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Abstract. 

 

There are, of course, many uses for inheritance. In general, they fall into two categories: expressing
subtyping, and reusing implementation. In this paper we study one particular way of applying inheritance to the
problem of reusing implementation: we us inheritance to mitigate the rows and columns dichotomy. We explain
this problem, and then give, in pattern form, a detailed description of this use of inheritance.
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1 Introduction

 

The rows and columns dichotomy is by now a well-
known issue in the programming language design com-
munity — although it is perhaps less well known in the
community of practicing programmers. As commonly
described, the dichotomy is presented as a win-lose
battle between Object structure and Algebraic Data
Types. We believe that, with proper use of inheritance,
many of these battles can be turned into win-wins for
Object structure.

 

We first describe the rows and columns dichotomy as
it is usually depicted. We then go on to give a design
pattern, which we have called the core/support split, that
can often be used to avoid, or at least ameliorate, the
consequences of choosing to organize one’s program by
columns, 

 

i.e.

 

, using object structure.

 

2 The Rows and Columns dichotomy

 

Odersky and Wadler have described the dichotomy
between Object structure and algebraic data types as
follows [4]:

 

Object types and inheritance make it easy to extend the
set of constructors for the type, so long as the set of op-
erations is relatively fixed. Conversely, algebraic types
and [pattern] matching make it easy to add new opera-
tions over the type, so long as the set of constructors is
relatively fixed. The former might be useful for build-
ing a prototype interpreter for a new programming lan-
guage, where one often wants to add new language
constructs, but the set of operations is small and fixed
(evaluate, print). The latter might be useful for building
an optimising compiler for a mature language, where
one often wants to add new passes, but the set of lan-
guage constructs is fixed.

 

Algebraic types make it easy to add new operations
because each operation is represented as a single proce-
dure. The cost of this convenience is that each of these
procedures is defined by pattern matching on each of
the constructors: adding a constructor therefore requires
that 

 

every

 

 procedure be edited. If this step is forgotten,
the result will be, depending on the programming lan-
guage, either a compile-time “non-exhaustive match”
error or, worse, a runtime failure. 

Object structure makes it easy to add a new represen-
tation for an abstraction: this is accomplished by defin-
ing a new class. There is no need to modify the pre-
existing classes that provide the other implementations
of the abstraction. The cost of this convenience is that
adding a new operation to an abstraction requires that
the corresponding method be provided for 

 

every

 

 class
that implements the abstraction. If this step is forgotten,
the result will be, depending on the language, either a
compile-time type error or, worse, a runtime “message
not understood” error.

If one needs to extend an abstraction in both of these
dimensions, one is left with the distinct impression that
there is no solution: once can arrange one’s data
abstraction by rows (algebraic types) or by columns
(classes), but clearly one can’t do both.

But this description of the dichotomy ignores the rôle
of inheritance. This position taken by this paper is that
inheritance is a powerful tool that can often give us the
best of both worlds. We can have object structure and
the concomitant ability to easily add new representa-
tions while also reducing the effort required to add new
operations. In fact, it will frequently be the case that a
new operation can be implemented by the addition of a
single method in a single class.

In the remainder of this paper we show how this feat
can be accomplished by use of a programming pattern
that we have dubbed the 

 

Core/Support split

 

.



 

3 The Core/Support Split

 

3.1  Context

 

You are writing several concrete classes that all imple-
ment the same abstraction and export the same inter-
face. Each of the concrete classes uses a different
representation for this abstraction. As the program
evolves, the interface must sometimes be extended to
include additional messages; consequently, all of the
implementing classes must also be extended so that
their instances understand. these additional mes-
sages.These interface extensions are typically “utility”
or “support” methods that provide functionality that
has proved to be useful to a number of clients. 

 

In addition, sometimes new concrete classes are
added to provide new implementations of the interface.
The need to add new operations and new classes may
arise either because there is a change in requirements
that demands additional functionality, or because new
implementation technology (a new device, a new net-
work protocol) becomes available to better meet the
existing requirements.

 

3.2  Problem

 

With each extension of the interface, all of the concrete
classes that implement this interface must also be
extended. A new method must be added to each of
them; all of these methods are conceptually similar.

 

However, because the methods are in different
classes, this conceptual similarity is not explicitly repre-
sented in the structure of the program. Code is dupli-
cated, leading to maintenance, comprehension and
coherence problems. The work that must be done to
extend the interface with a new message is multiplied
by the number of implementing classes.

 

3.3  Forces

 

•

 

Limiting the implementation to a single class may not 
provide enough efficiency or functionality.

