
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Grace’s Inheritance
James Noblea Andrew P. Blackb Kim B. Brucec

Michael Homera Timothy Jonesa

a. Victoria University of Wellington, Wellington, New Zealand

b. Portland State University, Portland, Oregon, USA

c. Pomona College, Claremont, California, USA

Abstract This article is an apologia for the design of inheritance in the
Grace educational programming language: it explains how the design of
Grace’s inheritance draws from inheritance mechanisms in predecessor
languages, and defends that design as the best of the available alternatives.
For simplicity, Grace objects are generated from object constructors, like
those of Emerald, Lua, and Javascript; for familiarity, the language also
provides classes and inheritance, like Simula, Smalltalk and Java. The
design question we address is whether or not object constructors can
provide an inheritance semantics similar to classes.

1 Introduction

Inheritance is one of the defining features of object-oriented programming— indeed
for Wegner [Weg87], inheritance moves a language from being “object-based” to
“object-oriented.” In this apologia, we examine the design space for inheritance in
object-oriented languages, particularly when generative object constructors are the
major form of object creation, as they are in Emerald, JavaScript, Lua, and as they
are in Grace.

Although our aim is to present a language designers’ apologia for the inheritance
mechanisms in Grace—which have proved to be the most interesting, frustrating,
and controversial parts of its design—the concepts involved are not limited to any
particular language. We hope that this apologia will be useful not only to programmers
trying to understand why inheritance in Grace has turned out the way it has, but
also to designers of future object-oriented languages who are driven to explore this
design space. While our intention is to be historically objective, we are aware that
history is written by the winners, in this case, the winners in the marketplace of ideas.
Each of us recalls the history a little differently; motivations and the attribution of
ideas to people are unreliable, even at this short remove. Perhaps we should have
fictionalized this whole account, as do the Modula-3 authors in How the language got
its Spots [Nel91, Ch. 8]. Lamentably, we lack their skill.

We start by introducing the Grace programming language, particularly object
constructors and the way in which they relate to classes. Section 3 presents a series of

James Noble, Andrew P. Black, Kim B. Bruce, Michael Homer, Timothy Jones. Grace’s Inheritance.
Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). In Journal of Object
Technology, vol. V, no. N, 2011, pages M:1–33. doi:10.5381/jot.201Y.VV.N.aN

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


2 · Noble, Black, Bruce, Homer, & Jones

designs for adding single inheritance to Grace. Section 4 describes how we generalised
the designs to support trait-based reuse. Section 5 revisits related work; Section 6
concludes.

2 Objects and Classes in Grace

Grace is designed for education; we have sought to keep it as simple as possible, so
that classroom time can be spent on the essential difficulties of programming, and not
on the accidental difficulties of the language. Following this philosophy, Grace objects
are self-contained, that is, each has its own fields and methods, along with a unique
identity. Other objects can interact with an object only through requests, which can
be used to examine and update public fields, and to execute methods. From outside
an object, fields and methods are indistinguishable. Requesting a method is essentially
equivalent to what Smalltalk and Ruby call “sending a message”, a term that we avoid
because, in the age of the Internet, we find it more confusing than helpful.

The names of Grace methods, like Smalltalk method selectors, take a variety of
syntactic forms: unary-prefix and binary operators, and sequences of one or more
name-parts, interspersed with argument lists. All method requests have the same
dynamic binding semantics: they are resolved by the receiving object. Grace uses the
reserved word self to refer to the current object; when self is the receiver of a named
request, the word self (and the following dot) may be omitted.

2.1 Generative Object Constructors

Grace, while superficially similar to Java, C++ and Scala, is founded on a radically
simpler object model [BBHN12, NHBB13, BBH+13]. Specifically, Grace is object-
based, not class-based. Grace does have classes, but they can be fully explained in
terms of methods and objects. There is no class–instance relation in Grace: objects
own their own methods, rather than obtaining them from classes.

For both pedagogic and practical purposes, we wanted Grace to support immutable
objects as a fundamental building block, and not just as a special case of a mutable
object that happened not to contain any mutable state. The pedagogic motivation was
that immutable objects are fundamentally simpler than mutable ones; for example,
their semantics does not require updatable state. The practical motivation had to
do with parallelism: without updatable state, the implementation is free to make
copies, and need not be concerned with synchronization. Although parallelism was
not amongst our early design goals, we sought to avoid decisions that would make it
harder to add parallelism when the time came.

Other languages without classes, such as Self, have been based on prototypes:
new objects are created by first cloning an existing object, and then modifying its
attributes. In Self, a family of logically immutable objects with different field values
(e.g., immutable points that differ in their coordinates, or immutable colours that differ
in their RGB values) must be mutable at the language level, so that their attributes
can be assigned their initial values. Relying on modification to create all objects is
fundamentally at odds with our desire for Grace to support truly immutable objects.

For this reason, we envisioned from the beginning that Grace objects would be
created by object constructors [BBHN12]. An object constructor is an expression that,
when executed, constructs a new object that contains the methods and fields given
therein. For example:

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 3

object {
var size := 1
def myThreshold = currentThreshold
method grow(n) { size := size + n }
print "I′ve made a new object!"

}

Each time we evaluate this constructor, we create a new object. All of these objects
have unique identities, the same structure, and potentially different field values; the
constant field myThreshold will take on the value of currentThreshold, which must be
defined in an enclosing scope.

Emerald was the first language to be based on object constructors that generate new
objects [BHJL07]; OCaml [LDF+12] and JavaScript [WB15] have similar constructs.
Compare them to the static object literals of languages like Scala [Ode11] or Self [US91],
which are evaluated only once, and so create just a single object.

Because Grace is an imperative language, the expression on the right hand side of a
variable declaration var v := expression or definition def c = expression can have arbitrary
effects. We even allow it to refer to self. This can be risky, because self may not be
well-formed at the time this code is executed; for example, the object’s invariants
may not yet have been established. Given the existence of these expressions, allowing
arbitrary executable code to appear at the top level of an object constructor adds
convenience, but no additional danger, so we decided to allow this too.

object {
def ... = codeWithEffectsInvolving(self)
method ...
moreCodeWithEffectsInvolving(self)

}

This code can be used for housekeeping tasks involving the object under construction.
We had previously decided that code at the top level of a file should be treated

as if were enclosed by object { ... }. Together, these two decisions have the happy
consequence of making

print "Hello, world"

a complete Grace program—one of our early language design goals.
This design pays dividends in simplicity: you have already seen most of the syntax

of Grace. Within an object constructor, programmers can declare fields and methods,
and write executable code; the same rules for declarations and code apply at the top
level of a file. Within a method the rules are almost the same; the exception is that
methods can not be declared directly inside other methods. The other feature of
consequence is the block, a special syntax for representing λ-expressions. In addition
to being concise, the block syntax allows return inside a block to return from the
enclosing method ; this allows us to follow Smalltalk in defining control structures such
as conditionals and loops as requests of methods, rather than as new primitives.

2.2 Classes

Although object constructors are the primordial source of objects in Grace, it also
seemed important to support classes. Our reasoning was that class-based languages
predominate, and students will eventually need to transition from Grace to one of

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


4 · Noble, Black, Bruce, Homer, & Jones

them. Moreover, some instructors may prefer to start teaching with classes rather
than objects, even though we prefer to start with objects and then move to classes.

Experience with initially-classless languages such as Self [US91], Lua [IdFC07],
JavaScript, and Emerald has shown that, when languages do not provide classes,
programmers tend to build their own class-like constructs. This can lead to multiple
incompatible class libraries [Cro08, SRV+15]. In some cases, classes have been added to
the language itself, or to its programming environment. The Self system was eventually
extended to include a “Subclass Me” command [Ung02], and a class construct was
officially added to JavaScript in the ECMAScript 6 standard [WB15]. Even Emerald
acquired classes, first as an emacs macro, and then as a parser extension [HRB+87].

Thus, we determined to include classes in Grace as a shorthand that can be wholly
explained in terms of object constructors [BBHN12, HN12]. The class

class point(xCoord, yCoord) {
def x = xCoord
def y = yCoord
method distanceFromOrigin { ((x^2) + (y^2)).sqrt }

}

is equivalent to a method that returns a new object by invoking an object constructor:

method point(xCoord, yCoord) {
object {

def x = xCoord
def y = yCoord
method distanceFromOrigin { ((x^2) + (y^2)).sqrt }

}
}

OCaml also takes this approach: an OCaml class declaration is (almost) syntactic
sugar for a function that tail-returns an object constructor [LDF+12].

So far, so good: we have both classes and objects, and ontologically objects precede
classes. By this we mean that classes are defined in terms of objects, not the other
way around.

2.3 An alternative: Classes before Objects

It would be quite possible to retain exactly the current syntax for objects and classes,
but with the opposite ontological precedence: the traditional approach in which objects
are defined in terms of classes. Java, for example, does not have generative object
constructors, but its anonymous inner classes can have a closely analogous effect. The
Java fragment

new Object() {
final int x = xCoord;
final int y = yCoord;
float distanceFromOrigin { return sqrt((x^2) + (y^2)) };

}

looks pretty much like an object constructor, but is actually the definition, followed by
the immediate instantiation, of an anonymous subclass of Object. As with the Grace
object constructor, the variables xCoord and yCoord are assumed to be defined in an
enclosing scope.

This alternative ontology would make every object the (possibly sole) instance of
a (possibly anonymous) class. OCaml object constructors, for example, are defined

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 5

in this way [LDF+12]. An OCaml class is like a function that returns the result of
an object constructor, but this is only an analogy, not a equivalence. In particular,
OCaml classes and objects can inherit only from classes.

Ruby takes this design one step further: every object is the sole instance of an
anonymous class called its eigenclass [Sha13]). In Ruby, creating an instance of a class
conceptually creates a unique eigenclass inheriting from the class, and then instantiates
the eigenclass. In practice, eigenclasses are created lazily, only when required.

We resisted defining Grace objects in terms of classes for both conceptual and
practical reasons. Conceptually, that definition seemed backwards: in an object-
oriented language, objects should be the primary entity, and classes should be “the
boxes in which the objects are packed”1. Practically, making objects self-contained
meant that Grace had no class-metaclass relationship. This meant that we did
not have to decide on what the class of a class would be, nor on the class of that
class . . . . Although Smalltalk’s solution to terminating this infinite metaclass regress
is elegant [BDN+09, Ch. 13], we felt that with beginning student programmers, it is
better to avoid the whole topic.

As we will see in the remainder of this apologia, defining inheritance in terms of
object means that we must imbue objects with much of the complexity that would
otherwise lie in classes. In particular, we were forced towards a “dualist” notion of
object, in which every object carries within it the seeds of its own creation, like a cell
that contains two copies of its own DNA. This closely parallels the idea that a class
must be treated both as a function (when it plays the role of a superclass), and as the
fixpoint of that function (when it plays the role of a generator of objects) [Coo89].

3 Designing Inheritance

For Grace, the design problem we faced was how to add inheritance to the conceptual
model we had selected: objects preceding classes, objects created by object constructors,
and classes defined in terms of objects. For ease of transition to other languages,
we wanted to be able to say that one class inherited from another in a more or less
conventional way, but to be able to explain what that meant purely in terms of objects.

