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Abstract:

The programming language Emerald was designed and developed to demonstrate

that the object-based style of programming can be incorporated both elegantly and

e�ciently in the distributed programming environment. At the same time, Emerald

is an '80s programming language providing excellent features for abstraction and

polymorphism. Primarily a language for distributed environments, Emerald includes

features for dealing with the location of objects, and extends exception handling

mechanisms for recovering from partial failures of distributed systems. This report

presents an overview of Emerald and a concise description of its language constructs.
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1 Introduction

The justi�cation for Emerald, as for any new programming language, is that existing lan-

guages have proved to be unsatisfactory for the applications at hand. The primary goal

of Emerald [Black 86, Black 87, Jul 88b] is to simplify distributed programming through

language support while providing acceptable performance and 
exibility both in local and

distributed environments. Emerald also demonstrates that the object-based model of pro-

gramming can be incorporated both elegantly and e�ciently in distributed systems.

For pragmatic reasons, it is often advantageous to base new languages on the better

features of existing languages. For e�ciency and other considerations, language design

for distributed systems is strongly in
uenced by the underlying distributed operating sys-

tem. Consequently, Emerald draws heavily upon the experience gained from Smalltalk

[Goldberg 83], the Argus Language and System [Liskov 84] and, in particular, the Eden

system [Almes 85, Black 85a] and the Eden Programming Language (EPL) [Black 85b].

Featuring an object-oriented style of programming, Emerald presents a uni�ed seman-

tic view of objects appropriate for private, local, data-only objects as well as shared, re-

mote, concurrently-executing objects. The nature of objects in Emerald is similar to that in

Smalltalk [Goldberg 83], i.e., all data items are objects with a uniform semantic model for

operations on them, but Emerald does not have any notion of class. Emerald was explicitly

designed to support data abstraction: all typing of objects is at an abstract level and does

not depend on the implementation chosen. Abstract typing aids in the dynamic construc-

tion of distributed programs by allowing any object in a large, possibly distributed, program

to be replaced by any other type-consistent object. Type consistency or conformity is an

important aspect of Emerald, and is discussed below. Another advantage of treating types

as �rst class objects is that it makes polymorphism inherent in Emerald.

Recognizing location as an important attribute of an object in distributed programs,

Emerald gives the programmer access to the location of objects through primitives that

permit the inspection and selection of location. Alternatively, when desired, the location

details may be left to the reasonably-chosen system-defaults. However, this recognition of

the importance of location for distributed programming has its drawbacks, viz., the semantics

of Emerald are complicated both because location is apparent and because systems may be

partially unavailable.

The semantics of a programming language are di�cult to describe precisely without

resorting to formal semantics; perhaps a future report may describe the semantics of Emerald

formally. In this report we �rst present an overview of the language features, and then

describe the various language constructs informally. People who plan to write and execute

Emerald programs will �nd the example in Appendix C useful; they should also keep the

Emerald System User's Guide [Jul 88c] for more details about using the Emerald compiler

and kernel. The Emerald approach to programming is discussed in [Raj 88], where several

examples of Emerald programs may be found.
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The rest of this introductory section contains an overview of the Emerald language,

adapted in part from Norman Hutchinson's Ph.D. dissertation [Hutchinson 87b], and other

Emerald Project reports.

1.1 Emerald Objects

Emerald extends the utility of a single object model to distributed systems. The object is

used as the sole abstraction mechanism for the notions of data, procedure, and process. All

entities in Emerald are objects spanning the spectrum from small entities (e.g., Booleans and

integers) to large entities (e.g., directories, compilers, and entire �le systems). An object

exists as long as it can be named, or equivalently, can be referenced to by an identi�er.

Each Emerald object consists of:

� A name, which uniquely identi�es the object within the network.

� A representation, which, except in the case of a primitive object, consists of references

to other objects.

� A set of operations, which de�ne the functions and procedures that the object can

execute. Exported operations may be invoked by other objects; other operations are

private to the object.

� An optional process, which is started after the object is initialized, and executes in

parallel with invocations of the object's operations. An object without a process is

passive and executes only as a result of invocations while an object with a process has

an active existence and executes independently of other objects.

Each object has two other attributes. An object has a location that speci�es the node on

which that object is currently located. Emerald objects may be de�ned to be immutable,

i.e. these objects do not change over time. Immutability helps by simplifying sharing in

a distributed system by permitting such objects to be freely copied from node to node.

Immutability is a logical assertion on the part of the programmer rather than a physical

property; the system does not attempt to check it.

Concurrency exists both between objects and within an object. Within the network many

objects can execute concurrently. Within a single object, several operation invocations can

be in progress simultaneously, and these execute in parallel with the object's internal process.

To control access to variables shared by di�erent operations, the shared variables and the op-

erations manipulating them can be de�ned within a monitor. Processes synchronize through

system-de�ned condition objects. An object's process executes outside of the monitor, but

can invoke monitored operations when it needs access to the shared state.

Each object has an optional initially section; this is a parameterless operation that ex-

ecutes exactly once when the object is created, and is used to initialize the object state.
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When the initially operation is done, the object's process is started, and it is ready to accept

invocations.

1.2 Invocation

The only mechanism for communication in Emerald is the invocation. An Emerald object

may invoke some operation de�ned in another object, passing arguments to the invocation

and receiving results. Assuming that target is an object reference, the phrase:

target.operationName[argument1, argument2 ]

means execute the operation named operationName on the object currently referenced by

target, passing argument1 and argument2 as arguments. Invocations are synchronous; the

process performing the invocation is suspended until the operation is completed or until

the run-time system determines that the operation cannot be completed. All arguments

and results of invocations are passed by object reference, i.e., the invoker and invokee share

references to the argument.

1.3 Abstract types

Central to Emerald are the concepts of abstract type and type conformity. Since all types

in Emerald, by de�nition, are abstract types, this report will generally omit the adjective

abstract and simply use the word type1. All identi�ers in Emerald are typed, and the pro-

grammer must declare the type of the objects that an identi�er may name. A type de�nes a

collection of operation signatures, i.e., operation names and the types of their arguments and

results. A type is represented by an Emerald object that speci�es such a list of signatures.

For example, if the variable MyMailbox is declared as:

var MyMailbox : AbstractMailbox

then any object that is assigned to MyMailbox must implement (at least) the operations

de�ned by AbstractMailbox.

The type of the object being assigned must conform to the type of the identi�er. Con-

formity is the basis of type checking in Emerald. Informally, a type S conforms to a type T

(written S �> T ) if:

1. S provides at least the operations of T (S may have more operations).

2. For each operation in T, the corresponding operation in S has the same number of

arguments and results.

1We may later make references to concrete types; these may informally be regarded as machine represen-

tations of object implementations and are not of primary concern to the Emerald programmer. To reduce

confusion, we may occasionally qualify types as being abstract.
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3. The types of the results of S 's operations conform to the types of the results of T 's

operations.

4. The types of the arguments of T 's operations conform to the types of the arguments

of S 's operations (i.e., arguments must conform in the opposite direction).

It requires little e�ort to establish that the conformity relation between types is both re
exive

and transitive. Additionally, note that conformity is anti-symmetric: A �> B does not imply

that B �> A; in fact, if A �> B and B �> A, then A and B are identical types. Types

therefore form a partial order with conformity as the ordering relation.

The relationship between types and object implementations is many-to-one in both di-

rections. A single object may conform to many types, and a type may be implemented by

many di�erent objects. Figure 1 illustrates these relationships. In the �gure, A above B

means A �> B.

The object DiskFile implements the type InputOutputFile, the types InputFile and Out-

putFile (which require only a subset of the InputOutputFile operations), and also the type

Any (which requires no operations at all). The type InputOutputFile illustrates that a type

may have several implementations, perhaps tuned to di�erent usage patterns. Temporary

�les may be implemented in primary memory (using InCoreFile objects) to provide fast ac-

cess while giving up permanence in the face of crashes. On the other hand, permanent �les

implemented using DiskFile would continue to exist across crashes.

Since Emerald objects may conform to more than one type, it may be appropriate to

change one's view of a particular object at run-time. This change may either be a widening,

i.e., the number of operations viewed as being supported by the object is increased, or a

narrowing, i.e., the number of available operations is reduced. Widening corresponds to

a move up in the type partial order and narrowing to a move down the type hierarchy.

Narrowing requires no run-time check of its validity, since any object conforming to some

type in the partial order also conforms to all types that it is greater than (with respect to

�>) . Widening on the other hand requires that the system check that the given object in

fact does support the operations required by the new type. To prevent type misuse and

to enhance security, Emerald also provides a restrict capability that prevents unrestrained

widening of an object's type (see also Section 4.7).