 

•

 

A real strength of object-orientation is that it allows 
multiple classes to implement the same interface, and 
hides this multiplicity from their client. However, it 
can be difficult to maintain such multiple implemen-
tations—in particular, it can be difficult to maintain 
their consistency.

 

•

 

When the interface must be extended, it is a lot of 
work to add the appropriate methods to all of the 
implementation classes. This makes the implementor 
reluctant to undertake an extension.

 

•

 

If the interface is 

 

not

 

 extended, clients code must 
instead replicate the same functionality.

 

•

 

Spreading conceptually similar methods across multi-
ple classes hides that similarity.

 

3.4  Solution

 

Therefore, partition the messages of the interface into
two sets: the 

 

core

 

 messages, which provide access to

 

all

 

 of the information contained in the objects, and the

 

support

 

 messages, which provide useful utility func-
tions for the clients.

 

Provide each of the concrete implementations with
its own complement of core methods, for these methods
must necessarily be intimate with the details of the
objects’ representation.

Create an abstract class, and install it as a superclass
of all of the implementation classes. All of the support
methods shall be implemented as methods on this
abstract superclass. When these methods must access
the information contained in the object, they shall
obtain that information by sending a 

 

core

 

 message. The
support methods shall not do anything that depends on
the concrete class of the receiver.

Because of the way the messages are partitioned,
new messages demanded by clients will usually be sup-
port messages, which can consequently be implemented
by a single method in the abstract superclass.

If a new class implementing the interface must be
added, then only the minimal set of core methods must
be implemented in that class. All the other functional-
ity—the support methods—can be inherited from the
abstract superclass.

 

3.5  Code Samples

 

We are implementing lists with the traditional interface,

which we represent as the abstract class 

 

AbsList 

 

(see
Figure 1).

 

Initially, there are three concrete classes that imple-
ment this interface: 

 

EmptyList 

 

(see Figure 2), which has
the obvious semantics, 

 

ConsList 

 

(Figure 3), representing
lists built from objects that contain an element and a list,
in the manner of the traditional Lisp Cons cell, and

 

(Abstract) 

 

Class

 

 AbsList
instance Variables:

 

 (none)

 

methodsFor 

 

accessing 

 

AbsList

 

isEmpty

 

“

 

answers true if this list is empty, otherwise false

 

”
self subclassResponsibility

 

first

 

“

 

answers the first element of this list

 

”
self subclassResponsibility

 

rest

 

“

 

answers a list containing all of my elements 
except the first

 

”
self subclassResponsibility

 

Figure 1: The Abstract Class

 

 AbsList



 

FunList.

 

 

 

FunList

 

s

 

 

 

(see Figure 4) require a little explana-
tion. A 

 

FunList

 

 represents a list that can be defined as
the fixed point of a function from lists to lists. A new

 

FunList

 

 is created by providing 

 

FunList new:

 

 with an
argument that is a block that represents such a function.
The resulting 

 

FunList

 

 is a list that is a fixed point of that
function, that is, a list that will be unchanged by the

function. For example, the function that prepends 1 and
2 onto its argument list has the infinite list [ 1 2 1 2 1 2
1 2 1 2 1 2 … ] as a fixed point.

 

A short aside on FunLists. 

 

In general, the functions
that can be used as the kernel of a FunList might or
might not have fixed points. Constant functions 

 

λ

 

l. c

 

will always have 

 

c

 

 as a fixed point, and constructive
functions that extend their argument list will have an
infinite list as their fixed point. How can we determine
what 

 

first

 

 and 

 

rest

 

 should do on such a list? If 

 

lst

 

 is a
funlist with kernel function 

 

f

 

, then 

 

lst

 

 is a fixed point of

 

f

 

, in other words, 

 

f(lst) = lst. 

 

So 

 

first(lst) = first (f (lst)).

 

This transformation is called 

 

unrolling

 

. Provided that 

 

f

 

adds information to its argument, this is sufficient to
define 

 

first

 

; see the code in Figure 4. [

 

end of aside

 

]

Each of these three concrete classes defines the core
methods 

 

first

 

, 

 

rest

 

 and 

 

isEmpty 

 

in ways that depend on
the details of their representation. But support methods,
like 

 

printOn:

 

 need not be defined once for each concrete
class; they can be defined once and for all in the
abstract superclass, as shown in Figure 5

 

.