3.1 First Steps toward Inheritance

In early versions of the Grace specification [BBN11], we were somewhat vague about
the semantics of inheritance:

Grace class declarations supports inheritance with “single subclassing,
multiple subtyping” (like Java), by way of an inherit C clause in a class
declaration or object literal. . . . The right hand side of an inherit clause is
restricted to be a class name . . .

We were clearer about classes being equivalent to object constructors:

Grace’s class declarations can be understood in terms of a flattening
translation to object constructor expressions that build the factory object.
Understanding this translation lets expert programmers build more flexible
factories.

1Sir Thomas Beecham, conductor and impresario, once addressed an orchestra: “Forget about
bars. Look at the phrases, please. Remember that bars are only the boxes in which the music is
packed.” [AN79, p.18]

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


6 · Noble, Black, Bruce, Homer, & Jones

class superclass {
print "start super init"
method m { ... }
method n { ... }
var v := ...
print "done super init"

}

class subclass {
inherit superclass
print "start sub init"
method n { ... super.n ... }
def c = ...
print "done sub init"

}

class subclass {
print "start super init"
method m { ... }
method n { ... }
var v := ...
print "done super init"
print "start sub init"
method n { ... super.n ... }
def c = ...
print "done sub init"

}

Figure 1 – at the top, subclass inherits from superclass. Below, the “flattened” equivalent
of the subclass.

The idea was that a subclass inheriting from a superclass could be thought of
as equivalent to a single, flattened class, as shown in Figure 1. This is very similar
to the way inheritance (originally called “prefixing”) was defined in Simula [DMN70].
We used a Smalltalk-style super to invoke methods defined in superclasses. Notice
that the flattened version has multiple declarations of the method n, a feature that
was necessary to give meaning to super and the flattening translation, but not really
something that we thought desirable in a source language designed for novices.

To support static type-checking, and the checking of the override annotation, the
language specification restricted a superclass to being “definitively static”. This meant
that the compiler had to be able to figure out which methods were inherited. As a
consequence, the expression after inherit could not be a variable, or a parameter of an
enclosing method.

This definition of inheritance is ambiguous because it does not make clear the
state of the object under construction at the moment when the superclass is initialised.
Which method n is installed? Does the field c exist? If it does exist, is it initialized?
We were also troubled that the meaning of superclass in the inherit statement had to be
different from the meaning of the same expression elsewhere in the program: instead
of constructing an object, it somehow retrieved the template that would have been
used to construct that object. It became clear that Grace needed a complete and
coherent design for classes and class inheritance in terms of object constructors. Such
a design needed to be complete enough for programs to be written without class
declarations (because classes were merely a shorthand for methods returning objects),
and coherent enough that we could explain it to students without blanching. The rest
of this apologia describes our attempts to create this design, and defends the resulting
language.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 7

method graphic(canvas) {
object {

method image { required }
method draw { canvas.render(image) }
var name
canvas.register(self)
draw // local method request

}
}

def amelia = object {
inherit graphic(canvas)
def image is public = images.amelia

// override image method
// with a field accessor method

name := "Amelia"
// assign to inherited field

}

Figure 2 – An example object constructor method and an inheriting object

3.2 Design Concerns

Over time, we collected a list of concerns that influence the design of any inheritance
mechanism. As implementations of Grace became available, and we were able to start
writing larger examples, such as a graphics library designed for a first programming
course [BDM16], and a Smalltalk-inspired collection library [GR83], and to explore
how the concerns influenced the examples. This process helped convince us that there
was no “obviously correct” resolution for many of the concerns. Figure 2 is an artificial
example that illustrates some of the concerns, which we discuss below. The keyword
required in the image method of graphic means that the method is abstract, in other
words, that concrete subobjects are required to provide an overriding implementation.

Initialisation. One of the motivations for adopting object constructors was that
they gave us a simple way of creating already-initialized objects, including objects
with immutable fields. In contrast, in Smalltalk (and in Java), objects are created
with all fields null, and an initialization method (confusingly called a “constructor” in
Java) later gives them values. Not only does this require writing more code, it also
means that all objects must be mutable, at least when they are created.

Registration. Is the identity of a superobject during initialisation the same as that
of the final object? This is clearly the intention behind the request of canvas.register in
graphic’s initialisation in Figure 2.

Down-calls. A method in a superobject can make a self-request of a method that
is defined in a subobject—sometimes called a “down-call”. Can it do so during
initialisation? The implementation of the draw method relies on such a down-call to
the image method.

Stability. Is the set of methods available in an object the same throughout the
object’s lifetime? Can the implementations of these methods change? For example,
which image method will be invoked by the request of draw at the end of graphic?

Preëxistence. Can an object inherit from any object to which it can refer? Does
amelia have to inherit from a method that generates a new object, or will a preëxisting
object suffice?

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


8 · Noble, Black, Bruce, Homer, & Jones

Simplicity. Recall that the goal of Grace is to reduce the “accidental” complexity
of the programming language and allow students to focus on the “essential” difficulties
of programming [BBHN12]. To meet this goal, we wanted an inheritance mechanism
that was as simple as possible. The countervailing force towards complexity comes
from the need to introduce students (but gently!) to the inheritance mechanisms they
will eventually encounter in “industrial strength” languages.

Discussion

Of these design concerns, initialisation is one of the thorniest. This is because objects
often have internal invariants that must be maintained if their methods are to behave
correctly. When a method is inherited, its correct operation will generally require the
invariants to hold in the “new” surroundings; ensuring this is surprisingly tricky.

Recall that in Grace, an object constructor (and thus a class) can contain initial-
isation code. This code can access self. As Gil and Shragai [GS09] point out, this
is potentially dangerous; a method requested on self during initialization may make
assumptions about the object that do not (yet) hold, because the object’s construction
is incomplete. In Figure 2 we can see that var name is declared uninitialised, and that
def image will be initialised only after the amelia object constructor has run.

Nevertheless, for the purposes of Grace—teaching programming, including the
pitfalls that it sometimes holds for the unwary— introducing a separate category of
methods that are usable only during object creation seems like a high price to pay
to avoid this danger. Moreover, the most likely pitfall—accessing an uninitialised
variable— is already an error in Grace. Implementations are required to check for this
error; we can extend this check to uninitialised definitions (defs) as well.

In this remainder of this section we discuss four designs for the semantics of single
inheritance: delegation, concatenation, merged identity, and uniform identity. Formal
models of these designs can be found in a companion paper [JHNB16].

It is tempting, in hindsight, to rephrase these design concerns as “criteria” that an
inheritance mechanism must satisfy. This would not be historically accurate, because
it was only after exploring various design options and their consequences that we
realized, sometimes with great reluctance, that a particular concern would have to
be resolved in a certain way. Indeed, if we had known the right set of criteria when
we started, the design process would have been shorter by several years! Part of the
motivation for this apologia is to describe the process through which these design
concerns evolved into criteria.

3.3 Delegation

Our first design attempted to model inheritance between classes using delegation
between objects. Since Lieberman and Stein’s work of the mid-1980s [Lie86, Ste87], del-
egation has been seen as, more-or-less, an object-based version of inheritance [LSU87].
In delegation, one or more of the fields of an object r can refer to a delegate object;
these fields are often called “parent” fields, following Self [CUwC91]. If r receives a
request for which it has no method, the request is automatically handled by (one
of) r’s delegate object(s). Crucially, when the delegated method is invoked, self is
bound to r, the object that received the original request, and not to the delegate that
actually implements the method. This means that any self requests in the method will
be received by r, not by the delegate. Thus, delegation provides late-binding semantics
similar to Smalltalk’s class inheritance, which allows self-sends to be overridden in

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 9

subclasses. It is this binding of self that distinguished delegation from forwarding.
Let us consider the example from Figure 2 as if it used delegation. Let us imagine

that the inherit clause stores a reference to a delegate object, created by executing
graphic(canvas). The result is two separate objects joined by a delegation reference.
The treatment of requests is indeed what one would expect: a draw request received
by amelia finds no appropriate method there, so it is delegated to the “parent”, an
instance of the graphic class. There, the draw method makes a self-request for image;
because self is still bound to amelia, the response to this request will come from the
definition of image in amelia. Unfortunately, delegation doesn’t deal quite so well with
all of the concerns of section 3.2.

Initialisation. Because all objects, including amelia, are generated by executing
object constructors, their fields can be initialised when they are created; this includes
the immutable image field of amelia. Note that this is a result of using a referentially-
transparent semantics for the inherit statement, rather than delegation per se. The
delegate graphic is created in the same way as any other object: by executing an
object constructor. A delegation-based language that uses cloning, rather than object
constructors, would still have to use variables for fields that are conceptually immutable.

Registration. Because the delegate and the delegator are separate objects, delega-
tion doesn’t support registration as in the way that Figure 2 seems to require. When
the delegate, a graphic(canvas) instance, makes the canvas.register(self) request, self refers
to the graphic object, and that is what will be registered with the canvas: at this point,
amelia does not yet exist. Subsequent requests, say, of draw, from the canvas to the
registered object, will be directed to the graphic object, not amelia. These requests of
draw will fail, because image will be bound to the required method.

This behaviour is a symptom of the split object problem [BD96], also known as
object schizophrenia [Her10]. Because two objects together implement the behaviour
of amelia, it is possible for the wrong object [PB12] to be sent a request. Solving this
problem requires changing our example program; for example, amelia might pass self,
along with canvas, as an argument to graphic.

Down-calls. As we have seen, once both objects are constructed, self-requests in
the delegate can be handled by methods in the delegating object. This is not the case
during intialisation: at that time, self is bound to the graphic object itself, and so
self-requests are directed to the graphic object.

Why do we choose these semantics? The creation of amelia has only just commenced
when the request to graphic(canvas) that creates the graphic object is made. We reason
that the inherit clause must first create and initialise the graphic; only after that can
it bind the graphic as amelia’s delegate. So, at the time of its creation, the graphic is
nobody’s delegate, and hence it is its own self.

Stability Delegation is stable in the sense that method resolution never changes over
time, assuming that both the structure of the individual objects and the delegation
relationships between them are fixed once they are created. Because two distinct
objects collaborate to implement amelia, however, the method that is executed in
response to a given request will depend on which of them first receives that request.
To prevent confusion, amelia should guard references to the delegate closely.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


10 · Noble, Black, Bruce, Homer, & Jones

Preëxistence Many delegation-based systems allow “inheritance” from existing
objects. Taivalsaari claims that this is a defining characteristic of prototype-based
systems [Tai99], but since Grace does not aspire to prototypes, we saw no compelling
reason to allow it.

Discussion

We did see a compelling to reason disallow delegation to a preëxisting object. If
this is allowed, delegation can exhibit “action at a distance”, in which an operation
on an object x can implicitly change another object y. For example, assigning to
the name field of the graphic object, as amelia does, will change the name of every
object that delegates to that graphic object. Other designers have seen action at a
distance as an advantage, and have allowed the same delegate to be used by many
other objects. In such systems, as Self’s designers put it, “parents are shared parts of
objects” [CUwC91].