An example of where such view changes are required is in the implementation of a direc-

tory system. For example, consider the type Directory de�ned as follows:

const Directory == type Directory

operation Add [name : String, thing : Any]
operation Lookup[name : String] ! [thing : Any]
operation Delete[name : String]

end Directory
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Figure 1: Example types and object implementations

with additional variables declared as

var f : InputOutputFile

var g : OutputFile

and f is currently naming a �le object. If this �le, f , is to inserted into a directory d, the

invocation:

d.Add [\my�le", f ]

may be used. Since the second argument to Add on directories has type Any, its type

InputOutputFile is narrowed to Any. When the same object is retrieved from the directory

d, the assignment:
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f  d.Lookup[\my�le"]

will fail because the type of the result of Lookup is Any, and Any does not conform to

InputOutputFile, the type of f. Therefore, the preceding statement is not type-correct and is

rejected by the compiler. On the other hand, since it is known that the object returned by

executing Lookup on d with the argument \my�le" is in fact an InputOutputFile, an explicit

change of view:

f  view d.Lookup[\my�le"] as InputOutputFile

may be used. This widening can be established as correct only at run-time. To place a limit
on the widening of an object, an explicit restriction:

g  restrict f to OutputFile

may be placed. Note that the restriction is on the reference g, and not on the actual object.

1.4 Object creation

In most object-based systems, new objects are created by an operation on a class (as in

Smalltalk) or a type object (as in Hydra). This class object de�nes the structure and behavior

of all its instances. In addition, the class object responds to new invocations to create new

instances.

In contrast, an Emerald object is created by executing an object constructor (cf. Sec-

tion 8.1). An object constructor is an Emerald expression that de�nes the representation,

the operations, and the process of an object. For example, suppose the Emerald program

in Figure 2 is executed; it results in the creation of a single object. If we wished to create

more oneEntryDirectories we would embed the object constructor of Figure 2 in a context

in which it could be repeatedly executed, such as the body of a loop or operation. This is

illustrated in Figure 3. Execution of this example creates the single object speci�ed by the

outermost object constructor. That object exports an operation called Empty; invoking the

Empty operation executes the inner object constructor, creating a new object that conforms

to the type Directory. The code generated when compiling an object constructor is called the

concrete type of the objects created by execution of the constructor and serves to de�ne the

structure of these objects as well as provide the implementation for the operations de�ned

on them.

The goal of supporting the uniform object model for all objects (local or distributed, small

or large) may be achieved by a compiler using di�erent implementation styles for objects

by deducing the usage pattern and size of each object. The important thing to note is that

these details are kept hidden from the programmer, who sees only the uniform object model.
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const myDirectory : Directory == object oneEntryDirectory

export Add, Lookup, Delete

monitor

var name : String  nil

var An : Any  nil

operation Add [n : String, o : Any]
name  n

An  o

end Add

function Lookup[n : String] ! [o : Any]
if n = name then

o  An

else

o  nil

end if

end Lookup

operation Delete[n : String]
if n = name then

name  nil

An  nil

end if

end Delete

end monitor

end oneEntryDirectory

Figure 2: A oneEntryDirectory object

1.5 Distribution

Emerald is designed for the construction of distributed applications, using objects as the

units of processing and distribution. A programming language for distributed systems must

support two broad classes of applications, viz., applications that are genuinely distributed,

e.g., replicated nameservers, and centralized applications in a distributed environment, e.g.,

compilers.

Emerald helps in the construction of both classes: those that are born to distribution,

as well as those that have had distribution thrust upon them. For the former, Emerald

permits object migration through primitives to control the placement and movement of

objects. For the latter, Emerald provides primitives to manipulate and invoke objects in a

location-independent manner.
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const myDirectoryCreator == immutable object oneEntryDirectoryCreator

export Empty

operation Empty ! [result : Directory ]
result  object oneEntryDirectory

export Add, Lookup, Delete

monitor

var name : String  nil

var An : Any  nil

operation Store[n : String, o : Any]
name  n

An  o

end Store

function Lookup[n : String] ! [o : Any]
if n = name then

o  An

else

o  nil

end if

end Lookup

operation Delete[n : String]
if n = name then

name  nil

An  nil

end if

end Delete

end monitor

end oneEntryDirectory

end Empty

end oneEntryDirectoryCreator

Figure 3: A oneEntryDirectory creator

2 Notation and Vocabulary

This report uses a slight variation of the commonly-used Extended Backus Naur Form

(EBNF) to express the syntax of Emerald. Terminal symbols in Emerald (i.e. symbols in

its vocabulary) are shown either as strings enclosed in quotes (e.g., \ ;" represents a comma)

or in bold font (for reserved words such as loop); when there is no possibility of confusion,

the quotes around terminal symbols are dropped for enhancing readability. Non-terminal

symbols are denoted by italicized English words that intuitively illustrate the meaning of
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the syntactic constructs. In EBNF, alternatives are indicated by \ j":

A j B

means choosing either A or B; optional elements are shown using square brackets [ ]:

[ A ]

means either zero or one A; and (possibly empty) sequences by braces f g:

f A g

means zero or more repetitions of A.

2.1 Identi�ers

An Emerald identi�er is a non-empty sequence of letters, digits and the underscore character

\_", beginning with a letter or the underscore character. Identi�ers are case-insensitive and

signi�cant up to 64 characters in length. Identi�ers are used as keywords, constant names,

variable names, operation names (cf. Section 2.5), parameter names, or local names of types.

2.2 Literals

Literal objects in Emerald are divided into the following categories:

Numeric

The syntax of numeric literals is

numericLiteral ::= \ 0x" f hexdigit g

j \ 0" f octdigit g

j digit f digit g \ ." f digit g

j digit f digit g

digit ::= 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9

octdigit ::= 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7

hexdigit ::= digit j a j b j c j d j e j f

Numeric literals without a decimal point (\ .") denote objects of the prede�ned type

Integer ; those with decimal points denote objects of the prede�ned type Real . Literals

beginning with \ 0x" are interpreted in hexidecimal;n literals beginning with \ 0" are

interpreted in octal, For example, 12, 014, and 0xc are Integer literals representing the

decimal number 12, and 2.1 and 215.45 are Real literals.

Booleans
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booleanLiteral ::= true j false

The Boolean literals are the reserved words true and false.

Nil

nilLiteral ::= nil

The reserved word nil refers to the distinguished nil object.

Characters

A character literal is a character written within single quotes;

characterLiteral ::= ' character '

character ::= AnyCharacterExceptDoubleQuoteOrBackSlash

j \ \" anyCharacterExceptUpArrow

j \ \"\ ^"anyCharacter

j \ \"oneTwoOrThreeOctalDigits

A character literal is a single character written within single quotes. The character

\ permits the introduction of escape sequences for the entry of special characters.

\\ generates a single \ character, \" generates an embedded ", and \^C where C is

any character generates a control character in an implementation-de�ned manner.2

Standard escape sequences as in C (\n, \t, etc.) are also permitted. In addition, one,

two, or three octal digits following a \ can be used to represent characters by giving

their numerical (octal) equivalent.

Examples of characters are 'A ', ' r ', ' \^C ', ' \\ ', ' \^? ', ' \^J ', ' \n ' and ' \012 '; the

last three examples equivalently denote the newline character.

Strings

Strings are sequences of characters enclosed in double-quotes, and are permitted to

extend over lines.

stringLiteral ::= \ "" f character g \ ""

Examples of strings are "Emerald City", "The \"Evergreen\" State", and "".

2In ASCII implementations, \^C generates the ascii character formed by turning o� the upper 2 bits in

the character code for C. Thus, \^J is the newline character, and \^@ is the null character. The exception

is the delete character, (octal 177) which is generated by the sequence \^?.
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Vectors

vectorLiteral ::= \ f" expression f \ ," expression g [ : typeExpression ] \ g"

A vector literal is a sequence of expressions enclosed in curly braces, representing

immutable (read-only) vectors. The type of the expression is ImmutableVector.of[t],

where t is either:

� the type expression (if present), otherwise

� the syntactic type of the elements, if they are all the same, otherwise

� Any

Examples of literal vectors are f1, 3, 5g (with type ImmutableVector.of[Integer]), f1,

3, 5 : Anyg with type ImmutableVector.of[Any]), and f1, 'a', trueg (with type Im-

mutableVector.of[Any]).

Types

Emerald supports the record and enumeration forms; these are discussed in Sec-

tion 7.3. These types, along with typeobject constructors and object constructors (see

Sections 7.1 and 8.1), are type literals in Emerald.

Built-in objects such as self and nil, as discussed in the next section, are also regarded

as literals.

2.3 Identi�ers

An Emerald identi�er is a non-empty sequence of letters, digits and the underscore character

\_", beginning with a letter or the underscore character. Identi�ers are case-insensitive and

signi�cant up to 64 characters in length. Identi�ers are used as reserved words, constant

names, variable names, operation names (cf. Section 2.5), parameter names, and local names

of objects.

2.4 Reserved Identi�ers

Reserved identi�ers are identi�ers that have been reserved for special use and may not be

used otherwise as identi�ers. Following established convention, this report indicates reserved

identi�ers in bold font, e.g., and.

