
Dismissing the \Final Concern"

or

Matches Rides Again

A Position Paper for the ANSA workshop on F-bounded quanti�cation

Andrew P. Black

Digital Equipment Corporation Cambridge Research Laboratory

6th July 1992

1 Introduction

In his paper \Revising the DPL Type System" [Watson 92], Andrew Watson concludes by raising a \�nal

concern" about the suitability of the matches relation . for constraining the type of a parameter to a

polymorphic operation. It is the purpose of this note to lay this \�nal concern" to rest, and to dispel any

lingering doubts as to the suitability of . for expressing parameter constraints.

2 Matches and F-bounded Polymorphism

The F-bounding condition is de�ned by Canning et al. [Canning 89] as t � F [t], where � is the subtyping

relation and F [t] is an expression, generally containing the type variable t. Because Canning's work is proof

theoretic, this essentially syntactic de�nition is natural.

In our technical report \Typechecking Polymorphism in Emerald", Hutchinson and I de�ne the relation .

(read matches) used to constrain type parameters in Emerald [Black 91]. Here the setting is model-theoretic:

if t is a type, and C is a type generator (a function from types to types), then

p . C
def
= p �> C(p) (1)

where �> is Emerald's subtyping relation (called conformity).

Notation

In the remainder of this position paper the notation of the Emerald Programming Language will be used. In

addition, rather than depending explicitly on the types-as-functions model developed in reference [Black 91],

the notation

typef�[a]! [r]; [b]! [s]g

will be used to denote a type, without regard for how that type is modeled. Objects with the above type

possess the two operations named � and ; � has signature [a]![r], which means that it takes an argument

of type a and returns a result of type r , while takes an argument of type b and returns a result of type s.

Further, � and � will be used in the usual way, so that

G = �t: typef�[a]! [t]g

Author's electronic mail addresses: black@crl.dec.com

1

is a function that maps types into types, and

f = �t: typef�[a]! [t]g

is the �xpoint of that function. Thus f = G(f) = typef�[a] ! [f]g; this provides a way of writing self-

referential types.

3 Parametric Polymorphism and Type Constraints

The purpose of this section is to motivate (by the use of an example) the rôle of matching (F-bounding) in

describing parameter constraints. This section can be omitted by those familiar with the need for matching.

One of the simplest motivating examples is an object that constructs homogeneous sets, i.e., an object

with an operation of that takes as argument a type t , and returns an empty set into which objects of type

t can be inserted. The type of such a constructor might be declared as follows.

const emptySet typeobject emptySet

operation of [t : type] ! [r : x]
suchthat t . eq

where eq typegenerator e

operation =[e] ! [Boolean]
end e

where x typeobject set

operation insert [t]! []
operation extract [] ! [t]

end set

end emptySet

In the implementation of the insert operation, the argument must be tested for equality with elements

already in the set. The suchthat clause expresses the constraint that the type argument to of possess such

an equality operation.

The type char is a suitable element type for a set, and should be a legal argument to the of operation.

const char typeobject c

operation =[c] ! [Boolean]
operation ord [] ! [int]

end char

Notice that eq is de�ned as a type generator, whereas char is a type.

eq = �e: typef=[e]! [Boolean]g

char = �c: typef=[c]! [Boolean]; ord []! [int]g

Observe that char �>= �xeq , because �xeq = �e: typef=[e]! [Boolean]g, and if char were to conform to

this type, contravariance on the argument to = would require that �xeq conform to char . This cannot be

the case because �xeq does not have the ord operation of char .

Now consider eq(char) = typef=[char] ! [Boolean]g. Clearly char �> eq(char). Hence, by the de�-

nition of . (1), we have char . eq . Thus the use of . to constrain the parameter to of allows of to be

applied to char , whereas the use of �> does not.

2

4 Watson's Concern

Watson points out that the function �t: t .C for some �xed C is not monotone in t [Watson 92, Section

5.4.2.5]. In other words,

h �> i ^ i .C 6) h .C :

To see this, consider the example

h = typef�[]! [i]; �[]! [];
[]! []g

i = �t: typef�[]! [t]; �[]! []g

C = �t: typef�[]! [t]g

Clearly, h �> i, and i �> C(i), so i .C. But h �>= C(h) because the result of � in h is i, while the result

of � in C(h) is h, and i �>= h. Hence h6 .C.
Why might this be a concern? Imagine that o.� has signature [T]![T] forall T . C . Further, suppose

that e is an expression with syntactic type i . (For example, e might be a name declared as var e: i .) The

semantic function T is used to obtain the syntactic type of an expression, so in this case we have T [[e]] = i.

Then o:�[e] is type-correct, since T [[e]] .C .