In our example, because amelia creates a fresh delegate, this is not a problem. If
one wishes to avoid action at a distance, a design based on delegation should require
that the delegate be either fresh, or immutable.

Delegation to preëxisting objects can also breach instance-based protection. In
Grace, as in Smalltalk and Self, objects are autognostic: an object can access other
objects only through their public interfaces [Coo09]. Notice that this differs from
languages (such as C++ and Java) where one instance of a class has access to the
private components of other instances of that class. Consequently, in Grace, non-
public—we call them confidential—methods cannot be requested by other objects,
while objects in an inheritance relationship can request each other’s confidential
attributes. Delegation to a preëxisting object can effectively breach the protection
provided by confidential: all an object need do is create a new object spy that delegates
to the object holding the secret, and give spy a public method that makes a self-request
for the secret. Note that this is a problem only when delegation (or inheritance) is
permitted from a preëxisting object: if the subobject is responsible for creating the
parent, then we can assume that it is already privy to the information that it contains.

3.4 Concatenation

The second design option we explored was concatenation, which Taivalsaari has
proposed as an alternative to inheritance [Tai93, Tai95, Tai09]. If you think of
delegation as working by reference to a superobject, you can think of concatenation
as working by value. Inheritance from a superobject begins by making a copy of the
superobject; the new definitions provided by the subobject are then “concatenated”
onto the end of the copy. Concatenation results in a single object with a single identity.

A consequence of concatenation is that it is possible for an object to have two
methods with the name m, one inherited (copied) from the parent object, and one
provided by the subobject’s constructor. This accommodates the conventional seman-
tics of a super-request. An external request for m executes the “lowest” method, but a
super-request can be used to invoke the next “higher” method, the one inherited from
the superobject. Let’s see how concatenation treats the concerns of section 3.2.

Initialisation. Because superobjects are created by executing object constructors,
immutable fields can be initialised by that constructor. Concatenation requires the
superobject to be copied during object creation, so the copy mechanism must correctly
copy the values of initialised fields.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 11

Registration. Once creation is complete, concatenation produces a single object,
but during creation, a series of objects are created, copied, and extended. Each of
these objects will have its own identity—even if it will be discarded once creation is
complete. If self is captured during the initialisation of one of the superobjects, that
object will be preserved rather than discarded. Recall our example from Figure 2, in
which the graphic class registers each newly-created graphic with the canvas. Because
concatenation makes a copy of the superobject, the original graphic object, which
should have been inaccessible (and thus garbage collected), is the one that will be
registered with the canvas. The copy will be extended into the final amelia object—and
so amelia will not be registered with the canvas. As with delegation, the superobject’s
initialization code is executed before the subobject is created, and thus cannot know
about the subobject.

Down-calls. As with delegation, once an object has been constructed, down-calls
will work as expected. However, during the creation and initialisation of a superobject,
the subobject will not yet have been created, so down-calls are impossible. In Figure 2,
when the draw method is requested during graphic’s initialisation, image will bind to
the required method image, because the concatenation of amelia’s methods has not yet
occurred.

Stability. The stability of concatenation is very similar to the stability of delegation.
The subobject is built up over time, with a different identity at each stage; method
resolution for each of these identities is stable. Methods requested during initialization
on a superobject will be resolved in the context of that superobject, and not in the
context of the final, not-yet-created subobject.

Preëxistence. Concatenation relies on making copies of the superobjects that will
to be inherited. This implies either that copy is a meta-operation that can be applied
to all objects, or that an object is inheritable only if it defines a copy method.

Discussion

As we have seen, the concatenation design relies crucially on a mechanism for copying
the superobject. Where does this copy mechanism originate? We might assume that
it is “built-in” as part of the inheritance mechanism: that inheritance implicitly makes
a (say, shallow) copy of the superobject. This assumption exposes two problems.
First, it is not necessarily appropriate to allow copying every object— something that
concatenation makes trivial by inheriting from the object and adding no attributes.
Imagine an object representing some external resource, such as a canvas in a window
system. This object might be designed under the assumption that it has exclusive
access to the external canvas: making a copy violates that assumption. Second, even if
copying is unobjectionable, a built-in copy primitive may do the wrong thing. Consider
a list object that uses a vector object to store its elements. Making a shallow copy
of the list object will result in the copy and the original sharing the vector as well
as their contents. Making the copy deeper doesn’t help; whatever the built-in copy
primitive does, we can find an example where it does the wrong thing.

The obvious “fix” is to allow programmers to customize the behaviour of copy, as
does Smalltalk with its postCopy hook method. Unfortunately, this will not work for
immutable fields: the whole point of an immutable field is that it cannot be changed
(except, perhaps, by reflective code [CM13]). Hence, a postCopy method cannot assign
to immutable fields to repair the object’s invariants. Recall that immutability after

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


12 · Noble, Black, Bruce, Homer, & Jones

creation was one of the reasons we based Grace on object constructors. Solving this
problem would require building into Grace a declarative mechanism for specifying the
semantics of copy [Li15].

The alternative assumption is that the programmer must supply a copy method
for every object. Failure to provide such a method would mean that the object could
not be inherited. This would impose a severe burden on the programmer—one not
present in mainstream languages.

3.5 Merged Identity

In response to these problems—particularly the difficulty in defining copy, and the
implications of copying for registration—we devised an alternative semantics that
eliminated the implicit copy. Rather than copying the superobject, merged identity
inheritance starts with the actual superobject and mutates it by adding in the new
declarations from the body of the object constructor.

Left unchecked, merged identity would allow programmers to change the shape
and value of any preëxisting object. To avoid this, we imposed the constraint that the
superobject must be fresh, that is, it must be an object that did not exist before the
object constructor was invoked. By this freshness constraint we hoped to hide the
mutation performed by the object constructor.

The effect of the freshness constraint is that the expression in the inherit clause
must generate a new object. For example, it can be a request on a class, or a request
on a method that directly returns the result of an object constructor. A request of an
existing object’s copy method should also suffice; although copying is no longer part of
the semantics of inheritance, copying will still be essential to many practical uses of
inheritance. Once again, we consider the concerns from section 3.2 in the context of
the example in Figure 2.

Initialisation. Primitive object creation is still handled by object constructors, so
fields— including immutable fields—are initialised by those constructors. If merged
identity is used to inherit from a copy of an existing object, that copy will be made by an
explicit method request (e.g., inherit graphicProto.copy), and so that copy method can be
written to maintain the invariants of both the original object and the copy—provided
that the result of the copy is fresh.

Registration. Merged identity was designed to solve the object registration prob-
lem. Because a single identity is preserved throughout the construction process as
the superobject is mutated into the new object, any registration performed on the
superobject will apply to the final object.

Down-calls. Although an object’s identity does not change during construction, the
structure of the object does change as definitions from subobjects are merged into the
object under construction. This means that code in Figure 2 will again fail, because
amelia’s overriding version of the image method will not yet be present when draw is
requested during the construction of the superobject.

Stability. Merged identity does not provide stability during initialisation, because
each subobject’s definitions are added in turn to the object being constructed. Once
objects are complete, the freshness constraint ensures that they cannot change again.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 13

Preëxistence. The freshness constraint prevents inheritance from preëeisting ob-
jects.

Discussion

Merged identity allows registration in the super-object to work, but simultaneously
exposes object mutation, which we think undesirable. Indeed, hiding mutation was the
motivation for the freshness constraint. In our example, the new object is registered
with canvas before the overriding definition of image is installed. If the canvas tries to
draw the object immediately, draw will fail by executing the required image method; if
it waits awhile, it will succeed. This is hardly satisfactory. In general, by allowing a
reference to the object under construction to escape, registration exposes clients to
the fact that objects are unstable.

There is a strong argument that “down-calls” during construction should have the
behaviour described above, and should not bind to overriding methods. This argument
motivated the design of C++, which adopts essentially this semantics. In general,
a method body may depend on fields defined in the object in which it is written,
and therefore these fields must be initialised before the method executes. During
object construction, field initialization is inevitably intertwined with the execution of
initializing expressions. If we assume that superobjects are initialized before subobjects,
binding a downcall during initialisation to the method in a subobject puts that method
at risk of accessing an uninitialised field. The reverse ordering, in which subobjects
are initialized before superobjects, makes even less sense: this would mean that
initialization code in the subobject could not use features of the superobject, nor
override the default values of fields set by the superobject.

3.6 Uniform Identity

The merged identity design still did not seem satisfactory; the instability of objects
during initialisation and our failure to hide it were particularly troubling. As well as
making method resolution hard to explain—ease of explanation is important in a
teaching language— the visibility of object mutation also caused practical problems in
Grace’s pedagogical graphics library (objectdraw, converted from Java [BDM06]). This
suffered from the failure described in the previous paragraph, in which the required
draw method of the superobject is requested before it has been overridden by the
subobject.

These considerations led us to a “two-phase” semantics for object construction and
inheritance that we call uniform identity. The first phase begins by creating a new
object identity. Then, the skeleton structure of the object is built with that identity,
by collecting all the declarations from the superobject constructors on the inheritance
chain, and the declarations from the subobject’s constructor itself. As with merged
identity, uniform identity requires all superobjects to be fresh. At this point, the
skeleton structure contains all the methods of the object under construction, and
uninitialised slots for the immutable and mutable fields. So self now exists, in its final
shape, although its fields have not yet been initialised.

In the second phase, the code inside the object constructors (but outside of the
method bodies) is executed: this includes the expressions that initialise fields, and code
at the top-level of the object constructors. This initialisation code is executed “top-
down”, beginning with the top-most superobject and finishing with object constructor
(or class) for the subobject under construction.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


14 · Noble, Black, Bruce, Homer, & Jones

If you prefer, you can think of construction as beginning at the bottom-most object
constructor, the first statement of which is the inherit clause. This begins executing
the inherited object constructor, starting with its inherit clause, and so on up the
inheritance chain, until we reach a constructor that does not inherit. Once each object
constructor’s inherit statement has finished, the rest of that constructor’s body is
executed, initialising fields and running any in-line code. Whichever way you prefer to
think about it, the result is the same.

Once again we consider the concerns from section 3.2.

Initialisation. As with all our other designs, mutable and immutable fields can
be initialised, and uninitialised variables can be observed by the program, e.g., by
requests in partially initialised objects.

Registration. With only one (uniform) object identity, registration works at any
time during initialistion, but with the same caveat as with merged identity: the
registrar can observe unitialised “immutable” fields that later become initialised.

Down-calls. Because the object under construction’s methods are installed before
any methods can be requested, down-calls (and up-calls) to methods work in the same
way both during initialisation and afterwards; however, down-calls to fields will find
them uninitialized.

Stability. Because all the methods and fields are installed before there is an oppor-
tunity for the object to be examined, the object’s structure appears to be stable.

Preëxistence. Like merged identity, inheritance must be from a fresh object: a
preëxisting object must be copied.

Discussion.