Reserved identi�ers are further subdivided into keywords and literals.
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Literals

The reserved literal identi�ers are:

false nil self true

Keywords

Emerald keywords are used to delimit language constructs; for example, the keywords loop

and end loop are used to enclose a loop body.

The reserved keywords are:

abstracttype all and any

array as assert at

attached awaiting begin boolean

by character checkpoint class

condition con�rm const else

elseif end enumeration exit

export failure false �eld

�x from function if

immutable import initially integer

is�xed locate loop monitor

move nameof nil node

none object on op

operation or ownname owntype

primitive private process real

record recovery re�x restrict

return returnandfail self signal

signature string then time

to true type unavailable

un�x union var vector

attachedvector view virtual visit

wait when while where

Operation names

The following identi�ers are reserved as names of built-in operations.

ownType ownName

These operations are supported by the system for every object and may be invoked on any

object regardless of type. They may neither be used by any object for operation names nor

may they be required by any type. These operations are discussed in depth in Section 7.

12



Built-in object names

The following reserved words are constants whose values are built-in objects. The operations

and usage of these built-in objects are described in Appendix B.

AbstractType Any Array Boolean

Character Condition Integer Node

None Real Signature String

Time Vector

Literals

As mentioned in Section 2.2, the following identi�ers are used as literals:

false nil self true

The keywords true and false have been discussed in the previous section. The literal nil

denotes the unique unde�ned object, and will be discussed later. The literal self identi�es

the object it is contained in; this comes in handy for an object to make operation calls on

itself (cf. Section 6).

2.5 Operators

operatorCharacter ::= ! j # j & j *

j + j � j / j <

j = j > j ? j @

j ^ j j j ~

operator ::= operatorCharacter f operatorCharacter g

An operator is a non-empty sequence of operator characters. Operators may be used both

as punctuation and as operation names.

Reserved Operators

Two categories of operators are reserved in Emerald, i.e., they may not be used to de�ne new

operation names. These categories are the prede�ned operators and reserved punctuation

operators. The prede�ned operators3 are:

3The symbols <-, ->, and *> may be permitted to represent  , !, and �> respectively because these

special characters are not commonly available on standard keyboards.
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�> (the conformity operator)

== (the object de�nition and identity operator)

!== (destinction operator)

and the reserved punctuation operators are:

 (the object naming operator)

! (the function-returns operator)

These operators are described in Section 4.

2.6 Separators

Separators are sequences consisting of only spaces, tabs, and newlines; they are used to

separate consecutive language tokens. Consecutive identi�ers, operators and/or numeric

literals must be separated by at least one separator.

2.7 Comments

Comments in Emerald are line-oriented. A comment starts on any line with the comment

delimiter, %, and terminates at the end of the same line. The comment delimiter is ignored

within string and character literals. A comment is lexically equivalent to a separator, and

the substitution of a separator for a comment should not a�ect the semantics of a program.

3 Declarations

Every identi�er (other than the reserved words) used in Emerald must be declared. The

reserved words are pervasively available throughout an Emerald program. This section

presents simple forms of declarations that introduce identi�ers as constants or variables used

for naming objects. Types and objects are de�ned in Emerald as discussed in Sections 7 and

8 respectively.

There are two (general purpose) declarative forms: one for constants and one for variables.

declaration ::= variableDeclaration

j constantDeclaration

variableDeclaration ::= [ attached ] var identi�erList : type [ initializer ]

constantDeclaration ::= [ attached ] const identi�er [ : type ] initializer

identi�erList ::= identi�er f \ ," identi�er g

initializer ::= \ " expression
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A constant declaration introduces an identi�er that refers to a single object throughout

its lifetime. While a constant identi�er always refers to the same object; the object's state

may change if it is mutable.

A variable identi�er may have its value changed by assignment. When an initializer

clause is present, each variable in the list is assigned the value of the given expression. When

not explicitly initialized, variables initially name the object nil.

The optional attached permits the programmer to provide one-way attachment between

objects; the relocation of an object additionally relocates all objects attached to it (cf. Sec-

tion 5.6.4). For example, consider a stack object that contains the following declarations:

var myDir : Directory

attached var aList : linkedList

This code declares two variables, myDir and aList, which respectively name objects of ab-

stract type Directory and linkedList. When stack is moved from one node to another, the

object named by myDir remains behind, but the object named at that time by aList will be

moved along with it. Semantically this makes no di�erence, and invocations to both objects

should work correctly.

All initializers and constant values are evaluated in textual order prior to the execution

of any other statements in the block.

3.1 Scope

The scoping of Emerald identi�ers is for the most part very traditional. An identi�er name

is visible throughout the scope in which it is declared, not just textually after that declara-

tion. The following constructs open new scopes for identi�ers, and identi�ers are imported

implicitly into nested scopes where they are not rede�ned:

� if, elseif, and else clauses (cf. Section 5.2)

� loop statement bodies (cf. Section 5.3.1)

� blocks, unavailable, and failure handlers (cf. Section 5.7)

� operation de�nitions and signatures (cf. Section 6.1)

� type constructors (cf. Section 7.1)

� object constructor, monitor, process, initially-block and recovery-block de�nitions (cf.

Section 8.1)
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The reader is advised to refer to the sections cited above for understanding the corresponding

Emerald concept before reading the rest of this section.

Since object constructors and type constructors create new objects that are independent

of their enclosing referencing environment (closures), identi�ers imported into these con-

structs are specially treated. When the type or object constructor is executed, all imported

identi�ers are made constant. Throughout the lifetime of the created type or object, these

identi�ers will have the values that they had when the object constructor was executed.

Consider the following example:

for i : Integer  0 while i < 10 by i  i + 1

o  object trivial

export operation getI ! [r : Integer ]
r  i

end getI

end trivial

end for

This loop creates ten identical objects, except that the value of the identi�er i is di�erent

for each object. Once the �rst object (whose i = 0) is created, changes to the loop control

variable i are not visible to it, as the i that it sees was made constant when that object was

created.

4 Expressions

Expressions are Emerald constructs that provide rules for denoting objects

4.1 Literals and Identi�er Expressions

expression ::= literal

j constantIdenti�er

j variableIdenti�er

A literal expression evaluates to the named object. A constant identi�er names the object

it was initialized to while a variable identi�er names the object most recently bound to it.

4.2 Operator Expressions

Before examining Emerald expressions that involve operators, we de�ne the precedence of the

operators used. In Table 1, the operators are ordered by increasing precedence. Operators

of the same precedence level are evaluated from left to right.
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Precedence Operator Operation

Level

1 view-as Widen view of object's operations

restrict-to Restrict view of object's operations

2 Logical or

or Logical conditional (short-circuit) or

3 & Logical and

and Logical conditional (short-circuit) and

4 ! Logical negation

5 ==, !== Object identity and distinction

�> Type conformity

=; ! =; <; <=; >=; > Relational operators

6 +,� Additive operators

7 *, / Multiplicative operators

# Modulus

User-de�ned

8 �, ~ Arithmetic negation

is�xed Checks if object is �xed at node

locate Finds a possible location of the operand

awaiting Processes waiting on condition

nameof Name of an object

typeof Type of an object

Table 1: Precedence of Emerald Operators

4.3 Relational Operators

expression ::= expression relop expression j : : :

relop ::= \ =" j \ ! =" j \ <" j

\ <=" j \ >=" j \ >" j

\ ==" j \ ! ==" j \ �>"

The relational operators: =, ! =, <, <=, >, >= respectively compare their operand objects

for equality inequality, less than, less than or equal, greater than, and greater than or equal in

the usual way. If the comparison holds, the relational expression evaluates to true, otherwise

it evaluates to false. The operator = is also user-de�nable and may be used to de�ne any

operation including, but not limited to equality comparison. The operators == and ! ==

are prede�ned and reserved (not user-de�nable). == evaluates to true if the two
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4.4 Arithmetic Operators

expression ::= expression arithop expression j : : :

arithop ::= \+" j \�" j \ �" j \ =" j \#"

The operators +, �, �, = and # represent the addition, subtraction, multiplication, division

and modulus operators respectively. The �rst four of these take two operands of builtin

types integer or real; the last takes operands of type integer. The types integer and real

are not inter-convertible; mixed number expressions are not valid and will cause failures4.

4.5 Boolean Operators

expression ::= \ ~" expression j

expression binbooleanop expression j : : :

binbooleanop ::= \ j" j \&" j or j and

The unary ~ operator performs the logical negation of its Boolean operand. In general, the

di�erent binary operators take operands of type Boolean and evaluate to true or false. The

operators j and & are the standard logical or and and. The operator and is a conditional and

and evaluates as follows: if the left operand evaluates to false, the result is false; otherwise,

the result is the value of the right expression. The operator or is a conditional or and

evaluates as follows: if the left operand evaluates to true, the result is true; otherwise, the

result is the value of the right expression.