 

Note that the 

 

printElementsOn:

 

 method in 

 

AbsList

 

 is

 

Pure Behaviour

 

1

 

. It does not do anything that depends
on the details of any of the concrete representation sub-
classes. Indeed, the compiler would not allow this
method to access the instance variables 

 

head

 

 and 

 

tail

 

 of

 

Class

 

 EmptyList 

 

subclass of 

 

AbsList
instance Variables:

 

 (none)

 

class Variables: theUniqueEmptyList

methodsFor 

 

accessing 

 

EmptyList

 

isEmpty

 

↑

 

true

 

first

 

↑

 

self error: 'an Empty list has no first element'

 

rest

 

↑

 

self error: 'an Empty list has no rest'

 

class 

 

methods for 

 

instance creation

new

 

“

 

answer the unique EmptyList

 

”

theUniqueEmptyList isNil
ifTrue:[ theUniqueEmptyList := self basicNew ].

 

↑

 

 theUniqueEmptyList

 

Figure 2: The Concrete Class 

 

EmptyList

 

Class 

 

ConsList 

 

subclass of 

 

AbsList
instance variables: head tail 

 

private 

 

methods 

 

head:

 

 anElement 

 

tail: 

 

aList
“

 

initialize the instance variables

 

”

head := anElement.
tail := aList

 

↑

 

self

methods for 

 

accessing 

 

ConsList

 

isEmpty

 

↑

 

false

 

first

 

↑

 

head

 

rest

 

↑

 

tail

 

class 

 

methods for 

 

instance creation

new

 

“

 

cancel this method

 

”

 

↑

 

self shouldNotImplement

 

new: 

 

anElement 

 

onto:

 

 aList
“

 

create a new cons list

 

↑

 

super new head: anElement tail: aList

 

Figure 3: The Concrete Class 

 

ConsList

 

class

 

 FunList 

 

subclass of 

 

AbsList
instanceVariables: listFunction

 

private

 

 methods

 

function:

 

 aBlock
"aBlock should be a function from lists to lists "

listFunction := aBlock

methods for accessing

isEmpty
"unroll the definition once and see if it is empty "

↑ (listFunction value: self) isEmpty

first
"unroll the definition once and take the first element "

↑ (listFunction value: self) first

rest
"unroll the definition once and take the rest "

↑ (listFunction value: self) rest

class methods for instance creation

new: aBlock
"aBock represents a function from lists to lists "

↑super new function: aBlock

Figure 4: The Concrete class FunList

1 A method is said to be Pure Behaviour if its body does not 
access any instance or class variables directly, but instead 
accomplishes its objective solely by sending messages.



ConsList, because they are out of scope. However, the
compiler will allow us to write tail isKindOf: EmptyList
rather than tail isEmpty. This should be avoided. Why?
Because such code makes the assumption that all empty
lists will be a subclass of EmptyList, an assumption that
is likely to be violated if new representations of list are
added as new subclasses of AbsList. Indeed, since
FunLists can also be empty, this assumption has already
been violated! (Consider FunList new: [ :lst | EmptyList
new ].)

Other support methods can easily be added to
AbsList. For example, we might define do: and add: on
AbsList, in a way similar to that in which they are
defined on Collection (see Figure 6). Note that although
the add: method is pure behaviour, it also uses the fact
that ConsList is a kind of AbsList. However, this fact is
likely to be robust to change: it is much more likely that
new kinds of list will be added to the program than it is
that ConsList will be removed. The abstract superclass
AbsList should avoid using the fact that FunList, ConsList
and EmptyList are its only subclasses; it is permissible to
use the fact that they are subclasses and that they pro-
vide implementations of its abstraction.

3.6  Resulting Context

The application of this pattern produces code that
makes maximal reuse of the methods in the abstract
superclass, and makes minimal demands on the imple-
mentor of a new subclass. That is, the set of core
methods that a new subclass must implement is as
small as possible. 

This may have consequences for efficiency. The vari-
ous subclasses may be able to respond to the same mes-
sages as the superclass in much more efficient ways. A
trivial example is the method for printElementsOn: in
AbsList. Clearly, if EmptyList implemented
printElementsOn: directly, the method would do no work
at all, whereas the generic method in AbsList sets up a
loop and tests self for emptiness.

If these efficiency problems prove to be significant in
the application, they can be avoided by providing addi-
tional, more efficient versions of the support methods in
the subclasses. Such additional implementations do not
compromise extensibility, because they are additions,
not replacements. The generic method in the abstract
superclass is still available for reuse by those concrete
classes for which it is adequate.