We would like to say that both phases of object creation happen before the object comes
into existence. Indeed, from the point of view of a client, the fully-initialized object
does spring into existence atomically at the end of the second phase. If cross-examined
in a court of law, however, we would have to be very careful. The problem is that self
can be accessed during initialization. As a consequence, uninitialised variables can be
still be accessed, both within a single object constructor and between constructors that
inherit from each other. In the example in Figure 2, although graphic’s required image
method will be successfully overridden during creation, the code will still fail because
the image variable declared in amelia will be undefined at the time it is requested from
draw.

Uniform identity closely mimics the inheritance semantics of Java. Note, though,
that Grace’s generative object constructors are quite different from what Java calls a
“constructor”, which is really an initialization method requested after the object has
been constructed.

It is important to note that uniform identity breaks referential transparency. In
every other inheritance design we’ve considered so far, the argument to the inherit
clause is executed in exactly the same way as any other Grace expression: it evaluates
to an object (which we will call the parent) that is completely initialised and fully-
independent. Then, the object under construction does something to the parent: it
delegates to it, or copies it and appends to it, or mutates its structure. With uniform
identity this is no longer so: two-phase execution means that the construction of the

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 15

parent must be split into two parts, the first of which adds definitions to an existing
object, while the second performs initialisation. The expression in the inherit clause
cannot be evaluated to the object that would result in any other context; it must be
treated as some kind of object generator that can be dissected into these two parts.

4 Multiple Reuse

After we had gained some experience with the uniform identity design for single
inheritance, we began to consider how we might generalise it to allow reuse of multiple
existing components, that is, something like multiple inheritance [Mey89]. Early in
Grace’s design we had guessed that we would need something like this, but had decided
to postpone developing these features until we a found strong need for them.

We wanted multiple reuse for two reasons. First, we had designed several versions of
a collections library for Grace: as others had found before us, such a library can benefit
from multiple reuse because there are multiple independent axes of specialization. For
example, collections may be mutable or immutable; they may be fixed size or variable
size; they may provide iteration based on insertion order, or on an ordering relation,
or offer no fixed iteration order [BSD03, Moo96]. Second, we had begun to experiment
with Grace dialects, which are specialised libraries that can extend or restrict the core
language [HJN+14]. Here too we found that dialects provided multiple independent
features. We had a dialect for testing, and a dialect for drawing, and a dialect that
required type declarations; we needed a simple way to construct dialects that offered
combinations of these features.

In this section, we present a number of designs we considered for multiple reuse
in Grace: traits as objects, generalising uniform identity inheritance to multiple
inheritance, a more flexible variant to better-support initialisation, and replacing
Smalltalk-style super-calls with trait-style aliasing.

4.1 Traits as Objects

Our first design for multiple reuse was based on Smalltalk-style traits. The name
“trait” has been applied to a variety of modularity constructs for objects, starting
with the Xerox Star workstation [CBLL82, CA84] and continuing with trait objects in
Self [US91]. More recently, it was applied by Ducasse et al. [DNS+06] to a mechanism
for reusing groups of methods in Smalltalk.

Three features distinguished the Smalltalk trait, as originally envisaged, from
contemporary multiple inheritance mechanisms. The first was the absence of any
implicit priority between the methods obtained from a set of traits. Instead, conflicts
had to be resolved explicitly. The second was a rich algebra of trait combination
operations, which enable the programmer to combine simple traits into more complex
traits, and to resolve conflicts between multiple traits. The third was the absence
of instance variables from traits; this meant that traits were stateless, and thus the
“diamond problem” of multiple inheritance did not occur.

The operations on traits, although derived independently, turned out to be similar to
operations proposed by Bracha in his thesis [Bra92]. The trait operations supplemented
the asymmetric inheritance operation common to Smalltalk and most of its successors
by several additional operations: an asymmetric use operation, a symmetric sum
operation, a method exclusion operation, and a method alias operation.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


16 · Noble, Black, Bruce, Homer, & Jones

3.1. TRAITS – COMPOSABLE UNITS OF BEHAVIOR 17

that overrides the conflicting methods, or by excluding a method from all but one trait. In addition traits allow
method aliasing; this makes it possible for the programmer to introduce an additional name for a method
provided by a trait. The new name is used to obtain access to a method that would otherwise be unreachable
because it has been overridden.

We shall first introduce our formal model by summarizing those aspects of classes that we need to capture.
We will then proceed to define traits, and show how traits are used to build classes and composite traits. We
will introduce a running example in Section 3.1.3 to illustrate various aspects of the formal model.

3.1.1 Classes and Methods
A key feature of traits is that, although classes may be built using traits, the way in which this is done does
not affect the semantics of classes. In effect, traits can be inlined, or flattened. For this reason, we start by
describing a model of classes without traits.

The primitive elements of our model are the following disjoint sets:

• N , a countable set of method names, and

• B, a countable set of method bodies,

• A, a countable set of attribute names (i.e., instance variables).

To express conflicts, we extend the set of method bodies B to a flat lattice B?, with new elements ? and >
such that ? < m < >, for all m 2 B, and in which all other elements are incomparable. We will use ? to
represent undefined and > to represent a method conflict. Thus, the least upper bound or join operator t for
B? is as shown:

?��@@
m1
��

m2
@@

> t ? m1 m2 >
? ? m1 m2 >
m1 m1 m1 > >
m2 m2 > m2 >
> > > > >

wherem1 6= m2

Definition 1 A method is a partial function mapping a single method name to a particular method body. We
use the notation

a 7! m

for the method that maps the name a 2 N to the method bodym 2 B.

Definition 2 A method dictionary, d 2 D is a total function, d : N ! B? that maps only a finite subset of
method names to bodies and has no conflicts, i.e., where d�1(B) is finite, and d�1(>) = ;.

Note that a method dictionary represents a finite set of methods. For this reason we will always specify
them extensionally, listing only the mappings to elements in B. For example,

d = {a 7! m1, b 7! m2}

defines a method dictionary d that maps method name a to body m1 and b to m2, and all other method names
to ?.

Definition 3 A class, c 2 C, is either the empty class, nil, or a sequence h↵, di·c0, with attributes ↵ ⇢ A,
method dictionary d 2 D, and superclass c0 2 C.

17

Figure 3 – the trait join operator. Notice that while m t m = m, when m1 6= m2, m1 t
m2 = >. This ensures that conflicts are “sticky”, and that sum is associative. (Figure
reproduced from Schärli’s Thesis [Sch05, p.17], with permission.)

Trait sum is similar to Jigsaw’s merge, in that both operations are symmetric
and commutative, although the mechanisms are different. Where Jigsaw imposes
side-conditions to ensure that merged modules are disjoint, trait sum has no such
restrictions. Instead, it represents omitted and conflicting methods by extending the
set of methodsM to a flat latticeM∗, with new elements ⊥ representing the absence
of a method, and > representing a conflict. All other elements of the lattice are
incomparable. Thus, the join operator forM∗ is as shown in Figure 3.

These operations made it possible to compose traits into other traits and classes
much more flexibly than was possible using inheritance alone. This enabled finer-
grained code sharing and a reduction in both code duplication and in the need to
cancel inappropriately inherited methods [BSD03].

Another important feature of Smalltalk traits is the flattening property, which
means that a class (or trait) composed from a complex graph of traits is precisely
equivalent to another class (or trait) constructed by copying trait methods into the
using class, following a rule for each of the trait composition operations. Flattening
made it possible build a tool, the traits browser, that provided the programmer with
multiple views on the same program [BS04]. Viewed through the traits browser, the
trait structure could be flattened away entirely, viewed in fine detail, or partially
flattened to any degree required. The flattening property also means that while traits
are valuable tools for program construction, modification, and understanding, they
have no semantic significance, and need not even exist at runtime. This is in contrast
to inheritance, which, because of super messages, cannot be flattened away.

In spite of all of these advantages, adding traits to Smalltalk increases the language’s
complexity. Traits were also a relatively new feature; we wondered if they would
stand the test of time. Traits have been added to several other object-oriented
languages [Ode11, Gro14, The15, PHP16] but had not been tried in a language
designed for teaching novices, where simplicity and similarity with the mainstream are
important. For these reasons, the Grace design team initially decided not to include
traits in Grace, and instead to rely on conventional inheritance.

Once we had decided that some support for multiple reuse was necessary, traits
seemed like the simplest solution, and we looked for ways to incorporate traits into
Grace with minimal disturbance to the rest of the language. Our first design proposed
modelling traits as Grace objects. This contrasts with the inheritance semantics
described in the previous sections, where inheritance must be from a fresh object.

We proposed introducing trait as a new reserved word. If traits are just objects,
this isn’t strictly necessary, but the new syntax would allow us to check that trait
objects contain no fields (neither defs not vars), and no inline initialisation code. A

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 17

trait keyword would also help programmers to be explicit about their intention when
creating a trait object, and familiarize students with the terminology. These traits are
real Grace objects, but objects that meet certain restrictions.

The second proposed change was to supplement the reserved word inherit by the
new reserved word use, valid in the same place, but restricted to traits, so an object
constructor might use enumerableTrait. Semantically, an object b useing a trait t is
equivalent to b delegating all requests of methods defined in the trait to the object t,
unless b provides an overriding local definition. Delegation means that all self-requests
made in the trait method are requests to b, not to t, as we discussed in subsection 3.3.

The various trait operations can also be defined in terms of delegation. The trait
sum operation is defined so that t+ u is a new trait with all of the methods of trait t
and all of the methods of trait u, where t’s methods are delegated to t, u’s methods are
delegated to u, and methods common to both t and u are error methods (representing
> in the method lattice). Similarly, the meaning of the difference operation is that
t−m is a new trait that delegates all of t’s methods, other than those in the set of
method names m, to t.

The use mechanism works fine for reusing behaviour from stateless immutable
objects, such as a trait that provides unit tests with a family of assert methods, or
provides collections with a family of internal iteration methods based on an external
iterator. In Grace, the singleton object true has no state, just methods like

method or(another:Block) { self }
method and(another:Block) { another.apply }
method ifTrue(trueBlock:Block) ifFalse(falseBlock:Block) { trueBlock.apply }

This means we can reuse true, as shown in this example motivated by Homer et al.’s
design for object-oriented pattern-matching [HNB+12].

class successfulMatch(result′, bindings′) {
use true
def result is public = result′

def bindings is public = bindings′

method asString {
"SuccessfulMatch(result = {result}, bindings = {bindings})"

}
}

Although each object can use just one trait, trait usage gives us the effect of multiple
inheritance because the used trait can be the sum of several other traits, which can in
turn be composed from still smaller traits.

Disallowing state in traits had several advantages, as Schärli and colleagues observed.
In particular, although we had chosen to define the semantics using delegation, in the
absence of state the trait methods could simply be copied into the delegating object.
Because there were no fields, and no straightline code, no initialization was required,
and all of the associated problems were avoided.

Importantly, use did not require the extra level of object wrapper implied by
inherit, unless that level actually served some purpose. In contrast, both merged and
uniform identity restrict the programmer to inheriting from a fresh object, forcing the
programmer to make everything instantiable (typically via a class) or copyable, just
in case someone might later wish to inherit from it.

