictionsenhance performance; miss-predictions degrade performance, but do not other-
wise affect the correctness of the application program.

To inform the system that the application will be reading and seeking in aregular pattern, we might write:

forever do {

will read(fd, *, 512);

will Iseek(fd, 8192, SEEK CUR);
}

The variable f d is declared in the parent program and denotes an open file object (a UNIX file descriptor). The
microprogram specifiesthat theapplicationwill start reading f d from position 0 (thedefault action), read 512 bytes, and
then seek ahead 8192 bytesbeforereading again. The* indicatesthat the second argument tor ead() (theapplication
buffer to copy into) is not known to the microprogram.

This microprogram can be viewed as denoting an unbounded sequence of wi | | statements that inform the kernel
about the pattern of theparent program’ssystem callsinvolvingf d. A scientific applicationsmay have amore complex
striding pattern:

for i =1 to infinity by 1 do {

will read(fd, buffer, 512);

will Iseek(fd, 4096 * (i % 8), SEEK SET);
}

It may also be the case that the application buffer is known to be static, indicated above by the use of the parent
program variable buf f er . Given a static application buffer, the kernel’s file system buffers can be chosen to avoid

Application level \ microcompiler System level

microlanguage j microlanguage

micro-
engine

Operating system kernel

Figure 1: File System Microcompiler trandates application-level microprograms into system-level microprograms,
which then drive a microengine that customizes the behavior of the system

collisionsin the CPU cache when the datais copied by ther ead() system cal, yielding up to ten times performance
improvementsin data copying bandwidth[12, 13].

Simple striding patternslikethese could just as easily be expressed using agrammar or arecurrence relation, which
would obviate the need for the explicit loops. However, thisis not aways the case. Multimedia applications have
more complex access patterns. For instance, avideo player may be fast-forwarding through a movie, skipping over
some frames and displaying others. Because the frames are variable-sized (depending on the complexity of the im-
age) the access pattern cannot be described using a simple expression; an index file must be used to predict the read
size and the stride size. Furthermore, to guarantee Quality-of-Service, frames must be available at specific times [24].
Hence, thismicroprogram also specifies when the datawill be read. The following microprogram uses the file descrip-
tor i ndex_f d to specify the sequence of frames to read, their offsetsin thefile f d, and the times at which the read
requests will be made. The parent program variablef r ame_i nt er val isused to compute when the next r ead will
occur.

int offset, stride;

int time = 0;

forever do {
read(fdi ndex, &offset, sizeof(offset));
will read(fd, buffer, offset) at tinme;
read(fdi ndex, &stride, sizeof(stride));
will Iseek(fd, stride, SEEK CUR);
tine = tine + frane_interval;

The preceding high-level microprograms express the needs of the application program, but say nothing about the
resources managed by thefile system. We use amicrocompiler to trand atethese microprogramsinto lower-level micro-
programs that pertain to system resources, as shownin Figure 1. The microcompiler for thefile system microlanguage
knows about the particular file system architecture used in the kernel, and generates a low-level microprogram that
specifies the loading and freeing of particular blocks; this might be nothing more than a sequence of statements like

prefetch(fd, offset, size);
rel ease(fd, offset, size);

Such amicroprogram woul d be executed by amicroenginethat maintai nshigh- and low-water marksfor the number
of pre-fetched blocksin thefile system buffer cache. It isthus able to choose a prefetching strategy appropriateto the
application’s god s that nevertheless avoids wasting system resources. The number of pre-fetched blocks to be kept
in the buffer cache is a function of the size of the cache, the timing requirements of the application and the specific
performance of thesystem I/O devices. The microengine manages the cache by making requeststhrough an appropriate
metarinterface while the application program isrunning. Naturaly, it must also monitor the application program’s use
of thefile system interface.

Note that the activities of the microengine have no effect on the correct execution of the application program. At
worst, an inagppropriate microprogram will degrade performance; it will not crash the kernel or the application.

An alternative approach to the implementation of the low-level microprogram isto use it to drive the Synthetix
specidization machinery. That is, rather than interpreting the microprogram in tandem with the application’s use of
ordinary system calls, wegenerate specialized system call sthat perform prefetchinginadditionto their normal function.
In previousresearch, we have generated such specialized system callsfor simplestriding patterns. Microlanguageswill
provide us with the information about program behavior that we need to generalize thiswork.