4.6 Location-related Operators

expression ::= locate expression

j is�xed expression

Unary operators, is�xed and locate, operate on object expressions and evaluate as follows:

is�xed evaluates to true if the argument object is currently �xed at a site, otherwise false.

locate evaluates to an object (of type node) that gives a location of the operand object

during the execution of this expression. Applying this to nil causes a failure, and to

an unavailable object leads to an unavailable exception. This is explained in detail in

Section 9.

4Note that the change-view expression will not permit the conversion of objects of type integer to real

and vice versa because they do not conform to one another; however, the functions, asReal and asInteger,

may be used to perform any necessary conversion.
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4.7 Other Expressions

expression ::= awaiting expression

j view expression as typeDenotation

j restrict expression to typeDenotation

j expression $ fieldIdentifier

j expression : enumIdentifier

j objectConstructor

j functionInvocation : : :

j nameofexpression

j typeofexpression

The view expression permits an object to be regarded as being of a di�erent type, subject

to the restriction that no object expression be viewed as a type it does not conform to. In

other words, this expression permits the user to widen the type of an object. The restrict

expression permits an object expression to have a restricted view of its operations. This

means that further widening of the reference to the object will not be permitted beyond

the restricted type. The initial type of the object expression must conform to that of the

restricted type.

An expression of the form, complex$realPart, is used to access the stated �eld of the

record, complex. For convenience, Emerald permits this sugared syntax to be used for invo-

cations to records. An expression of the form, spectrum:indigo, is used for an enumeration.

Both these expressions are discussed in detail in Section 7.3.

The awaiting operator takes as its operand an expression of type Condition and returns

true if at least one process is suspended on the operand condition, and false otherwise (cf.

Section 8).

nameof, and typeof return the the name (a String) or the type (a Signature) of any

object (including nil). See the appendix for a description of these builtin types.

4.8 Other Operators

All other operators are translated into object invocations. Each occurrence of a unary

operator is translated into an invocation of the operand with the invocation name being

the name of the operator and with no arguments. Each occurrence of a binary operators is

translated into an invocation of the left operand with the invocation name being the name

of the operator and with a single argument which is the right operand. For example:

!e is translated as e.!

a + b is translated as a.+[b]
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The description of function invocation expressions and object constructor expressions is

deferred to Sections 6 and 8 respectively.

5 Statements

Statements are used to perform all computation in Emerald. This section describes the var-

ious statements, starting with the assignment statement and the control structures. State-

ments for assertion, invocation and dealing with location-dependence are discussed next.

This is followed by the discussion of speci�c statements for handling object unavailability

and failures. Concurrency features are sketched out, postponing a detailed discussion to

Section 8. Finally, statements used to checkpoint, to make primitive system calls, and to

propagate failures are described.

5.1 Assignment statement

assignment ::= variableIdenti�erList \ " expressionList

j [ variableIdenti�erList \ " ] procedureInvocation

In the �rst case, the expression list is evaluated to yield a number of objects. In the latter

case, the procedure invocation is performed, resulting in a number of objects (possibly 0).

In both cases, the resulting objects are positionally bound to the variables on the left side

of the assignment operator. The number of variables on the left side and the number of

resulting objects on the right must be equal and must positionally conform in type.

5.2 Selection

ifStatement ::= if expression then

declarationsAndStatements

f elseif expression then

declarationsAndStatements g

[ else

declarationsAndStatements ]

end if

The expressions following the if and optional elseif keywords (which must be of type

Boolean) are evaluated in textual order until one evaluates to true or none evaluate to

true. In the former case, the statements following the next then keyword are executed, and

in the latter case, the statements following the else keyword (when present) are executed.
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5.3 Iteration

5.3.1 Loop statement

loopStatement ::= loop

declarationsAndStatements

end loop

The statements bracketed by loop and end loop are executed repeatedly until an exit

statement at the same level of nesting is executed.

5.3.2 Exit statement

exitStatement ::= exit [ when expression ]

This statement terminates the execution of the textually inner-most enclosing loop; this

statement is invalid if there is no such loop. The simple exit provides an unconditional

exit from the loop; the optional when clause permits a conditional exit if the evaluated

expression, which must be of type Boolean, evaluates to true. exit when expression is

exactly equivalent to if expression then exit end if, but is somewhat easier to read and

type.

5.3.3 For statement

Emerald has two forms of the for statement. These are conveniences whose semantics are

de�ned in terms of their translations as given below.

forStatement ::= for ( initial : condition : step )

declarationsAndStatements

end for

This is equivalent to:

begin

initial

loop

exit when !condition

begin

declarationsAndStatements

end

step

end loop

end
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forStatement ::= for identi�er : typeExpression initialization while condition by step

declarationsAndStatements

end for

This is equivalent to

begin

var identi�er : typeExpression initialization

loop

exit when !condition

begin

declarationsAndStatements

end

step

end loop

end

5.4 Assertions

assertStatement ::= assert expression

The expression, whose type must be Boolean, is evaluated. If the result is false, a failure

occurs (as explained in Section 9.2). If the result is true, the statement has no further e�ect.

5.5 Invocations

procedureInvocation ::= expression \ ." operationName [ argumentList ]

operationName ::= identi�er j operator

argumentList ::= \ [" argument f \ ," argument g \ ]"

argument ::= [move ] [ visit ] expression

An invocation statement speci�es the target object, the operation to be invoked, and the

required arguments. When an invocation returns results, they are assigned to variables using

an assignment (see Section 5.1). The keywords move and visit suggest that the expression

be physically moved to the same node as the invoked object; visit further suggests that the

expression be moved back after the invocation is performed. Invocations are discussed in

Section 6 and these parameter passing modes in Section 6.2.

5.6 Location-related Statements

Mobility is an important feature of Emerald([Jul 88a, Jul 88b]) and is supported via several

language constructs. The statements that permit the programmer to specify and change the

location of the argument objects are discussed below.
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5.6.1 The Fix statement

�xStatement ::= �x expression1 at expression2

The object named by expression1 is moved to the location of the object named by expression2,

and forced to remain there until explicitly un�xed; the un�x and re�x statements described

below permit the movement of previously �xed objects. Fixing objects at object nil, and

attempts to move or �x previously �xed objects result in failures (cf. Section 9.2).

5.6.2 The Un�x statement

un�xStatement ::= un�x expression

The object denoted by the expression is made free to move. It is not an error to un�x an

object not currently �xed at any location.

5.6.3 The Re�x statement

re�xStatement ::= re�x expression1 at expression2

This statement un�xes the object named by expression1 and �xes it at some (presumably

di�erent) node; the re�x is performed atomically.

5.6.4 The Move statement

moveStatement ::= move expression1 to expression2

The object denoted by expression1 is moved to the current location of the object denoted by

expression2. The statement fails if the object denoted by expression1 is �xed.

Themove primitive is actually a hint, i.e., the implementation is not required to perform

the move suggested. On the other hand, the primitives �x and re�x have stronger semantics,

and when they succeed, the object must stay at the speci�ed destination until explicitly

un�xed.
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5.7 Compound statement

compoundStatement ::= begin

blockBody

end

blockBody ::= declarationsAndStatements

[unavailableHandler]

[failureHandler]

unavailableHandler ::= when identifier [ \ :" typeDenotation ] unavailable

declarationsAndStatements

end unavailable

failureHandler ::= on failure

declarationsAndStatements

end failure

The compound statement permits several statements to be grouped together as one compos-

ite statement. In addition, it permits suitable recovery code to be attached in the form of

handlers dealing with object unavailability and failures (cf. Sections 9.1 and 9.2).

5.8 Concurrency

Concurrency features are described in detail in Section 8 and are brie
y outlined here. Each

object may have an optional process associated with it; this process is created after the ter-

mination of the object's initially section and it executes until it reaches the end of its block.

Each object may also have a possibly empty monitored section in which mutual exclusion is

guaranteed. Objects of system-implemented type Condition with Hoare monitor-condition

semantics are available here.

The wait and signal statements (available only within monitors) permit process syn-

chronization as described below. Note that a condition object used in a wait or signal

statement (or an awaiting expression) must be used only inside the monitor of the object

by which it was created.

5.8.1 Wait statement

waitStatement ::= wait expression

The wait statement must be executed inside a monitored section, and the expression must

evaluate to a condition object. The process executing the wait is suspended on the con-
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dition object, and the monitor lock is passed on to the next process waiting to enter the

monitor; if no process is waiting to enter, the monitor lock is released.

5.8.2 Signal statement

signalStatement ::= signal expression

The expression must evaluate to a condition object. If the condition object has one or

more processes suspended on it, one of these processes will be resumed, the monitor lock

will be passed to it, and the signalling process is placed at the head of the monitor entry

queue. Finally, if the condition object does not have any processes suspended on it, the

signal statement has no e�ect.

5.9 The Checkpoint statement

checkpointStatement ::= checkpoint [ AT destination ]

destination ::= expression j ALL

The checkpoint statement permits an object to store its state on permanent storage. On

node failure and subsequent recovery, the object uses this stored state and continues from

that state, �rst performing any programmer-speci�ed recovery action. It is only allowed

within the monitored section of an object.