Unfortunately, this design had two problems. First, the restriction that traits may
not contain fields does not mean that they are stateless. Unlike Smalltalk, Grace has
lexical scope, so a method in a trait can capture a variable in a surrounding scope.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


18 · Noble, Black, Bruce, Homer, & Jones

class top(x′) {
print "top {x′}"
var x := x′

}

class mid {
inherit top 13
print "mid"

}

class side(n) {
inherit top(n)
print "side"

}

class bot {
inherit mid as m
inherit side 42 as s
print "bot"
method ambiguous {print(x)}
method resolved {print "{s.x} {m.x}"}

}

Figure 4 – Classes with multiple inheritance

This means that the “diamond problem” reappears: if the “same” trait is reused twice
through two different paths, the trait combination mechanism would need to check
if the two trait objects are actually the same object, or are two distinct objects that
have the same shape. In the first case, because m tm = m, the composition is sound,
and results in the composed object acquiring all of the attributes of the trait object
just once. In the second case, the composition results in a conflict for each method.
This is because methods with the same name are contributed by two distinct trait
objects; when m1 6= m2, m1 tm2 = >. Unfortunately, distinguishing these two cases
requires reasoning about object identity, which is ultimately impossible to do statically.
Because we wanted to know the shape of a composed object statically, for example, to
perform type and overriding checks, we regarded this as a serious problem.

Second, because of the restriction that excludes fields from traits, traits would
supplement inheritance rather than completely replace it. This meant that Grace
would have two different reuse mechanisms: inherit clauses using uniform identity from
classes, and use clauses offering delegation to already-constructed objects. We asked
ourselves if it might not be possible to find a generalisation of single inheritance that
gave us trait-like properties, but within the framework of a single mechanism.

4.2 Generalised Uniform Identity

In an attempt to answer this question, our next design for multiple reuse was to
extend the uniform identity design from subsection 3.6 to something more like classical
multiple inheritance. Unlike the traits proposal in subsection 4.1, where any stateless
object could be reused, we return to uniform identity’s constraint that only fresh
objects are reusable.

A class or object constructor would be able to inherit from more than one superclass,
with the semantics being a generalisation of the two-phase uniform identity semantics.
In the first phase, a new object identity would be constructed, and then the attributes
from every superclass would be incorporated into the new object. In the second phase,
the initialisation code would be run. Because there are multiple superclasses, the order
of running the initialisation code would be more complicated: the superclasses would
be initialised in the order of appearance of the inherit clauses that name them.

Consider the example in Figure 4, when we instantiate the bot class. This will

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 19

print “top 13, mid, top 42, side, bot”: initialisation would proceed as if the inherit clause
invoked the superclass directly. The fact that “top” is printed twice shows that the top
class is inherited twice.

This example illustrates why the diamond problem [Mal08, Mey97] does not occur
with generalised uniform identity. According to Malayeri and Aldrich, “the diamond
problem arises when a class C inherits an ancestor A through more than one path.
This is particularly problematic when A has fields— should C inherit multiple copies
of the fields or just one?” Because only fresh objects can be reused, it is impossible
for two inherit clauses to refer to the same object. Specifically, inherit top 13 in mid
and inherit top(n) in side(n) inherit from two separate objects, and thus the attributes
of these two separate top objects would be added into the bot object. In particular,
there would be two copies of the variable x, with different values. A self-request for
x in class bot (as in the method ambiguous) could refer to either definition. Rather
than resolving this ambiguity with an arbitrary rule, this proposal extended the inherit
clause to include a local nickname that could be used to direct a request to a particular
definition. In this example, the nicknames are m and s, and the resolved method will
print “42 13” by assessing these two variable.

This proposal has more complex initialisation semantics than uniform identity for
single inheritance, but retains its properties. With a consistent identity, objects can
be registered; downcalls can be made during initialisation to methods but not to fields;
method resolution follows the same rules both during and after construction; and
mutation of objects during construction is visible.

4.3 Positional Inheritance

To avoid the initialisation problems described in the previous section, the Grace team
explored another design, positional inheritance, in which inherit clauses can appear
anywhere within a class or object constructor, rather that just at the top. This design
simplifies initialisation by avoiding the two-phase protocol. Instead, the fields and
method of the superobject are inserted into the subobject, and initialised, when the
inherit clause is executed.

The advantage of this design is more flexible initialisation. Consider the example on
the left of Figure 5, in which upcaller1 inherits from downcaller. During its initialization,
downcaller makes a request on local while evaluating the argument to print; this will
fail, because local has not yet been installed in the subobject being constructed by
upcaller1.

The class upcaller2 on the right-hand side of Figure 5 shows how positional inheri-
tance can resolve this problem. By moving the inherit clause after the declaration and
initialisation of local, downcaller will be instantiated after local is initialised. The same
class upcaller2 also illustrates another property of this design: methods are added to
the structure of the new object only when the inherit clause is executed. This means
that shape of an object changes during construction. In particular, the request of ping
in upcaller2 must fail, because there is no method ping in the object at that time. The
methods of downcaller, including ping, are added into the object being constructed by
upcaller2 only when the inherit clause is executed.

It is possible to use the flexibility of positional inheritance to resolve this problem.
We could we reorder the code in the subclass to look like upcaller3, which declares the
field local before inheriting, and requests ping afterwards. Now everything would work,
but whether the result will be what the programmer intended is another question.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


20 · Noble, Black, Bruce, Homer, & Jones

class downcaller {
print "local = {local}"
method ping {print "ping"}

}

class upcaller1 {
inherit downcaller as super
ping
def local = 7

}

class upcaller2 {
ping
def local = 7
inherit downcaller as super

}

class upcaller3 {
def local = 7
inherit downcaller as super
ping

}

Figure 5 – Classes with multiple inheritance

The positional inheritance design maintains most of the properties of generalised
uniform identity (subsection 4.2), with the obvious exception of the stability of objects
during construction and initialisation. Using nicknames for superclasses to request
conflicting methods is also more complex than the use of super in single inheritance,
particularly as a nickname does not refer to an individual object—as does every
similar name in Grace—but is instead some new kind of “name-qualifier”.

The Grace design team considered that in practice the flexibility of this design
would make it too complex for a programming language for novices. We realized that
“industrial strength” languages might make a different choice. C++’s inheritance model
also has objects apparently changing class during initialisation, and Ruby’s mixins
imperatively modify object structures; these languages have been quite successful.

4.4 Method Aliasing

The next design we present is an attempt to avoid some of the complexity of generalised
uniform identity. Rather than using local names to invoke superclass methods, we use
method aliasing (as in Smalltalk traits) to access overridden or conflicting methods.
In this design, an inherit clause may have a subsidiary alias clause that provides an
additional name for a method, and an exclude clause that excludes a method in the
trait from the object under construction.

class cat {
method speak {print "meow"}
def legs = 4

}

class fish {
method speak {print "bubble"}
def legs = 0

}

class catfish {
inherit cat
alias catSpeak = speak
exclude legs

inherit fish
alias fishSpeak = speak

method speak { catSpeak; fishSpeak }
}

Figure 6 – Catfish inherits from a cat and a fish

Consider the example in Figure 6, where a catfish class inherits from a cat class
and a fish class. The semantics of inheritance is similar to that of generalised uniform
identity: in a first phase, the object identity is allocated and its structure created, and
in a second phase, the objects are initialised in the order of the inherit clauses.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 21

trait cat {
method speak {print "meow"}
method legs {4}

}

trait fish {
method speak {print "bubble"}
method legs {0}

}

class catfish {
use cat
alias catSpeak = speak
exclude legs

use fish
alias fishSpeak = speak

method speak { catSpeak; fishSpeak }
}

Figure 7 – Catfish uses cat and fish traits.

The difference from generalised uniform identity is that inherit statements do not
define nicknames. Instead, the alias clause establishes an additional name for one of the
superobject’s methods, here the speak method. The aliases catSpeak and fishSpeak can
be used to request those methods, even though the local method speak has overridden
them.

The exclude clause can be used to avoid method conflicts. By excluding a method
that would otherwise cause a conflict, exclude can ensure that a method from another
superobject is inherited. In Figure 6, excluding the method legs from the cat superobject
means that catfish will inherit legs from fish.

This design has several advantages. We do not need nicknames, or a special kind of
method request to invoke inherited methods. Moreover, every method in an object has
a unique name; this stands in contrast to other formulations of multiple inheritance,
in which there can be multiple methods with the same name, inherited from different
places. Of course, this design also has some disadvantages, chiefly that it retains
almost all the complexity of generalised uniform identity. The exclude and alias clauses
do add some complexity, but bring with them the benefit of eliminating super, which
is rarely understood by novices.

4.5 Instantiable Traits

The design for multiple reuse incorporated into the current version of Grace is based
on traits, but restricts trait reuse to fresh objects (as in uniform identity), rather
then any stateless object (as in our first trait design, discussed in subsection 4.1).
A trait declaration must now be instantiable, returning a fresh object— like a class
declaration, but excluding both fields and inline initialisation. Figure 7 shows how the
catfish example from Figure 6 can be written with these traits. We convert legs from
a def to a method, change the class keyword to trait, and replace the inherit keyword
by use. In this design, as in Smalltalk traits, a subclass may inherit from just a single
superclass, but can then use multiple traits. Methods declared in used traits override
method inherited from superobjects, and methods declared directly in the body of
a class or object constructor override both those from superobjects and those from
traits.

There are several reasons we selected this design for Grace. First, by eliminating
explicit state from traits, we eliminate the code that would otherwise be necessary
to initialise that state; with no initialisation code, trait composition is free of effects.
Although inheritance still needs the two-phase creation and initialization semantics,
use of a trait has a much simpler, single phase semantics. Second, as a consequence,

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


22 · Noble, Black, Bruce, Homer, & Jones

when multiple traits are combined in an object, there are no “order of initialisation”
issues between the traits. Third, because of this simplicity, a moderately efficient
implementation can be easier and simpler to write. More importantly, the semantics
are easier to explain to students.

We emphasize that the trait syntax, like the class syntax, is just an abbreviation
for a method that tail-returns an object that follows certain restrictions. Thus, trait cat
in Figure 7 is precisely equivalent to

class cat {
method speak {print "meow"}
method legs {4}

}

or

method cat {
object {

method speak {print "meow"}
method legs {4}

}
}

In all three cases, cat is usable as a trait. We expect that programmers will choose
to use the trait syntax to make clear their intentions, and to allow errors, such as
accidentally including a var in a trait, to be detected earlier.

Other aspects of Grace’s design mean that the apparently-draconian restrictions
on traits are not as severe as they may appear. For example, although traits cannot
contain fields, a trait definition can be lexically nested inside a method that declares and
initializes mutable state, and methods in such a trait can close over that state. In the
example below, the object returned by method counterTrait contains neither fields nor
initialization code, and therefore qualifies as a trait. (Contrast this with the class graphic
in Figure 2.) This is true even though the trait keyword does not appear in the example.

method counterTrait {
var counter := 0
print "side effect"
object {

method value { counter }
method increment { counter := counter + 1}

}
}

It is true that the method counterTrait itself has effects. These effects, though,
are not part of the creation of the trait object. They occur whenever the method
counterTrait is executed, and before it creates and returns the trait. As a consequence,
each object that uses counterTrait gets its own (hidden) counter, and methods value
and increment to access it.