4 Microlanguage Research I'ssues

The example microlanguagesin Section 3 should beregarded asinitial attemptsat languages that might be adequate for
the domain of file system specialization. Weintend to exploredesign issuesfor such languages much morethoroughly.
The systematic design of microlanguages for targeted system components brings up questions not only about the ap-
plication area (file systemsin our example), but also about the interactions between the file system microlanguage and
other microlanguagesin related aress.

For example, in the Synthetix experiment with the HP-UX Unix File System, we have found a close rel ationship
between large (bigger than 64kB) block read performance and cache management a gorithmsinthe PA-RISC hardware.
Itis plausible that a microlanguage dedicated to the description of hardware cache management could help kernel de-
signersto smooth the interactions between virtual memory management and file system.

Besides variables of the parent program, declarations and constraintsover them, and predictionsof program behav-
ior, our microlanguages contain other e ements of a“normal” programming language: data structures and executable
statements. However, we intend to avoid making microlanguages computationally complete programming languages,
sincewe believethat such expressive power isunnecessary. Infact, it may be preferableto reduce the scope of amicro-
language rather than increasing its expressive power.

Typical microlanguage constructswill be acombination of declarations and constraints on the use of specific types
of objectsthat abstract from kernel functionality. It may be useful to make negativeas well as positive statements about
the functionality that the program will use, e.g., we may includewont statementsaswell aswi | | statements. Since
the building blocks are relatively simple and static, their combination is the main source of expressiveness.

We see microlanguages as a specia kind of meta-interface in Meta-Object Protocols[17]. While the purpose of
meta-object protocolsis basically the same as microlanguages, i.e., to give clients more control over the underlying
implementation, microlanguages are typically more restrictive by design. Meta-object protocols are defined to allow
clientsto direct the control flow through the underlying implementation, either through declarations or through imper-
ative statements. Thereisno consensus on the appropriate stylefor the definition of meta-object protocols: should they
be highly restricted or should they allow generic programming? Arguments from both sides have been presented in a
recent workshop on Open Implementation [16].

By calling our approach microlanguage instead of meta-interface or meta-object protocol, we are teking a clear
position on the question of meta-interface style. We believe that, at least for critical code such as operating system
kerndls, application program use of meta-interfaces should be carefully restricted. This does not mean that a more
computationally complete meta-interface is not valuable. It ssimply says that a compl ete meta-interface defined over a

critical system component requires great knowledge and care in its use, since the potential for abuse is great and the
conseguences of abuse are heavy.

Just as we favor the restricted use of meta-interfaces in microlanguages, we will avoid the indiscriminate prolifer-
ation of many microlanguages. We envision families of microlanguages, each devoted to an important function. For
example, we see the control of 1/0 as an important area, where an entire family of microlanguages will arise. But in-
stead of creating one microlanguage for file systems and another completely different one for network protocols, we
will designacore|/O microlanguage, and appropriateextensionsfor file systems aswell asnetwork protocols. The core
microlanguage will capture the essential data flow aspects of 1/O, while the extensions will represent the peculiarities
of each 1/0 device and usage.

5 Related Work

Microprotocols—z-kernel, SPIN: The SPIN project [1, 2] isusing a“safe’ language for customizing the kernel.
Program fragments written in this language are loaded into the kernel address space dynamically, and can affect the
kernels behavior in generd ways. Thisfacility isapowerful one, but has the potential to damage the system (or other
systems) in unforeseen ways. SPIN & so imposes a consi derabl e software burden on application programmers wishing
to customize the operating system interface. Microlanguages can be seen as a disciplined, secure, and simple way
for the users to customize the kernel, using application-level primitives that were built into the systems software by
trusted programmers. Microlanguages are a restricted and high-level form of SPIN’s “safe” language, specialized to
an application domain so that they can be safe, implementable and powerful.

The main idea of the z-kernd is to analyze the network protocol stack, dividingit into micro-protocols. By imple-
menting micro-protocol sin fine-grain modul esand composing them into actual protocol code at run-time, the z-kernel
is both elegant and efficient. While the z-kernel designers have been very successful in the network protocol area,
the generaization of their technique to other operating system kernel components has proved to be elusive. Our tools
for the expression of micro-protocols alow the use of a similar kind of inter-module interfacing in a broader range
of application domains. Thus we see that the z-kernel used what amounts to a single implementation of a low-level
microlanguage.