5.10 The Return Statement

returnStatement ::= return

This statement is used to terminate the execution of an operation and return to the invoking

object. It may also be used to prematurely terminate an initially, process, or recovery section.

5.11 The ReturnAndFail statement

returnAndFailStatement ::= returnandfail

The \return and fail" statement is analagous to the return statement, but in addition, it

permits the invoked object to report a failure to the invoking object. The return happens

�rst, so the state of the invoked object is not a�ected by the failure.
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5.12 The Primitive Statement

primitiveStatement ::= primitive primitiveImplementation

\ [" identi�er f , identi�er g \ ]"  \ [" identi�er f , identi�er g

primitiveImplementation ::= identi�er j integerLiteral

This statement is used to implement lower-level calls to the underlying operating system and

to implement certain operations on builtin-types.

The list of identi�ers on the right of the assignment operator provide the arguments for

the primitive, which the list of identi�ers on the left of the assignment get the results of the

primitive.

There is no check that the implementation of the primitive actually expects the number

of arguments or returns the number of results that the arg/resultvars lists mention. You are

assumed to be careful using these things.

6 Operations

Emerald objects communicate with one another only through the invocation of operations.

This section describes the de�nition and invocation of operations.

6.1 De�ning operations

operationSignature ::= operationKind operationName [ parameterList ]

[ \!" parameterList ] f clause g

operation ::= [ privatejexport ] operationSignature

blockBody

end operationName

operationKind ::= op j operation j function

parameterList ::= \ [" parameter f \ ," parameter g \ ]"

parameter ::= parameterKey [ identi�er : ] type

parameterKey ::= [move ] [ attached ]

j attached move

Clause ::= where

f identi�er whereOperator typeDe�nition g

end where

whereOperator ::= \ " j \ �>" j \=="

Emerald provides two kinds of operations: procedural and functional. Procedural operations

are heralded by the keyword operation, while the keyword function indicates a functional

operation. In declaring a functional operation, the programmer asserts that the operation is
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side-e�ect free, i.e., the abstract state of the system is not modi�ed by the execution of the

operation5. Note that the burden is on the programmer; the Emerald system may perform

optimizations on function invocations that are incorrect if the operation has side e�ects.

Private operations may only be declared within the monitor, and called from within the

monitor. They do not acquire the monitor lock (since the caller must already hold the lock).

They are intended for auxiliary operations shared by multiple monitored operations.

The operation signature (cf. Section 7) includes the operation name and the number,

names and abstract types of the arguments and results. Itswhere clause serves two purposes:

if the operator is  or ==, the identi�er becomes a new constant whose value is the given

type; if the operator is �>, type constraints for the given formal parameters are imposed.

This clause becomes useful for the implementation of polymorphic types (cf. Section 8.3).

6.2 Parameter Passing

The Emerald language uses call-by-object-reference semantics for all invocations, local or

remote. Because Emerald objects are mobile, it may be possible to optimize by avoiding

many remote references by moving argument objects to the site of a remote invocation.

Emerald provides mechanisms for the Emerald programmer to explicitly move objects. This

is through parameter passing modes called call-by-move and call-by-visit. In both modes, at

actual invocation time, the argument object is relocated to the destination site. Following

the call the argument object may either return to the source of the call or remain at the

destination site; the former mode takes place in call-by-visit and the latter in call-by-move.

Neither mode a�ects the location-independent semantics of the invoked operation.

6.3 Making Invocations

An invocation of an operation that returns exactly one result may be used as an expression.

Any operation may be invoked in an assignment statement.

Executing an operation invocation involves:

� evaluating the invocation target expression,

� evaluating the argument objects and then positionally assigning them to the formal

parameters of the operation,

� executing the body of the operation in the context of the target object of the invocation,

and

� returning the �nal values of any output parameters of the invocation.

5Note that Emerald does not rule out the possibility of the operation having concrete side-e�ects (some-

times termed bene�cial or benevolent side-e�ects).
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7 Types

An abstract type is de�ned as a collection of operation signatures, where each operation
signature includes the operation name, and the names and types of its arguments and results.
Abstract types, being objects, are �rst-class citizens in Emerald6. Each type object exports
a function without arguments called getSignature that returns an object of the prede�ned
Signature type. In other words, any object that conforms to the following type:

immutable type aType

function getSignature ! [Signature]
end aType

is a type. Note that each object with type signature has a getSignature operation that

returns the target object, thus Signatures are Types.

7.1 Type Constructors

Types are created using type constructors. A type constructor has the following structure:

typeConstructor ::= [ immutable ] type typeIdenti�er

f operationSignature g

end typeIdenti�er

Operation signatures have been de�ned in Section 6.1, however in type constructors, the
identi�ers in parameter declarations may be omitted. An immutable type implies that its
objects are abstractly immutable, i.e. its objects cannot change value over time. For example,
the prede�ned type Integer is immutable because its objects represent integer values which
cannot change; for instance, the integer 3 cannot be changed to the integer 4.

type Directory

operation Add [name : String, thing : Any]
operation Lookup[name : String] ! [thing : Any]
operation Delete[name : String]

end Directory

This constructor is executable, and when executed causes the creation of an immutable

object conforming to AbstractType. The execution of the getSignature operation on the

resulting object returns itself: a type requiring the three operations Add, Lookup, and Delete.

6However, Emerald requires all expressions in abstract type positions in variable declarations, constant

declarations, and view expressions to be manifest; this restriction makes Emerald statically-typed.
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7.2 Conformity

Some types in the system are exceptions to the standard conforms and matching rules. For

ensuring correctness, types such as Boolean, Condition, Node, Signature and Time

must be implemented only by the system. For performance enhancement, the types Char-

acter, Integer, Real, and String are also restricted to be implemented only by the system.

7.3 Other types

Emerald de�nes four syntactic abbreviations for commonly occurring constructions.

7.3.1 Classes

While Emerald does not have a notion of class, we do recognize that it is often convenient

to do class-based programming. Therefore the Emerald compiler implements a syntactic

extension called a class, and supports a form of inheritance (by macro expansion) for classes.

class ::= class identi�er [ \ (" baseClass \ )" ] [ parameterList ]

f classoperation g

f declaration g

[ monitorjinitially ]

f operation g

[ process ]

end identi�er

baseClass ::= identi�er

classoperation ::= class operation

Classes are expanded syntactially into two nested object constructors. The outer object

is immutable and has operations getSignature and create in addition to the class operations

de�ned by the programmer. The parameter list is the parameter list to the create operation,

and instance constants with those names will be declared for each instance. The rest of the

components of the class construct go to de�ning the body of the inner object constructor.

Inheritance is syntactic. Each component in the base class that is not rede�ned in the

subclass will be inherited into the subclass. Because any component can be rede�ned, there

is no guarantee that the type of a subclass will conform to the type of its superclass.

An example might help. Suppose we write the following declaration:
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const Complex  immutable class Complex [r : Real, i : Real ]
class export operation fromReal [r : Real ] ! [e : Complex ]

e  self.create[a, 0.0 ]
end fromReal

export function +[other : Complex ] ! [e : Complex ]
e  Complex.create[other.getReal + r, other.getImag + i ]

end +
export function getReal ! [e : Real ]

e  r

end getReal

export function getImag ! [e : Real ]
e  i

end getImag

end Complex

This is rearranged into the following:
const Complex  immutable object Complex

const ComplexType  immutable typeobject ComplexType

function getReal ! [ComplexType]
function getImag ! [ComplexType]
function +[ComplexType] ! [ComplexType]

end ComplexType

export function getSignature ! [r : Signature]
r  ComplexType

end getSignature

export operation fromReal [a : Real ] ! [e : Complex ]
e  self.create[a, 0.0 ]

end fromReal

export operation create[r : Real, i : Real ] ! [e : Complex ]
e  immutable object aComplex

export function +[other : Complex ] ! [e : Complex ]
e  Complex.create[other.getReal + r, other.getImag + i ]

end +
export function getReal ! [e : Real ]

e  r

end getReal

export function getImag ! [e : Real ]
e  i

end getImag

end aComplex

end create

end Complex
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7.3.2 Enumerations

enum ::= enumeration identi�er

enumIdenti�er f \ ," enumIdenti�er g

end identi�er

Enumerations provide a creation operation for each element of the type, operations �rst and

last that return the �rst and last elements of the enumeration, respectively, and an operation

create that takes an integer argument and returns that element of the enumeration with that

ordinal (0 base). In addition, elements of the enumeration support <, <=, =, ! =, >=, >,

succ, pred , ord and asString operations. The asString operation returns the name of the

element as a String . All elements of enumerations are immutable.