This example also makes clear the benefit of representing traits as classes rather
than as objects: each use of a trait class generates a fresh trait object. This eliminates
any confusion about whether a trait used in two different objects, or used multiple
times within a single object, creates shared state or multiple copies of the state.

If we wanted a single counter shared by all of the objects that use a trait, we might
instead write:

var counter := 0

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 23

method sharedCounterTrait {
object {

method value { counter }
method increment { counter := counter + 1}

}
}

or, equivalently (using the trait syntax):

var counter := 0
trait sharedCounterTrait {

method value { counter }
method increment { counter := counter + 1}

}

Here, var counter has been moved out of the method and into the enclosing module.
Now every sharedCounterTrait captures a reference to the same, module-level, counter
variable. The semantics of sharing for traits are exactly the semantics of sharing in
the rest of the language. It is quite reasonable to incorporate multiple instances of the
counterTrait into a single object, provided that aliases for the two value and increment
methods are declared to access the two counters.

It is interesting to note that some of the original trait designers have also concluded
that stateful traits can be useful [BDNW07]—with the vital caveat that the state
should be hidden, so as to avoid naming conflicts. This is exactly what the counterTrait
achieves.

This, then, is where Grace now rests. It has “inherited” uniform identity inheritance
from Java, and the use of traits (including those with hidden state) from Smalltalk.
Two mechanisms are undeniably more complex than one, but the two mechanisms
share several common features: both are restricted to ensure that the object being
reused is fresh, both themselves generate new fresh objects, and the alias and exclude
clauses apply to both in exactly the same way. As this apologia has shown, we fought
bravely against great odds to design a single mechanism that would support both
conventional single inheritance and a satisfactory form of multiple inheritance, and
failed. Somewhat to our surprise, the desire to support immutable objects made the
problem significantly harder than it would have been without them.

An instructor who wishes to use Grace to teach Java-style inheritance can ignore
traits, needing only to explain alias rather than super—which we believe to be an easier
task. An instructor who is willing to make a fresh start with a somewhat simpler reuse
construct can ignore inheritance and tell the students just about traits—and thus
circumvent all of the initialisation issues that plague inheritance, while offering the
additional ability to reuse multiple components. The uniformity between the inherit
and use mechanisms will, we hope, make it easy to learn the second after the first has
been mastered.

5 Related Work

Class-based languages began with Simula [BDMN79], the origin of much of the
conceptual framework of object-orientation. Taivalsaari argues that the class-based
understanding of programming is also “classical” in the sense of descending from the
classical philosophy of Plato and Aristotle [Tai96, Tai99].

Smalltalk greatly expanded the role of classes beyond Simula [Bor86]. Unlike Simula,
Smalltalk classes are themselves objects, and therefore instances of other (meta-)classes,

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


24 · Noble, Black, Bruce, Homer, & Jones

importing the power (and also the complexity) of Lisp-style computational reflection
into object-oriented languages [Smi84]. Lisp returned the favour with a series of
object-oriented extensions, culminating in the CLOS Meta-Object Protocol [KdRB91].
We also owe to Smalltalk the notion of ‘static’ declarations, in the shape of global
variables with class visibility, as distinct from per-instance (and hence also per-class)
variables.

The complexity of Smalltalk’s meta-model inspired Lieberman to propose languages
based purely on objects, with delegation as the sharing mechanism [Lie86]. This led
to a general interest in “prototype-based” programming languages. Such languages,
exemplified by Self [US91], create new objects by cloning existing objects, rather than
by appealing to a class. Emerald [BHJL07] marked the start of a different object-based
tradition; it also eschewed classes as a fundamental concept, but created new objects
by executing object expressions, not by cloning existing objects.

The fates of Emerald and Self are instructive: both ended-up supporting a form
of class. By 1991 Emerald had a “syntactic construct called a class that provides the
functionality normally expected of classes” [HRB+91]. Self’s programming style was
based on composing its objects from two parts: an instance prototype that defined all
the instance variables, and a “trait object” that provided the methods. What would
in Smalltalk have been a class was represented by a trait object and a prototype
object delegating to that trait. Traits were also linked to each other by a delegation
relationship that corresponded to class inheritance [UCCH91]. By 1995, Self objects
had been effectively given a “copy down parent” attribute, which caused slots from
that parent to be copied into the object whenever it was edited. This explains how,
for example, if an extra slot were to be added to a superobject’s prototype, the same
slot would also be added to every subobjects’ prototype. Eventually, a “Subclass
me” button was added to the Self IDE, which copied both instance object and trait
objects, recreating the class-like structure with delegation and copy-down parent links
configured correctly.

Dony et al. modelled a range of different designs for each of class-, object-, and
prototype-based languages, by writing a product-line of definitional interpreters in
Smalltalk [DMC99, BD96]. Grace is approximately language L17 in their taxonomy.
Grace makes no distinction between accessing variables and requesting methods; it
avoids dynamic modification of object structure; it uses creation ex nihilo to define
an object’s structure; it creates already initialised objects; and it provides implicit
“delegation”, whereby method requests can be dispatched to definitions in superclasses
without any explicit syntax. We say “approximately” because our design does not
quite fit their taxonomy: we restrict inheritance (or “delegation”) to fresh objects, and
the entire “split” object is treated as a first-class entity. Of course, delegation to fresh
objects can also be regarded as inheritance, especially as the independent parts of the
objects have no separate identity. Interestingly, L17 is one of the two categories Dony
et al. recommend for future language designs. Taivalsaari et al. [NTM97] surveyed
further contemporary research along these lines.

Since the late 1980s, Eiffel has incorporated class-based multiple inheritance with
deep renaming (rather than Grace’s shallow aliasing), exclusion, and repeated inheri-
tance [Mey92]. Eiffel also intertwines type and class, so that an object implementing
several different types can have multiple implementations of methods with the same
name, disambiguated by the type in which those definitions originate. Eiffel’s devel-
opment environment can generate the “flat form” of a class: unfortunately because
of Eiffel’s type-aware semantics, the flattening cannot be used to represent all the

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 25

possible behaviours of the class. Subsequently, other languages, notably C++, have
incorporated features from Eiffel.

Another stream of work is based on mixins, rather than classes [BC90]. Unlike
CLOS, or Eiffel multiple superclasses, mixins are applied one at a time, in a linear
order specified by the programmer. Bracha’s Jigsaw formalised mixin-composition in a
class-based style, along with a rich algebra of composition operations, including merge,
restrict, select, project, override, and rename [BL92, Bra92]. Jigsaw’s rename is deep,
like Eiffel’s, and thus different from trait alias, which is shallow. Jigsaw’s modules
also contain type declarations as well as component definitions, and its composition
rules are designed to preserve type soundness. Flatt et al. [FKF98, FKF99] develop
a semantics for classes and class-like mixins (without composition operators) in a
core language, and have incorporated mixins and traits into Scheme (now Racket),
based on classes and macros. Lagorio et al. [LSZ12] modelled Jigsaw in a class-based
formalism based on Featherweight Java [IPW01]; Corradi et al. [CSZ11] extended this
formalism to handle family polymorphism [Ern01]. More recently, class mixins have
been incorporated into Newspeak (alongside family polymorphism) [BvdAB+10] and
Dart [Bra16].

Ducasse et al. revived traits to provide multiple reuse for Smalltalk [DNS+06]: in
their design, a class inherits from a single superclass, and then incorporates a trait,
which may be composed from other traits using sum, alias, and exclude operations.
All conflicts between traits in this composition must be resolved explicitly; there are
no default rules. A key property of Smalltalk traits is that composition problems
can always be fixed by the user of a trait; the composition operations are powerful
enough that it is never necessary to ask the trait provider to package things differently.
Smalltalk traits can be understood using a model based on flattening, rather than
dynamic dispatch to the trait, although these have been shown to be equivalent [NDS06].
Scala [OSV11] and Java 8 [GJS+15] incorporate variants of traits, though they rely
on super-sends rather than aliasing or renaming. Scala traits are much richer (and
more complex) than Grace traits: they differ from classes mainly in not allowing
parameters in their constructors. The order in which traits are added is important,
both because of initialization issues, and for resolving uses of super. Grace avoids these
issues by restricting traits from having visible state, and by making trait composition
symmetric.

A discussion of object-based inheritance systems would be incomplete without
referring to OCaml [LDF+12], which is not dissimilar to the language of our base
model. Both languages have object constructors, classes as a shorthand for methods
that return fresh objects, a form of symmetric multiple inheritance, and structural
typing. Grace draws on traditional object-based polymorphism rather than OCaml’s
row polymorphism [RV97].

There are some significant differences between objects in Grace and OCaml. Even
though OCaml classes are described as syntactic sugar, objects (or other classes) can
inherit only from classes. In contrast, in all of our models, objects can inherit from any
fresh object, whether or not it is defined by a class. OCaml also has a more complex,
but in some ways less powerful, initialisation model than Grace. In OCaml, field
initialisers are evaluated in the enclosing lexical scope, and initialisation code must be
sequestered into initialisation blocks, which are run late. Neither of these semantic
twists reflects a straightforward reading of program’s source code. In contrast, in our
models initialisation code is always executed in the order written, and in the context
of the object under construction.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


26 · Noble, Black, Bruce, Homer, & Jones

Given our focus on initialisation as a key reason for preferring object constructors,
we must also compare Grace’s approach to initialisation to others’, particularly those
that avoid the sort of problem we have described. The “Hardhat” approach [GS09,
ZCPS12] restricts constructors to avoid exposing partially initialised objects. Delayed
Types [FX07] deploys ownership types to similar effect, with more annotation overhead.
Masked Types [QM09] takes an alternative approach, tracking (“masking”) uninitialised
features of objects and preventing their use. Freedom Before Commitment [SM11]
proposes another approach, where constructors trigger the construction process of their
sub-components, with restrictions on parameters to prevent uninitialised field accesses.
Finally, placeholders (or futures) can be used to initialise circular structures safely,
either by delaying initialisation until the whole structure is complete (placeholders), or
by building the parts of the structure lazily when they are first used (futures) [SMPN13,
Bra15]. Given the intended audience for Grace, we felt that any of these features
would add too much complexity. In teaching, it is well to let students first appreciate
a problem, and then use that problem to motivate a solution.

6 Conclusion

inheritance, noun: a thing that is inherited. he came into a comfortable
inheritance. I don’t want a penny of your inheritance.
figurative : the European cultural inheritance.
mass noun. the action of inheriting: the inheritance of traits.

Mac OS X dictionary, Version 2.2.1 (178).

As the above definition shows, “inheritance” has two meanings. In this apologia we have
attempted to both outline the legacy that we “inherited” from other language designs,
and to explain the design process that underlies Grace’s inheritance mechanism.
We hope this presentation helps the reader to make sense of Grace’s inheritance
mechanism, and to appreciate the reasons for the remaining complexity. In particular,
we believe that understanding “the road not taken” can help explain Grace’s approach
to inheritance. Perhaps our experiences can guide other language designers to their
destination by a more direct route.