However, the additional implementations do pose a
correctness problem: the additional implementations
may be wrong, in that their behaviour may differ from
that of the overridden abstract implementation. Moreo-
ver, as the semantics of the data abstraction evolves, the
additional implementations must be modified to track
the changes in semantics of the abstract ones in the
superclass. 

Automated testing can be used to check and maintain
this coherence. All that is necessary is that the abstract
superclass contain a method that provides access to the
overridden method under a different name. This allows
a test method to compare the results of the efficient and
the inherited versions.

3.7  A Caution

The most important step in applying this pattern is the
initial partitioning of the messages into the categories

class AbsList subclass of Object
instance Variables: (none)

methodsFor printing AbsList

printOn: aStream 
"Append to the argument aStream a sequence of 
characters that describes the receiver."

aStream nextPut: $[.
self printElementsOn: aStream.
aStream nextPut: $].

printElementsOn: aStream
"writes to aStream a representation of not more
than 15 of my early elements "

| tail |
tail := self.
15 timesRepeat: 

     [ tail isEmpty ifTrue: [↑self].
aStream nextPut: $ . “put a space”
tail first printOn: aStream. “put the first

element ”
tail := tail rest].

tail isEmpty ifFalse:[ aStream nextPutAll: ' ...'].

Figure 5: Methods for Printing AbsLists

class AbsList subclass of Object
instance Variables: (none)

methodsFor accessing AbsList

add: aNewElement
"answers a list containing all of my elements, 
and aNewElement "

↑ConsList new: aNewElement onto: self.

methodsFor enumerating AbsList

do: aBlock 
"Evaluate aBlock with each of my elements as
the argument."

| tail |
tail := self.
[tail isEmpty]

whileFalse: 
[aBlock value: tail first.
tail := tail rest]

Figure 6: do: and add: for AbsLists



core and support. Support methods may rely on core
methods, but core methods may not rely on support
methods. It is easy to generate circular definitions if
this partitioning is not maintained and documented.

Which set of methods should be the core? The
answer is: a complete set of observers1. These methods
must be sufficient to extract all of the information con-
tained in the abstraction represented by the objects of
the class.

The basic idea is that an object-oriented definition of
a data structure is the dual of the algebraic definition; in
fact, object structure corresponds to coalgebraic defini-
tion. 

Jacobs and Rutten have written a excellent, if rather
technical, tutorial on algebras and coalgebras [2]; we
will not attempt to go into the details here. Instead, let
us illustrate the concepts by example. 

If binary trees are defined algebraically, there are
typically two constructors: empty and subtreeLeft: value:
right:. A complete set of observers for the corresponding
coalgebraic (object) type is isEmpty, which tests to see
if a tree is empty, left and right, which obtain the sub-
trees, and value, which extracts the data. This set of
observer method is sufficient to explore any binary tree.
For example, the support method leftSubtreeIfAbstent:
aBlock can be defined using left and isEmpty.

Of course, the programmer must still make some
choices about the way that the set of core methods is
represented. For example, a single observer that returns
the two subtrees and the value of the node as a triple is
obviously sufficient to subsume left, right, and value.
The choice between these two representations for the
core may well depend more on the details of the imple-
mentation language than on any fundamental issue in
the problem space. For example, if returning a tuple of
results is inconvenient or expensive in the chosen lan-
guage, then it will be preferable to use three separate
observers. As another example: if the left right and value
observers raise an exception when applied to an empty
tree, there is actually no need to make isEmpty a (core)
observer: it can be implemented as a support method.
However, if raising and catching an exception is an
order or magnitude more costly than executing a
method, it would be wise to implement isEmpty as a
core method anyway.

3.8  Known Uses

In most Smalltalk systems, the abstract class Magni-
tude is the superclass of all of the classes that represent
totally ordered values. This includes not just the
numeric classes, but also dates and characters. Magni-
tude designates <, = and hash as the core methods that
must be overridden by subclasses; this is done by

declaring them to be subclassResponsibility, roughly
equivalent to declaring an abstract method in Java.
Magnitude also defines many support methods, includ-
ing max:, min:, between:and: as well as >, >= and <=.
Some of these methods (like >) are re-implemented in
subclasses for efficiency. In this case, the choice of the
core methods is somewhat arbitrary; ≥ could have been
chosen instead of < and =, and only the details would
have changed.