To be concrete, consider the declaration:

const colors  enumeration colors red, blue, green end colors

The identi�er colors will have type:
immutable typeobject ColorCreatorType

function getSignature ! [Signature]
operation create[Integer ] ! [ColorType]
operation �rst ! [ColorType]
operation last ! [ColorType]
operation red ! [ColorType]
operation green ! [ColorType]
operation blue ! [ColorType]

end ColorCreatorType

Each element of the enumeration has type:
immutable typeobject ColorType

function <[ColorType] ! [Boolean]
function <=[ColorType] ! [Boolean]
function =[ColorType] ! [Boolean]
function ! =[ColorType] ! [Boolean]
function >=[ColorType] ! [Boolean]
function >[ColorType] ! [Boolean]
function succ ! [ColorType]
function pred ! [ColorType]
function ord ! [Integer ]
function asString ! [String ]

end ColorType

7.3.3 Fields

�eld ::= [ attached ] �eld identi�er : type [ initializer ]

j [ attached ] const �eld identi�er : type initializer
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It is often convenient to declare an externally accessible data element of an object. A �eld

declaration does exactly this. Field declarations can only occur with the declaration part

of an object constructor. Each �eld declaration expands to a variable declaration and two

operation de�nitions (�rst case) or to a constant declaration and one operation de�nition

(second case). The expansion of:

attached �eld a : b  c

is
attached var a : b  c

export operation setA[x : b]
a  x

end setA

export function getA ! [x : b]
x  a

end getA

Where the identi�er x is chosen to not con
ict with any other identi�er. Constant �elds

expand to constant declarations and only the getA operation.

7.3.4 Records

record ::= [ immutable ] record identi�er

�eld f �eld g

end identi�er

�eld ::= [ attached ] var �eldIdenti�er : type

A record declaration:
immutable record aRecord

var a : b
var c : d

end aRecord

expands to a class:
immutable class aRecord [xa : b, xc : d ]

�eld a : b  xa

�eld c : d  xc

end aRecord

Emerald supports syntactic sugar to facilitate accessing the �elds of record-like objects.

The syntactic forms are:

�eldSelection ::= expression \ $" identi�er

subscript ::= expression \ [" expression f \ ," expression g \ ]"

In an expression context these are translated as follows:

a$b is translated as a.getB

a[b, c, d ] is translated as a.getElement[b, c, d]
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Prede�ned Type Type Description

Type To be used as types in declarations.

Any Has no operations.

Array A polymorphic, 
exible array.

BitChunk Arbitrary bit-level operations.

Boolean Logical values with literals true and false.

Character Individual characters with operations such as <, >, =, ord, etc.

Condition Condition variables satisfying Hoare monitor semantics.

ImmutableVector Read-only vector.

InStream Input streams.

Integer Signed integers.

Node Objects representing machines.

NodeList Immutable vectors of node descriptions.

NodeListElement Immutable node descriptions.

None The type of nil.

OutStream Output streams.

Real Approximations of real numbers.

Signature Primitive abstract type

String Character strings.

Time Times and dates

Vector Fixed sized polymorphic vectors.

ConcreteType Executable code.

Table 2: Built-in Types

In an assignment context, these are translated as follows:

a$b  c is translated as a.setB[c]

a[b, c, d]  e is translated as a.setElement[b, c, d, e]

7.4 Prede�ned types

Emerald implements a number of pre-de�ned objects; these objects are outlined in Table 2

and speci�ed in greater detail in Appendix B.

7.5 Multiple Implementations

The Emerald type system permits objects with di�erent implementations to have the same

type (cf. Section 1.1). An implicit many-to-one relationship exists between types and objects
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in both directions, i.e., a number of objects may all conform to the same abstract type, and

a single object may conform to a number of abstract types. This is rearranged into the

following:

Each object identi�er, i.e., an identi�er that may be bound to an object, is typed ab-

stractly; its abstract type determines which operations may be performed on the object it

names. For example, the declaration

var d : Directory

declares that any object named by the identi�er d within this scope will be of abstract type

Directory. There is, however, no restriction on the objects named by d other than that

they must implement the Directory abstraction. Furthermore, no matter what operations

an object named by d implements, only operations valid for directories may be performed

on the object that d names. Since any given object may implement more than one abstract

type, Emerald provides a mechanism for altering the abstract type used to view the object

(cf. Section 4.7).

8 Objects

Most so-called object-oriented languages such as Smalltalk, C++, Ei�el, and the Eden Pro-

gramming Language (EPL) have a concept of class, which may be regarded as an object

de�ning the behavior of a number of objects, i.e., its instances. Emerald takes a di�erent,

more elegant approach to the creation of objects. It provides a single general purpose way

of constructing objects: the object constructor.

8.1 Object Constructors

An object constructor de�nes the complete representation and operations of a single object

as well as its active behavior. Objects are created when an object constructor is executed.

In other words, object constructors are expressions. The form of a constructor shown below

demonstrates its generality, i.e., all Emerald objects may be de�ned using this feature.
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objectConstructor ::= [ immutable ] object identi�er

f declaration g

[ monitorjinitially ]

f operation g

[ process ]

end identi�er

monitor ::= monitor

f declaration g

f operation g

[ initially ]

[ recovery ]

end monitor

process ::= process

blockBody

end process

initially ::= initially

blockBody

end initially

recovery ::= recovery

blockBody

endrecovery

Each object in Emerald owes its existence to either an implicit or explicit execution of an

object constructor. The object constructor provides the necessary information about the

object's implementation, i.e.,

� Representation declarations for data and processes that are contained in instances of

the type.

� A collection of operation signatures, where each operation signature includes the name

of the operation, and the number and types of the parameters of the operation.

� A collection of operation bodies, i.e., the implementation for the previously speci�ed

operations.

Figures 2 and 3 illustrate the usage of object constructors to create new objects.

Further discussion of object constructors, and their usefulness in (distributed) program-

ming may be found in [Hutchinson 87a].
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8.2 Objects as Types

Type constructors have already been described as one method for constructing abstract types

in Emerald (cf. Section 7). Since typing in Emerald is based entirely on the signatures of

operations, any object which conforms to the type

immutable type AbstractType

function getSignature ! [Signature]

end AbstractType

is a type. Thus objects which serve other useful purposes can also be used as types. Object

creators in particular can take advantage of this to allow a single object to serve as both a

type and a creator.

8.3 Polymorphism Example

To demonstrate the polymorphism present in Emerald, a polymorphic Set object is presented
in Figure 4. The Set implemented has an operation of that takes a type as an argument and
returns an object that can be used as the abstract type of, as well as a creator of sets of
things conforming to the original argument to the operation of. The elements put in this set
are immutable and must implement an = operation that returns a Boolean object. With
this Set de�nition, we can de�ne a set of integers as:

const setOfInteger == Set.of [Integer]

Hutchinson [Hutchinson 87a] provides more details about polymorphism in Emerald.

9 Location and Reliability

Emerald was developed primarily to facilitate the construction of distributed application

programs. To be resilient to machine crashes, these programs should be capable of detecting

and recovering from such crashes. They should also be able to control the location of

component objects so that the available nodes in the system are optimally exploited. This

section discusses the Emerald location-related constructs that help in the development of

fault-tolerant software.

There are two Emerald concepts that concern location. These correspond to two desires

that motivate application programmers to deal with location. As stated previously, invoca-

tion in Emerald is location independent. This means that the location of an object need not

be determined in order to invoke it. There are however two considerations that we expect

to motivate application programmers to concern themselves with location: performance and

reliability/availability.
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const Set == immutable object Set

export of

function of [eType : AbstractType] ! [result : NewSetType]
where

eType �>

immutable type eType

function =[eType] ! [Boolean]
end eType

NewSetType ==
immutable type NewSetType

operation new ! [NewSet ]
operation singleton[eType] ! [NewSet ]
operation create[Vector.of [eType]] ! [NewSet ]

end NewSetType

NewSet ==
immutable type NewSet

function contains[eType] ! [Boolean]
function with[eType] ! [NewSet ]
function without [eType] ! [NewSet ]
function choose ! [eType]
function +[NewSet ] ! [NewSet ]
function �[NewSet ] ! [NewSet ]
function �[NewSet ] ! [NewSet ]
function cardinality ! [Integer]

end NewSet

end where

result  

object NewSetType

export create

operation create[v : Vector.of [eType]]! [result : NewSet ]
result  

object NewSet

export contains, with, without, choose, +, �, � , cardinality

const repType == Vector.of [eType]
var rep : repType

% The implementation of these operations and functions.

end NewSet

end create

end NewSetType

end of

end Set

Figure 4: A Polymorphic Set Object37



Performance

Since remote invocation will necessarily be at least an order of magnitude more expensive

than local invocation, the placement of Emerald objects may seriously a�ect their perfor-

mance. In order to provide the programmer with control over the placement of objects the

move statement (see Section 5.6.4) is provided. In addition, the call-by-move implementation

strategy for arguments to invocations (see Section 6.2) allows further optimizations.