A question that we cannot answer is this: had we seen our destination from the
start, would we have chosen to go there? Is the current design the result of our
being seduced into continually adding features to match expectations derived from
languages like Java? Would designers with more foresight have taught themselves
simpler approaches to programming that worked better with a more limited inheritance
facility?

At the start, we hoped for a simple, complete and coherent description of classes
and inheritance in terms of object constructors. Our resulting design is some sense
complete and coherent: we have implemented this inheritance model, and we have
programmed in it without surprises. A paper at ECOOP’16 presents the semantics
of the key designs alternatives in a formal model called Graceless [JHNB16]. What
we hope to have shown in this apologia is that inheritance foiled our efforts to create
an even simpler programming language. Inheritance, especially in combination with
immutable objects, is neither simple nor obvious: programming language design
necessarily involves tradeoffs between a number of different design goals, of which
simplicity can neither be the first nor the most important. Whether the resulting

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 27

design is actually graceful, graceless, or something in between we must leave to the
judgement of those that inherit it.

References

[AN79] Harold Atkins and Archie Newman. Beecham Stories: Anecdotes,
Sayings and Impressions of Sir Thomas Beecham. Furtura Publications,
1979.

[BBH+13] Andrew P. Black, Kim B. Bruce, Michael Homer, James Noble, Amy
Ruskin, and Richard Yannow. Seeking Grace: a new object-oriented
language for novices. In SIGCSE, pages 129–134, 2013.

[BBHN12] Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble.
Grace: the absence of (inessential) difficulty. In Onward!, pages 85–98,
2012.

[BBN11] Andrew P. Black, Kim B. Bruce, and James Noble. The Grace pro-
gramming language draft specification version 0.132. Technical report,
gracelang.org, 2011.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Proc.
Joint European Conf. on Object-Oriented Programming and ACM
SIGPLAN Conf. on Object-Oriented Programming Systems, Lan-
guages, and Applications, OOPSLA/ECOOP ’90, pages 303–311.
ACM Press, 1990. URL: http://dx.doi.org/10.1145/97946.97982.

[BD96] Daniel Bardou and Christophe Dony. Split objects: A disciplined use of
delegation within objects. In Proceedings of the 11th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’96, pages 122–137, New York, NY, USA,
1996. ACM. URL: http://doi.acm.org/10.1145/236337.236347,
doi:10.1145/236337.236347.

[BDM06] Kim B. Bruce, Andrea Pohoreckyj Danyluk, and Thomas P. Murtagh.
Java: An Eventful Approach. Pearson Education, 2006.

[BDM16] Kim B. Bruce, Andrea Pohoreckyj Danyluk, and Thomas P. Murtagh.
Programming with Grace. Pomona College, 2016. Draft of 12 May 2016.

[BDMN79] G. M. Birtwistle, O. J. Dahl, B. Myhrhaug, and K. Nygaard. Simula
Begin. Studentlitteratur, 1979.

[BDN+09] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet,
Damien Cassou, and Marcus Denker. Pharo by Example. Square
Bracket Associates, 2009. URL: http://pharobyexample.org.

[BDNW07] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel
Wuyts. Stateful Traits, pages 66–90. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007. URL: http://dx.doi.org/10.1007/
978-3-540-71836-9_4, doi:10.1007/978-3-540-71836-9_4.

[BHJL07] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M.
Levy. The development of the Emerald programming language. In
Proceedings of the Third ACM SIGPLAN Conference on History of
Programming Languages, HOPL III, pages 11–1–11–51, New York,

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.1145/97946.97982
http://doi.acm.org/10.1145/236337.236347
http://dx.doi.org/10.1145/236337.236347
http://pharobyexample.org
http://dx.doi.org/10.1007/978-3-540-71836-9_4
http://dx.doi.org/10.1007/978-3-540-71836-9_4
http://dx.doi.org/10.1007/978-3-540-71836-9_4
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


28 · Noble, Black, Bruce, Homer, & Jones

NY, USA, 2007. ACM. URL: http://doi.acm.org/10.1145/1238844.
1238855, doi:10.1145/1238844.1238855.

[BL92] Gilad Bracha and Gary Lindstrom. Modularity meets inheritance.
In ICCL’92, Proceedings of the 1992 International Conference on
Computer Languages, pages 282–290, 1992.

[Bor86] A. H. Borning. Classes versus prototypes in object-oriented languages.
In Proceedings of 1986 ACM Fall Joint Computer Conference, pages
36–40, 1986.

[Bra92] Gilad Bracha. The Programming Language Jigsaw: Mixins, Modules,
and Multiple Inheritance. PhD thesis, University of Utah, 1992.

[Bra15] Gilad Bracha. Newspeak programming language draft specification
version 0.095. Technical report, Ministry of Truth, 2015.

[Bra16] Gilad Bracha. Mixins in Dart, August 2016. https://www.dartlang.
org/articles/mixins/, Retrieved January 2017.

[BS04] Andrew P. Black and Nathanael Schärli. Traits: Tools and methodol-
ogy. In ICSE, pages 676–686, Edinburgh, Scotland, May 2004.

[BSD03] Andrew P. Black, Nathanael Schärli, and Stéphane Ducasse. Applying
traits to the Smalltalk collection classes. In OOPSLA, pages 47–64,
2003.

[BvdAB+10] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai,
William Maddox, and Eliot Miranda. Modules as objects in Newspeak.
In ECOOP, ECOOP’10, pages 405–428. Springer-Verlag, 2010.

[CA84] Gael A. Curry and Robert M. Ayers. Experience with traits in the
Xerox Star workstation. IEEE Transactions on Software Engineering,
10(5):519–527, 1984.

[CBLL82] Gael Curry, Larry Baer, Daniel Lipkie, and Bruce Lee. Traits: An
approach to multiple-inheritance subclassing. In SIGOA conference on
Office Information Systems, pages 1–9, 1982.

[CM13] Tom Van Cutsem and Mark S. Miller. Trustworthy proxies - virtualiz-
ing objects with invariants. In ECOOP, pages 154–178, 2013.

[Coo89] William R. Cook. A Denotational Semantics of Inheritance. PhD
thesis, Brown University, Department of Computer Science, May 1989.

[Coo09] William R. Cook. On understanding data abstraction, revisited. In
OOPSLA, pages 557–572, 2009.

[Cro08] Douglas Crockford. JavaScript: the Good Parts. O’Reilly, 2008.
[CSZ11] Andrea Corradi, Marco Servetto, and Elena Zucca. DeepFJig: modular

composition of nested classes. In PPPJ, pages 101–110, 2011.
[CUwC91] Craig Chambers, David Ungar, and Bay wei Chang. Parents are shared

parts of objects: Inheritance and encapsulation. In Lisp and Symbolic
Computation, pages 207–222, 1991.

[DMC99] Christophe Dony, Jacques Malenfant, and Pierre Cointe. Classifying
prototype-based programming languages. In James Noble, Antero
Taivalsaari, and Ivan Moore, editors, Prototype-Based Programming:
Concepts, Languages and Applications, chapter 2. Springer-Verlag,
1999.

Journal of Object Technology, vol. V, no. N, 2011

http://doi.acm.org/10.1145/1238844.1238855
http://doi.acm.org/10.1145/1238844.1238855
http://dx.doi.org/10.1145/1238844.1238855
https://www.dartlang.org/articles/mixins/
https://www.dartlang.org/articles/mixins/
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 29

[DMN70] Ole-Johan Dahl, Björn Myhrhaug, and Kristen Nygaard. SIMULA:
Common Base Language. Norwegian Computing Center, October 1970.

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts,
and Andrew P. Black. Traits: A mechanism for fine-grained reuse.
ACM Trans. Program. Lang. Syst., 28(2):331–388, March 2006. URL:
http://doi.acm.org/10.1145/1119479.1119483, doi:10.1145/
1119479.1119483.

[Ern01] Erik Ernst. Family polymorphism. In ECOOP ’2001—Object-Oriented
Programming, ECOOP ’01, pages 303–326, London, UK, UK, 2001.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=
646158.680013.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes
and mixins. In Proceedings of the 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’98, pages
171–183, New York, NY, USA, 1998. ACM. URL: http://doi.acm.
org/10.1145/268946.268961, doi:10.1145/268946.268961.

[FKF99] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A
programmer’s reduction semantics for classes and mixins. In For-
mal Syntax and Semantics of Java, pages 241–269, London, UK, UK,
1999. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=
645580.658808.

[FX07] Manuel Fähndrich and Songtao Xia. Establishing object invariants with
delayed types. In OOPSLA, pages 337–350, 2007.

[GJS+15] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.
The Java Language Specification. Oracle, 2015.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and
its Implementation. Addison-Wesley, 1983.

[Gro14] Groovy Team. The Groovy programming language. Technical report,
Apache Inc, 2014.

[GS09] Joseph(Yossi) Gil and Tali Shragai. Are we ready for a safer construc-
tion environment? In ECOOP, pages 495–519, 2009.

[Her10] Stephan Herrmann. Demystifying object schizophrenia. In Proceedings
of the 4th Workshop on MechAnisms for SPEcialization, Generaliza-
tion and inHerItance, MASPEGHI ’10, pages 2:1–2:5, New York, NY,
USA, 2010. ACM. URL: http://doi.acm.org/10.1145/1929999.
1930001, doi:10.1145/1929999.1930001.

[HJN+14] Michael Homer, Timothy Jones, James Noble, Kim B. Bruce, and
Andrew P. Black. Graceful dialects. In ECOOP, pages 131–156, 2014.

[HN12] Michael Homer and James Noble. Graceful patterns for patterns
in Grace. In Proceedings of the 19th Conference on Pattern Lan-
guages of Programs, PLoP ’12, pages 11:1–11:15, USA, 2012. The Hill-
side Group. URL: http://dl.acm.org/citation.cfm?id=2821679.
2831281.

[HNB+12] Michael Homer, James Noble, Kim B. Bruce, Andrew P. Black, and
David J. Pearce. Patterns as objects in Grace. In Dynamic Language
Symposium, pages 17–28, New York, NY, USA, 2012. ACM.

Journal of Object Technology, vol. V, no. N, 2011

http://doi.acm.org/10.1145/1119479.1119483
http://dx.doi.org/10.1145/1119479.1119483
http://dx.doi.org/10.1145/1119479.1119483
http://dl.acm.org/citation.cfm?id=646158.680013
http://dl.acm.org/citation.cfm?id=646158.680013
http://doi.acm.org/10.1145/268946.268961
http://doi.acm.org/10.1145/268946.268961
http://dx.doi.org/10.1145/268946.268961
http://dl.acm.org/citation.cfm?id=645580.658808
http://dl.acm.org/citation.cfm?id=645580.658808
http://doi.acm.org/10.1145/1929999.1930001
http://doi.acm.org/10.1145/1929999.1930001
http://dx.doi.org/10.1145/1929999.1930001
http://dl.acm.org/citation.cfm?id=2821679.2831281
http://dl.acm.org/citation.cfm?id=2821679.2831281
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


30 · Noble, Black, Bruce, Homer, & Jones

[HRB+87] Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M.
Levy, and Eric Jul. The Emerald programming language report. Tech-
nical Report 87-10-07, University of Washington, Department of Com-
puter Science, October 1987.