However, when e is actually evaluated, it might well yield an object with type h; since h �> i , this is

permitted by our type checking regime. Nevertheless, since h 6 .C , the invocation o:�[view e as h] is type

incorrect. y

Watson's concern arises because both o:�[e] and o:�[view e as h] must in fact invoke the same operations

on the same objects. Since o:�[e] is type-correct we know that these invocations cannot cause a \message

not understood" error. Surely, then, o:�[view e as h] must also be considered to be type correct?

5 An Important Omission

What is omitted from this reasoning is that the type-checking rule for invocations does not merely tell us

that o:�[e] is type-correct, but also assigns it a syntactic type [Black 91, rule 9]. Given that o:� has signature

[T]![T] forall T . C , we have

T [[o.�[e]]] = T [[e]] : (2)

Now consider a possible implementation of operation �.

operation � [a:T] ! [r :T] forall T suchthat T .C

r a.�[]
end �

The constraint on the type of a gives us enough information to guarantee not just that a has an �

operation, but also that the result of a.�[] has syntactic type T , and thus that the assignment to r is

type-correct. The semantics of this implementation do therefore satisfy the type-checking rule (2).

Now consider once again the invocation o:�[view e as h], and further assume that the object yielded by

the evaluation of e does in fact have dynamic type h. In the body of �, the invocation a.�[] will still be

yThe Emerald expression view e as h evaluates to the same object as the expression e, but has syntactic type h. In the

usual case that T [[e]] �>= h, the evaluation of the view expression will require a conformance check at run time.

3

understood, but the result will have syntactic type i , not h. The result of o:�[view e as h] will therefore

also have type i ; this violates rule (2), which in this case becomes

T [[o.�[view e as h]]] = T [[view e as h]] = h

Now we see why o.�[view e as h] must be considered to be a type error. It is not because there might

be an interaction error in the body of the � operation: as Watson rightly summises, this cannot occur. It

is because allowing this invocation would erroneously cause us to assign the syntactic type h to its result,

when in fact we ought to assign it type i . An interaction error could then occur in the calling code, when

operation
 is invoked on the result of o.�[view e as h].

6 A Simpler Example

Assuming that the reader is convinced by the argument so far, the obvious question that arises is what would

happen if the operation whose argument is constrained by . in fact returns no result at all, or returns a

result whose type is independent of that of its argument.

To examine this situation, imagine that object o possesses an additional operation with signature

[T]![Any] forall T . C . Corresponding to this signature is the implementation

operation [a:T] ! [r :Any] forall T suchthat T . C

r a.�[]
end .

Just as with �, o. [e] is type correct, but o. [view e as h] is type incorrect. However, since (the results

of) all invocations of o. have syntactic type Any , and since Any possesses no operations, no subsequent

interaction error can occur. It seems that in this case it is overly pessimistic to make o. [view e as h] a

type error.

The reader should note carefully that the responsibility for this pessimism lies not with the type checking

rules, nor with the de�nition of . , but with the programmer who selected the constraint for . If the

signature for were instead [T]![Any] forall T . D , where

D = �t: typef�[]! [Any]g ;

and if the implementation of is revised to read

operation [a:T] ! [r :Any] forall T suchthat T . D

r a.�[]
end ,

then the body of would still be type-correct. However, since i .D and h .D , both the invocations o. [e]

and o. [view e as h] are type-correct.

Why might a programmer use C rather than D to constrain the argument to ? One reason might

be a simple mistake, or a misunderstanding of the meaning of type constraints. Another reason might

be that he or she intends to allow for other implementations of (on other objects), for which the more

stringent constraint might be necessary. In either case, the decision as to whether o. [view e as h] should

be type-correct is in the hands of the programmer.

4

7 Summary

This paper has shown that the . relation used to constrain parameters of polymorphic operations in Emerald

is robust to the situation described by Watson. When a strong constraint is necessary in order to maintain

the type-checking invariant, . enables the programmer to express that constraint. Of course, it is possible

for a programmer to write a constraint that is more stringent than necessary for the type-correctness of a

particular piece of code; this is analogous to the situation that arises with monomorphic operations, where

it is possible for the programmer to require that the arguments possess operations that are never used.

References

[Black 91] Andrew P. Black and Norman Hutchinson. Typechecking polymorphism in Emerald. Technical Report
CRL TR 91/1 (Revised), Digital Equipment Corporation, Cambridge Research Laboratory, July 1991.
Available by electronic mail from techreports@crl.dec.com.

[Canning 89] Peter S. Canning, William R. Cook, Walter L. Hill, Walter Oltho�, and John C. Mitchell. F-Bounded
polymorphism for object-oriented programming. In Proceedings of the Fourth International Conference

on Functional Programming Languages and Computer Architecture, pages 273{280, September 1989.

[Watson 92] Andrew J. Watson. Revising the DPL type system. Technical Report APM/RC.339.02, Architecture
Projects Management Limited, June 1992.

5