M eta-Object Protocols: Microlanguages are a so related to Meta-Object Protocols[17] and the recent movement
towards Open Implementation[16]. Inan Open Implementation system, ameta-interfaceisadded to the system’sfunc-
tiona interface. The meta-interfaceis used to direct the underlying implementation to take the most suitable execution
path. Microlanguages can be seen as a systematic and disciplined way to develop meta-interfaces and to link the meta-
interfaces to the underlying implementation. Rather than directing the implementation to take one particular path or
another through a meta-interface, which would require knowledge of the implementation, an application can simply
describe its own behavior with a microprogram, which isindependent of the operating system implementation. Thus
the microlanguage approach can be viewed as a particul ar disciplinein the construction of Open Implementations.

Modular Operating Systems—Mach, Chorus, Choices, Apertos. In response to the saturation of monolithic
kernels, one of the most important devel opmentsin modern operating systems isthe movement towards micro-kernel's
such as Mach [3] and Chorus[22], and more recently, object-oriented operating systems such as Choices[5] and Aper-
tos[27]. All of these systemshave ahigh degree of organi zation and modul arity. However, they a so suffer performance
pendtiesfor thismodularity. More recent research on these systems has been focused on reducing the overhead of this
modularity, typically by composing modules into coarser grain modules, and co-locating operating system serversin
the kernd address space [11].

Partial Evaluation: Traditiona partial evaluation [6, 15] speciaizes a program with respect to some known parts
of itsinput, providing the basis for a simple and automatic approach to program optimization through specialization.
However, existing approaches to partial evaluation identify only two stages at which information becomes available:
compiletimeand runtime. Thisproblemis shared by existing partial evaluators such asMix [14], Schism [8], and Sil-
imix [4]. Inan operating system, many more stages can beidentified, including boot time, compiletime, and link time.

from awide range of sources at many stages. The research described in this paper makes extensive use of the prin-
ciples of partia evaluation, but in the context of imperative C-based programming languages, and in a more dynamic
and flexible manner. Most of these aspects are integrated in a partial evaluator for C, named Tempo, which enables
programs to be speciaized both at compiletime and run time[9, 10].

6 Summary

We have described an approach to designing microlanguages that allow applicationsto declare their needs to the op-
erating system and to inform the system of their future behavior. The approach enables an operating system to use as
little or as much of theinformation present in the microprogram asisrelevant to that particular system. We presented a
microlanguage designed to support optimization of file system performance by predicting application data needs. We
have described how this approach may be generalized to alow applications in various domains to specify their needs
to the operating system, and outlined some research issues that lie ahead in designing future microlanguages and de-
ploying operating system facilitiesthat exploit them.

References

[1] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Pardyak, S. Savage, and E.G. Sirer. SPIN
- An Extensible Microkernd for Application-specific Operating System Services. In SGOPS 1994 European
Workshop, February 1994. UW Technical Report 94-03-03.

[2] Brian N. Bershad, Stefan Savage, Przemystaw Pardyak, Emin Giin Sirer, Marc Fiuczynski, David Becker, Susan
Eggers, and Craig Chambers. Extensibility, Safety and Performanceinthe SPIN Operating System. In Symposium
on Operating Systems Principles (SOSP), Copper Mountain, Colorado, December 1995.

[3] D.L. Black, D.B. Golub, D.P. Julin, R.F. Rashid, R.P. Draves, RW. Dean, A. Forin, J. Barrera, H. Tokuda,
G. Maan, and D. Bohman. Microkernel operating system architecture and mach. In Proceedings of the \Workshop
on Micro-Kernels and Other Kernel Architectures, pages 11-30, Sesttle, April 1992.

[4] A. Bondorf. Automatic autoprojection of higher order recursive equations. In N. D. Jones, editor, ESOP’ 90,
374 European Symposium on Programming, volume 432 of Lecture Notes in Computer Science, pages 70-87.
Springer-Verlag, 1990.

[5] R.H. Campbell, N. Islam, and P. Madany. Choices, frameworks, and refinement. Computing Systems, 5(3), Sum-
mer 1992.

[6] C.Consd and O. Danvy. Tutoria noteson partial evaluation. In ACM Symposiumon Principles of Programming
Languages, pages 493-501, 1993.

[7] C.Consdl, C. Pu, andJ. Walpole. Incrementa specidization: Thekey to high performance, modularity and porta-
bility in operating systems. In Proceedings of ACM Symposiumon Partial Evaluation and Semantics-Based Pro-
gram Manipulation, Copenhagen, June 1993.