Another known use is Smalltalk’s class Stream. This
is the abstract superclass for a large (and growing) col-
lection of different kinds of stream, e.g., Squeak now
supports a ZipEncoder stream that writes compressed
files. The core methods for the Stream classes are next,
contents, atEnd and nextPut:. The Stream class imple-
ments additional support methods in terms of these core
methods: there are 16 such methods in Squeak 3.0 and
over 30 in VisualWave 2.0. Strictly, contents need not
logically be part of the core, since it could be simulated
by repeated calls on next, but depending on the imple-
mentation of the stream, contents may be very much
more efficient.

The abstract class SequenceableCollection in Squeak
provides something of a counter-example. Since the
various subclasses of SequenceableCollection imple-
ment different abstractions, it does not fit the context of
this pattern. Moreover, it is not clear which of the many
(about 90) methods are core. We have noted that defin-
ing a method as subclassResponsibility is a clear indi-
cation that the corresponding message is core. Although
SequenceableCollection does not define any methods as
subclassResponsibility, three such methods are inher-
ited from the abstract class Collection: these are do:, add:
and remove:ifAbsent:. SequenceableCollection defines
only do: as a useful method; it does so in terms of at:.
The method add: is not defined at all.
SequenceableCollection>>remove:ifAbsent: is defined as
self shouldNotImplement; this reflects the fact that
SequenceableCollection implements a more restricted
abstraction than Collection.

What should the core methods be for Sequence-
ableCollection? It would seem that the ability to index
the collection by an integer is core to the idea of
sequences; this ability provided by the methods for at:
and at: put:. Along with these methods, we need a way
of finding the range of legal indices; although
includesKey: is theoretically sufficient, a method keys
that returns the valid keys (e.g., as an Interval) would be
more useful. Finally, sequenceable collections (unlike
arrays) are intended to be extensible; this requires
either a method add: (or addLast: ), or that collection at: n
put: newValue be permitted in the special case when n =
collection size + 1.

Which of at: and at:ifAbsent: should be core and
which support? It is usually the case that a method like
at: n is defined as at: n ifAbsent: [self errorNoSuch-
Element]. However, in Squeak, at:ifAbsent: is in fact
defined in terms of at: It really does not matter, but suc-
cessful use of this pattern does require that such a
choice is made consistently and that it is documented,
so that implementors of subclasses understand their
responsibilities. The lack of such clarity in some of the

1 In algebra, observers are also called destructors: the 
destructors of a co-algebra play a dual role to the construc-
tors of an algebra. However, we will not use that term here, 
because of the possible confusion with an operation that 
deallocate storage for an object.



collection classes is probably due to their age, and to the
fact that they have been extended inconsistently by dif-
ferent authors over a long period.

4 Related Work

The idea that an abstract class might implement an
abstract algorithm in terms of abstract methods that its
subclasses must take the responsibility to design is an
old one. It was categorized as the Template Pattern by
the Gang of Four [1], but Rebecca Wirfs-Brock and her
co-authors discuss it at some length in their 1990 book
[5].

Woolf [6] discusses the Abstract Class pattern, and
indeed uses Smalltalk’s Magnitude class as an illustra-
tion. This paper observes that Abstract classes contain-
ing template methods are especially useful when several
concrete classes provide alternate implementations of
the same abstraction.

Some of the same issues that motivate this pattern
were also discussed by Lamping at least as far back as
1993 [3]; this paper also uses the the name “core meth-
ods” to refer to those that access the instance variables
of the representation directly. The set containing the
remaining methods is not named, but these methods are
given a type that explicitly distinguishes the protocol
that a method uses on self from the protocol that is
implemented by the method’s class. However, Lamp-
ing’s inheritance hierarchy is the inverse of that pro-
posed here: his support protocol inherits from the core
protocol, while this pattern proposes the opposite.

One way of understanding the Core/Support split is
as generalisation of Template Method to the design of
entire classes rather than single methods. Certainly, this
paper does not propose any new techniques; its contri-
bution is to provide a name for a pattern and to identify
the places where it is particularly applicable — multiple
implementations of a single abstraction — as well as
making explicit the connection to coalgebras.

5 Summary

We have introduced a pattern that can be applied to a
wide variety of data abstractions. Through a careful
separation of the core and the support methods, the
Support methods can be reused through inheritance
even thought the underlying representation of the data
abstraction, and thus the implementation of the core
methods, are completely different.

Used in this way, inheritance has nothing whatever to
do with classification. It is a code reuse tool, enabling
abstract implementations of the Support methods to be
“parameterised” by the implementation of the core
methods. Compared to using explicit parameterization,
the use of inheritance leads to code that “feels” more
concrete, and that is thus much easier to read. Such code
is nevertheless highly abstract and easy to reuse. 
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