Reliability and Availability

Since an object may be moved at arbitrary times by any other object with a reference to it,

a more permanent binding between objects and locations is often required. In particular, in

order to implement an available replicated service, it is necessary to place the replicas on dif-

fering machines and not allow them to move. This allows the programmer to guarantee that

a single machine failure will not cause more than one of his replicas to become unavailable.

In order to provide for this requirement, the �x and un�x statements (see Sections 5.6.1

and 5.6.2) may be used. An object, once �xed at a particular location, may not be moved

from there. Any attempt to do so will fail (see subsection 9.2).

9.1 Unavailable objects

Due to machine crashes or communication network failures, objects may be temporarily or

permanently unavailable. Emerald provides unavailable handlers to allow programmers to

detect such situations, and attempt recovery.

unavailableHandler ::=

when [ identi�er [ \:" typeDenotation ] ] unavailable

declarationsAndStatements

end unavailable

An object is regarded as being unavailable when it cannot be located at any available node

following suitable system action [Jul 88b]. The unavailable-handler speci�es the action to

be taken on object unavailability.

9.2 Failures

Failures can result from a number of causes; these include attempting to invoke a nil refer-

ence, assertion failures, divide-by-zero and subscript-range errors.
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failureHandler ::=

on failure

declarationsAndStatements

end failure

After a failure is detected, the following action is taken.

1. The appropriate failure handler to execute is found. This handler is the handler at-

tached to the smallest block containing the statement. An omitted handler is equivalent

to the following:

on failure

assert false

end failure

This handler causes the block to fail, and the algorithm is restarted in the enclosing

block.

2. If the block body of a monitored operation, the initially section, or the recovery section

of an object fails, then the object is said to have failed. Any subsequent invocation

attempted on the object will fail, and any invocations that have started but not yet

completed also fail.

3. A failure in the block body of an operation is propagated by causing the corresponding

invocation statement to fail.

4. A failure in an initially section implies that the object creation has failed; this is

propagated by causing the statement containing the object constructor expression to

fail.

5. A failure in the block body of a recovery section cannot be propagated because its

execution did not result from an invocation. So the recovery fails and the object

remains unavailable.

6. A failure in a process block body cannot be propagated, but the object itself does not

fail.

7. When an object fails, no attempt is made to immediately track down and fail all

processes (including the one contained in the object) that have threads of control that

have passed through the object. When these threads of control return to the body of

any operation inside the object, they will then fail.
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A Syntax of Emerald

This appendix summarizes the syntax of Emerald discussed in this report. It should be

borne in mind that Emerald is an active research language and is constantly being modi�ed.

The syntax given in this appendix is the YACC-grammer for Emerald
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compilation ::= constantDeclarationS

constantDeclarationS ::= empty

j constantDeclarationS environmentImport

j constantDeclarationS environmentExport

j constantDeclarationS constantDeclaration

empty ::=

environmentImport ::= import symbolDefinitionS from environmentPathName

environmentExport ::= export symbolReferenceS to environmentPathName

environmentPathName ::= string

typeClauseOpt ::= empty

j typeClause

typeClause ::= \ :" typeDefinition

typeDefinition ::= invocation

builtinType ::= abstracttype

j any

j array

j boolean

j character

j condition

j integer

j node

j none

j signature

j real

j string

j time

j vector

j attachedvector

optV ariable ::= var

j empty

abstractType ::= type optV ariable symbolDefinition operationSignatureS

end symbolReference

record ::= record symbolDefinition recordF ieldS

end symbolReference
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recordF ieldS ::= recordF ield

j recordF ieldS recordF ield

recordF ield ::= var symbolDefinitionS typeClause

j attached var symbolDefinitionS typeClause

union ::= union symbolDefinition recordF ieldS end symbolReference

enumeration ::= enumeration symbolDefinition symbolDefinitionS

end symbolReference

export ::= empty

j export operationNameReferenceS

operationNameReferenceS ::= operationNameReference

j operationNameReferenceS \ ;" operationNameReference

symbolDefinitionS ::= symbolDefinition

j symbolDefinitionS \ ;" symbolDefinition

symbolReferenceS ::= symbolReference

j symbolReferenceS \ ;" symbolReference

operationSignatureS ::= empty

j operationSignatureS operationSignature

operationSignature ::= operationKind operationNameDefinition parameterClause

returnClause whereClause

operationKind ::= operation

j op

j function

parameterClause ::= empty

j \ [" \ ]"

j \ [" parameterS \ ]"

parameterS ::= parameter

j parameterS \ ;" parameter

parameterF irstExpression ::= expression

j attached expression

j move expression

j attached move expression

j move attached expression

parameter ::= parameterF irstExpression

j parameterF irstExpression \ :" expression

returnClause ::= empty

j \ !" \ [" \ ]"

j \ !" \ [" parameterS \ ]"

whereClause ::= empty

j where whereWidgitS end where

whereWidgitS ::= whereWidgit

j whereWidgitS whereWidgit

whereWidgit ::= symbolDefinition whereOperator expression
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whereOperator ::= \ =="

j \  "

j \ �>"

object ::= object symbolDefinition export declarationS monitoredPart

operationDefinitionS processDefinition end symbolReference

creators ::= empty

j creators type operationDefinition

obase ::= empty

j \ (" symbolReference \ )"

virtuals ::= empty

j virtual operationSignatureS end virtual

class ::= class symbolDefinition obase parameterClause

exportcreatorsdeclarationS monitoredPart

operationDefinitionS processDefinition virtuals

end symbolReference

declarationS ::= empty

j declarationS declaration

attached ::= attached

j empty

declaration ::= attached declarationprime

declarationprime ::= constantDeclaration

j variableDeclaration

j fieldDeclaration

j error

constantDefOp ::= \ =="

j \  "

fieldDeclaration ::= �eld symbolDefinition typeClause initializerOpt

j const �eld symbolDefinition typeClause initializerOpt

constantDeclaration ::= const symbolDefinition typeClauseOpt constantDefOp

expression

initializerOpt ::= empty

j \  " expression

initializer ::= \  " expression

variableDeclaration ::= var symbolDefinitionS typeClause initializerOpt

monitoredPart ::= empty

j monitor declarationS operationDefinitionS

initiallyDefinition recoveryDefinition

end monitor

j initially blockBody end initially

operationDefinitionS ::= empty

j operationDefinitionS operationDefinition

private ::= private

j empty
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operationDefinition ::= private oexport operationSignature blockBody

end operationNameReference

blockBody ::= declarationsAndStatements unavailableHandler failureHandler

initiallyDefinition ::= empty

j initially blockBody end initially

recoveryDefinition ::= empty

j recovery blockBody end recovery

processDefinition ::= empty

j process blockBody end process

declarationsAndStatements ::= declarationS statementS

statementS ::= empty

j statementS statement

statement ::= ifStatement

j loopStatement

j forStatement

j exitStatement

j assignmentOrInvocationStatement

j assertStatement

j fixStatement

j refixStatement

j unfixStatement

j moveStatement

j compoundStatement

j primitiveStatement

j waitStatement

j signalStatement

j checkpointStatement

j returnStatement

j returnAndFailStatement

j error

optDeclaration ::= empty

j symbolDefinition typeClause

unavailableHandler ::= empty

j when optDeclaration unavailable blockBody

end unavailable

failureHandler ::= empty

j on failure blockBody end failure

ifClauseS ::= ifClause

j ifClauseS elseif ifClause

ifClause ::= expression then declarationsAndStatements

elseClause ::= empty

j else declarationsAndStatements

ifStatement ::= if ifClauseS elseClause end if
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forStatement ::= for \ (" assignmentOrInvocationStatement \ :"

expression \ :" assignmentOrInvocationStatement \ )"

declarationsAndStatements

end for

j for symbolDefinition typeClause initializer

while expression by assignmentOrInvocationStatement

declarationsAndStatements

end for

loopStatement ::= loop declarationsAndStatements end loop

exitStatement ::= exit whenClause

whenClause ::= empty

j when expression

assignmentOrInvocation�

Statement ::= expressionS

j expressionS assignmentOp expressionS

assignmentOp ::= \  "

j \ :="

assertStatement ::= assert expression

fixStatement ::= �x expression at expression

refixStatement ::= re�x expression at expression

unfixStatement ::= un�x expression

moveStatement ::= move expression to expression

compoundStatement ::= begin blockBody end

checkpoint ::= con�rm

j con�rm checkpoint

j checkpoint

checkpointStatement ::= checkpoint

j checkpoint to expression

j checkpoint at expression

j checkpoint at all

returnStatement ::= return

returnAndFailStatement ::= returnandfail

primitiveImplementation ::= integer

j string

primitiveStatement ::= primitive primitiveImplementation \ [" symbolReferenceSopt \