[HRB+91] Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M.
Levy, and Eric Jul. The Emerald programming language report. Com-
puter Science, UBC, October 1991.

[IdFC07] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Walde-
mar Celes. The evolution of Lua. In Proceedings of the Third
ACM SIGPLAN Conference on History of Programming Languages,
HOPL III, pages 2–1–2–26, New York, NY, USA, 2007. ACM. URL:
http://doi.acm.org/10.1145/1238844.1238846, doi:10.1145/
1238844.1238846.

[IPW01] A. Igarashi, B.C. Pierce, and P. Wadler. Featherweight Java: A mini-
mal core calculus for Java and GJ. TOPLaS, 23(3):396–450, 2001.

[JHNB16] Timothy Jones, Michael Homer, James Noble, and Kim Bruce. Object
inheritance without classes. In Shriram Krishnamurthi and Benjamin S.
Lerner, editors, 30th European Conference on Object-Oriented Pro-
gramming (ECOOP 2016), volume 56 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 13:1–13:26, Dagstuhl, Ger-
many, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
URL: http://drops.dagstuhl.de/opus/volltexte/2016/6107,
doi:http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.13.

[KdRB91] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of
the Metaobject Protocol. MIT Press, 1991.

[LDF+12] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Rémy, and Jérôme Vouillon. The OCaml system release 4.00 documen-
tation and user’s manual, 2012.

[Li15] Paley Guangping Li. Object Cloning for Ownership Systems. PhD
thesis, Victoria University of Wellington, 2015.

[Lie86] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. In Conference Proceedings on
Object-oriented Programming Systems, Languages and Applications,
OOPSLA ’86, pages 214–223, New York, NY, USA, 1986. ACM. URL:
http://doi.acm.org/10.1145/28697.28718, doi:10.1145/28697.
28718.

[LSU87] Henry Lieberman, Lynn Stein, and David Ungar. Treaty of Orlando.
In Addendum to the Proceedings on Object-oriented Programming
Systems, Languages and Applications (Addendum), OOPSLA ’87,
pages 43–44, New York, NY, USA, 1987. ACM. URL: http://doi.
acm.org/10.1145/62138.62144, doi:10.1145/62138.62144.

[LSZ12] Giovanni Lagorio, Marco Servetto, and Elena Zucca. Featherweight
Jigsaw: Replacing inheritance by composition in Java-like languages.
Inf. Comput., 214:86–111, 2012.

[Mal08] Donna Malayeri. Cz: Multiple inheritance without diamonds. In
Companion to the 23rd ACM SIGPLAN Conference on Object-

Journal of Object Technology, vol. V, no. N, 2011

http://doi.acm.org/10.1145/1238844.1238846
http://dx.doi.org/10.1145/1238844.1238846
http://dx.doi.org/10.1145/1238844.1238846
http://drops.dagstuhl.de/opus/volltexte/2016/6107
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.13
http://doi.acm.org/10.1145/28697.28718
http://dx.doi.org/10.1145/28697.28718
http://dx.doi.org/10.1145/28697.28718
http://doi.acm.org/10.1145/62138.62144
http://doi.acm.org/10.1145/62138.62144
http://dx.doi.org/10.1145/62138.62144
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 31

oriented Programming Systems Languages and Applications, OOP-
SLA Companion ’08, pages 923–924, New York, NY, USA, 2008.
ACM. URL: http://doi.acm.org/10.1145/1449814.1449910,
doi:10.1145/1449814.1449910.

[Mey89] Bertrand Meyer. Re: Eiffel vs. C++. email to comp.lang.eiffel,
June 1989.

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall
PTR, second edition, 1997.

[Moo96] Ivan Moore. Automatic inheritance hierarchy restructuring and method
refactoring. In OOPSLA, pages 235–250, 1996.

[NDS06] Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schärli. Flattening
traits. Journal of Object Technology, 5:66–90, 2006.

[Nel91] Greg Nelson, editor. Systems Programming with Modula-3. Prentice-
Hall, 1991.

[NHBB13] James Noble, Michael Homer, Kim B. Bruce, and Andrew P. Black.
Designing Grace: Can an introductory programming language support
the teaching of software engineering? In 26th Conference on Software
Engineering Education and Training (CSEET), 2013.

[NTM97] James Noble, Antero Taivalsaari, and Ivan Moore, editors. Prototype-
Based Programming: Conecepts, Languages, Applications. Springer-
Verlag, 1997.

[Ode11] Martin Odersky. The Scala Language Specification: Version 2.9. Pro-
gramming Methods Laboratory, EPFL, Switzerland, 2011.

[OSV11] Martin Odersky, Lex Spoon, and Bill Venners. Programming In Scala.
artima, 2011.

[PB12] Nick Park and Bob Baker. The wrong trousers. 2entertain DVD,
February 2012.

[PHP16] PHP Team. PHP programmer’s manual. Technical report, PHP, 2016.

[QM09] Xin Qi and Andrew C. Myers. Masked types for sound object initial-
ization. In POPL, pages 53–65, 2009.

[RV97] Didier Rémy and Jérôme Vouillon. Objective ML: A simple object-
oriented extension of ML. In POPL, pages 40–53, 1997.

[Sch05] Nathanael Schärli. Traits—Composing Classes from Behavioral Build-
ing Blocks. PhD thesis, University of Berne, February 2005.

[Sha13] Pat Shaughnessy. Ruby Under A Microscope. No Starch Press, 2013.

[SM11] A. J. Summers and P. Müller. Freedom before commitment—a
lightweight type system for object initialisation. In OOPSLA, pages
1013–1032, 2011.

[Smi84] Brian Cantwell Smith. Reflection and semantics in LISP. In Proceed-
ings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, POPL ’84, pages 23–35, New York, NY,
USA, 1984. ACM. URL: http://doi.acm.org/10.1145/800017.
800513, doi:10.1145/800017.800513.

Journal of Object Technology, vol. V, no. N, 2011

http://doi.acm.org/10.1145/1449814.1449910
http://dx.doi.org/10.1145/1449814.1449910
http://doi.acm.org/10.1145/800017.800513
http://doi.acm.org/10.1145/800017.800513
http://dx.doi.org/10.1145/800017.800513
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


32 · Noble, Black, Bruce, Homer, & Jones

[SMPN13] Marco Servetto, Julian Mackay, Alex Potanin, and James Noble. The
billion-dollar fix—safe modular circular initialisation with placeholders
and placeholder types. In ECOOP, pages 205–229, 2013.

[SRV+15] Leonardo Humberto Silva, Miguel Ramos, Marco Tulio Valente,
Alexandre Bergel, and Nicolas Anquetil. Does JavaScript software
embrace classes? In SANER, pages 73–82, 2015.

[Ste87] Lynn Andrea Stein. Delegation is inheritance. In Conference Pro-
ceedings on Object-oriented Programming Systems, Languages and
Applications, OOPSLA ’87, pages 138–146, New York, NY, USA,
1987. ACM. URL: http://doi.acm.org/10.1145/38765.38820,
doi:10.1145/38765.38820.

[Tai93] Antero Taivalsaari. A Critical View of Inheritance and Reusability in
Object-oriented Programming. PhD thesis, University of Jyväskylä,
1993.

[Tai95] Antero Taivalsaari. Delegation versus concatenation or cloning is
inheritance too. SIGPLAN OOPS Mess., 6(3):20–49, July 1995.
URL: http://doi.acm.org/10.1145/219260.219264, doi:10.1145/
219260.219264.

[Tai96] Antero Taivalsaari. On the notion of inheritance. ACM Computing
Surveys, 28(3):438–479, 1996.

[Tai99] Antero Taivalsaari. Classes vs. prototypes: Some philosophical and
historical observations. In James Noble, Antero Taivalsaari, and Ivan
Moore, editors, Prototype-Based Programming: Concepts, Languages
and Applications, chapter 1. Springer-Verlag, 1999.

[Tai09] Antero Taivalsaari. Simplifying JavaScript with concatenation-based
prototype inheritance. Technical Report Raportti 6, Tampereen teknilli-
nen yliopisto. Ohjelmistotekniikan laitos, 2009.

[The15] The Rust Team. The Rust programming language. Technical report,
Mozilla Inc, 2015.

[UCCH91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. Or-
ganizing programs without classes. Lisp Symb. Comput., 4(3):223–
242, July 1991. URL: http://dx.doi.org/10.1007/BF01806107,
doi:10.1007/BF01806107.

[Ung02] David Ungar. How to program in Self 4.1. Technical report, Sun
Microsystems, Inc, 2002.

[US91] David Ungar and Randall B. Smith. Self: The power of simplicity. Lisp
Symb. Comput., 4(3):187–205, July 1991. URL: http://dx.doi.org/
10.1007/BF01806105, doi:10.1007/BF01806105.

[WB15] Allen Wirfs-Brock, editor. ECMAScript 2015 Language Specification.
Ecma International, 6th edition, 2015.

[Weg87] Peter Wegner. Dimensions of object-based language design. In OOP-
SLA, pages 168–182, 1987.

[ZCPS12] Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay Saraswat.
Object initialization in X10. In Proceedings of the 26th European
Conference on Object-Oriented Programming, ECOOP’12, pages

Journal of Object Technology, vol. V, no. N, 2011

http://doi.acm.org/10.1145/38765.38820
http://dx.doi.org/10.1145/38765.38820
http://doi.acm.org/10.1145/219260.219264
http://dx.doi.org/10.1145/219260.219264
http://dx.doi.org/10.1145/219260.219264
http://dx.doi.org/10.1007/BF01806107
http://dx.doi.org/10.1007/BF01806107
http://dx.doi.org/10.1007/BF01806105
http://dx.doi.org/10.1007/BF01806105
http://dx.doi.org/10.1007/BF01806105
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN


Grace’s Inheritance · 33

207–231, Berlin, Heidelberg, 2012. Springer-Verlag. URL: http:
//dx.doi.org/10.1007/978-3-642-31057-7_10, doi:10.1007/
978-3-642-31057-7_10.

Acknowledgments This work was supported in part by the Royal Society of New
Zealand Marsden Fund, and a James Cook Fellowship.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.1007/978-3-642-31057-7_10
http://dx.doi.org/10.1007/978-3-642-31057-7_10
http://dx.doi.org/10.1007/978-3-642-31057-7_10
http://dx.doi.org/10.1007/978-3-642-31057-7_10
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

	Introduction
	Objects and Classes in Grace
	Generative Object Constructors
	Classes
	An alternative: Classes before Objects

	Designing Inheritance
	First Steps toward Inheritance
	Design Concerns
	Delegation
	Concatenation
	Merged Identity
	Uniform Identity

	Multiple Reuse
	Traits as Objects
	Generalised Uniform Identity
	Positional Inheritance
	Method Aliasing
	Instantiable Traits

	Related Work
	Conclusion
	Bibliography