[8] Charles Consd. A Tour of Schism: A Partial Evaluation System for Higher-Order Applicative Languages. In
Proceedings of ACM Symposiumon Partial Eval uationand Semantics-Based Program Manipul ation (PEPM’ 93),
pages 66—77, Copenhagen, Denmark, June 1993.

[9] CharlesConsdl, Luke Hornoff, Jacque Noye, Francois Noél, and Eugen-Nicolae Volanschi. A Uniform Approach
for Compile-Timeand Run-Time Specialization. InInternational Workshop on Partial Evaluation, Dagstuhl Cas-
tle, Germany, February 1996. Springer-Verlag LNCS.

[10] Charles Consdl and FrancoisNod. A genera approach to run-timespeciaization anditsapplicationto C. In 23rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’96), St. Peters-
burgh Beach, FL, January 1996.

[11] M. Guillemont, J. Lipkis, D. Orr, and M. Rozier. A second-generation micro-kernel based unix: Lessons in per-
formance and compatibility. In Proceedings of the Winter Technical USENIX Conference’91, Ddlas, 1991.

[12] Jon Inouye, Ravindranath Konuru, Jonathan Walpole, and Bart Sears. The Effects of Virtually Addressed Caches
on Virtua Memory Design & Performance. Operating Systems Review, 24(4):896-908, October 1992. Also
published as OGI technica report CSE-92-010, ftp://cse.ogi.edu/pub/tech-reports/1992/92-010.ps.gz.

[13] Jon Inouye, Jonathan Walpole, and Ke Zhang. Fast Byte Copying: A Re-Evduation of the Opportu-
nities for Optimization. Report CSE-95-010, Oregon Graduate Institute, Portland, Oregon, June 1995.
ftp://cse.ogi.edu/pub/tech-reports/1995/95-010.ps.gz.

[14] N. D. Jones, P. Sestoft, and H. Sgndergaard. Mix: a self-applicable partia evauator for experimentsin compiler
generation. LISP and Symbolic Computation, 2(1):9-50, 1989.

[15] N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation. International
Series in Computer Science. Prentice-Hall, June 1993.

[16] Gregor Kiczales. Beyond the Black Box: Open Implementation. IEEE Software, January 1996.
http://www.parc.xerox.com/spl/projects/oi/ieee-software/.

[17] Gregor Kiczaes, Jm des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject Protocol. MIT Press, 1991.

[18] H.Massalinand C. Pu. Threadsand input/outputin the Synthesiskernel. In Proceedings of the Twel fth Symposium
on Operating Systems Principles, pages 191-201, Arizona, December 1989.

[19] S . O'Madley and L. Peterson. A dynamic network architecture. ACM Transactions on Computer Systems,
10(2):110-143, May 1992.

[20] C. Pu, H. Massdlin, and J. loannidis. The Synthesiskernel. Computing Systems, 1(1):11-32, Winter 1988.

[21] Cdton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon Inouye, Lakshmi Kethana, Jonathan
Waelpole, and Ke Zhang. Optimistic Incremental Specialization: Streamlining a Commercial Operating System.
In Symposium on Operating Systems Principles (SOSP), Copper Mountain, Colorado, December 1995.

[22] M. Rozier, V. Abrossimov, F. Armand, |. Boule, M. Gien, M. Guillemont, F. Herrman, C. Kaiser, S. Langlois,
P. Leonard, and W. Neuhauser. Overview of the Chorus distributed operating system. In Proceedings of the
Workshop on Micro-Kernels and Other Kernel Architectures, pages 39-69, Sesttle, April 1992.

[23] D. A. Schmidt. Denotational Semantics. a Methodology for Language Development. Allyn and Bacon, Inc.,
1986.

[24] Richard Staehli, Jonathan Walpole, and David Maier. Quality of Service Specificationsfor MultimediaPresenta-
tions. Multimedia Systems, 3(5/6):251-263, November 1995.

[25] R. D. Tennent. Principles of Programming Languages. Prentice-Hall, 1981.

[26] Robbert van Renesse, Takako M. Hickey, and Kenneth P. Birman. Design and performance of Horus. A
lightweight group communications system. Technical Report TR94-1442, Cornell University, Ithaca, New York,
August 1994.

[27] Y. Yokote. The Apertos reflective operating system: The concept and itsimplementation. In OOPSLA * 92 Con-
ference Proceedings, Vancouver, BC, Canada, October 1993.