\  " \ [" symbolReferenceSopt \ ]"

symbolReferenceSopt ::= empty

j symbolReferenceS

waitStatement ::= wait expression

signalStatement ::= signal expression

expressionS ::= expression

j expressionS \ ;" expression
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expression ::= expressionZero

j expression \ j" expression

j expression or expression

j expression \&" expression

j expression and expression

j \ !" expression

j expression \ ==" expression

j expression \ ! ==" expression

j expression \ =" expression

j expression \ ! =" expression

j expression \ >" expression

j expression \ <" expression

j expression \ >=" expression

j expression \ <=" expression

j expression \ �>" expression

j view expression as expression

j restrict expression to expression

j expression \+" expression

j expression \�" expression

j expression \ �" expression

j expression \ =" expression

j expression \#" expression

j expression operator expression

j \ " expression

j is�xed expression

j locate expression

j awaiting expression

expressionZero ::= invocation

j expressionZero \ $" identi�er

j expressionZero \ (" argumentS \ )"

invocation ::= primary

j identifierOperationNameReference \ [" \ ]"

j identifierOperationNameReference \ [" argumentS \ ]"

j expressionZero \ :" operationNameReference argumentClause

primary ::= literal

j symbolReference

j \ (" expression \ )"

operationNameDefinition ::= operationName

j operatorName

j definableOperatorName

operatorName ::= operator

operationName ::= identi�er
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definableOperatorName ::= \ j"

j \&"

j \ ="

j \ ! ="

j \ >"

j \ <"

j \ >="

j \ <="

j \ "

j \ !"

j \+"

j \�"

j \ �"

j \ ="

j \#"

nondefinableOperatorName ::= \ =="

j \ ! =="

j \ �>"

operationNameReference ::= operatorName

j definableOperatorName

j nondefinableOperatorName

j operationName

j nondefinableOperationName

identifierOperationNameReference ::= operationName

j nondefinableOperationName

nondefinableOperationName ::= owntype

j ownname

argumentClause ::= empty

j \ [" \ ]"

j \ [" argumentS \ ]"

argumentS ::= argument

j argumentS \ ;" argument

argument ::= expression

j move expression

j visit expression

literal ::= string

j character

j integer

j real

j true

j false

j self

j nil

j builtinType

j typeLiteral

j vectorLiteral
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vectorLiteral ::= \ f" expressionSOpt typeClauseOpt \ g"

expressionSOpt ::= empty

j expressionS

typeLiteral ::= typeRest

j immutable typeRest

typeRest ::= abstractType

j object

j record

j union

j enumeration

j class

symbolReference ::= identi�er

symbolDefinition ::= identi�er
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B Built-in Objects

This appendix de�nes the built-in objects.

B.1 AbstractType

The AbstractType and Signature objects cooperate to de�ne the concept of type. Signature

describes the primitive result of a type constuctor and AbstractType allows other objects to

implement it. The Signature object is described later in this appendix.

const AbstractType == immutable object AbstractType

export getSignature

const AbstractTypeSignature == immutable type AbstractTypeSignature

function getSignature ! [Signature]
end AbstractTypeSignature

function getSignature ! [result : Signature]
result  AbstractTypeSignature

end getSignature

end AbstractType

B.2 Any

Any is the type that requires no operations; every Emerald object has type Any.

const Any == immutable object Any

export getSignature

const AnyType == type AnyType

% no operations

end AnyType

function getSignature ! [result : Signature]
result  AnyType

end getSignature

end Any

B.3 Array

Arrays implement expandable indexable storage. The of operation on Array takes an Ab-

stractType, and returns an array creator. As arrays can expand and shrink, common data

types such as Stacks and Queues can be implemented using Arrays: Stacks use addUpper

and removeUpper, while Queues use AddUpper and RemoveLower.
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const Array ==
immutable object Array

export of

function of [ElementType : AbstractType] ! [result : NAT ]
where

NA == type NA

function getElement [Integer] ! [ElementType]
operation setElement [Integer, ElementType]
function upperBound ! [Integer]
function lowerBound ! [Integer]
function getSlice [Integer, Integer] ! [NA]
operation setSlice [Integer, Integer, NA]
operation slideTo [Integer]
operation addUpper [ElementType]
operation removeUpper ! [ElementType]
operation addLower [ElementType]
operation removeLower ! [ElementType]
function empty ! [Boolean]
operation catenate [a : NA] ! [r : NA]

end NA

NAT == immutable type NAT

function getSignature ! [Signature]
operation empty ! [NA]
operation literal [Vector.of [ElementType]] ! [NA]
operation create [Integer] ! [NA]

end NAT

end where
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result  immutable object aNAT

export getSignature, empty, create, literal

function getSignature ! [result : Signature]
result  NA

end getSignature

operation create [length : Integer] ! [result : NA]
result  

object aNA

export

getElement, setElement, upb, lwb, getSlice, setSlice,

slideTo, addUpper, removeUpper, addLower,

removeLower, empty, catenate
...

end aNA

end create

operation empty ! [result : NA]
...

end empty

operation literal [v : Vector.of [ElementType]] ! [result : NA]
...

end literal

end aNAT

end of

end Array

B.4 Boolean

In addition to the operations on Booleans listed here, Booleans are involved in the evalu-

ation of the conditional and (and) and conditional or (or) expressions. These conditional

operations cannot be described in terms of operations on Booleans, since that would im-

ply evaluation of the arguments to the operations, which is exactly what the conditional

expressions wish to avoid.
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const Boolean == immutable object Boolean

export getSignature, makeTrue, makeFalse

const BooleanType == immutable type BooleanType

function > [Boolean] ! [Boolean]
function >= [Boolean] ! [Boolean]
function < [Boolean] ! [Boolean]
function <= [Boolean] ! [Boolean]
function = [Boolean] ! [Boolean]
function ! = [Boolean] ! [Boolean]
function & [Boolean] ! [Boolean]
function j [Boolean] ! [Boolean]
function ! ! [Boolean]
function asString ! [String]

end BooleanType

function getSignature ! [result : Signature]
result  BooleanType

end getSignature

function makeTrue ! [result : Boolean]
result  immutable object aTrueBoolean

export >, >=, <, <=, =, ! =, &, j, !
...

end aTrueBoolean

end create

function makeFalse ! [result : Boolean]
result  immutable object aFalseBoolean

export >, >=, <, <=, =, ! =, &, j, !
...

end aFalseBoolean

end makeFalse

end Boolean
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B.5 Character

const Character == immutable object Character

export getSignature, create

const CharacterType == immutable type CharacterType

function ord ! [Integer]
function > [Character] ! [Boolean]
function >= [Character] ! [Boolean]
function < [Character] ! [Boolean]
function <= [Character] ! [Boolean]
function = [Character] ! [Boolean]
function ! = [Character] ! [Boolean]
function asString ! [String]

end CharacterType

function getSignature ! [result : Signature]
result  CharacterType

end getSignature

function create [Integer] ! [result : Character]
result  immutable object aCharacter

export ord, >, >=, <, <=, =, ! =, asString
...

end aCharacter

end create

end Character

B.6 Condition

The formulation of Hoare condition variables in terms of objects is not very satisfying. The

condition object may only be used within the monitor within which it is used the �rst time,

regardless of where the condition was created. Although this relationship is impossible to

describe using object semantics, Emerald conditions do work properly.

const Condition == immutable object Condition

export create, getSignature

const ConditionType == type ConditionType

end ConditionType

function getSignature ! [result : Signature]
result  ConditionType

end getSignature
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operation create ! [result : Condition]
result  object aCondition

end aCondition

end create

end Condition

Objects whose type is Condition have no operations. Wait, signal, and awaiting are

language primitives, not operations on conditions. This might be worth changing.

B.7 InStream

InStream objects provide the ability to read �les. The InStream object is immutable and

has the following interface:

const InStreamType == type InStreamType

operation getChar ! [Character]
operation unGetChar [Character]
operation getString ! [String]
function eos ! [Boolean]
operation close

end InStreamType

B.8 Integer

Conversion between integers and reals is accomplished by the asReal operation on Integers,

and the asInteger operation on Reals. Viewing an integer as a real does not work (since the

type Real can only be implemented by Reals), nor does it do conversions, since view changes

the type of an expression without changing its representation, while value conversion must

change the representation as well as the type.
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const Integer == immutable object Integer

export getSignature, create

const IntegerType == immutable type IntegerType

function + [Integer] ! [Integer]
function � [Integer] ! [Integer]
function � [Integer] ! [Integer]
function = [Integer] ! [Integer]
function # [Integer] ! [Integer]
function > [Integer] ! [Boolean]
function >= [Integer] ! [Boolean]
function < [Integer] ! [Boolean]
function <= [Integer] ! [Boolean]
function = [Integer] ! [Boolean]
function ! = [Integer] ! [Boolean]
function ~ [Integer] ! [Integer]
function asString ! [String]
function asReal ! [Real]

end IntegerType

function getSignature ! [result : Signature]
result  IntegerType

end getSignature

function create [rep : String] ! [result : Integer]
result  immutable object anInteger

export +, �, �, =, #, >, >=, <, <=, =, ! =, ~, asString, asReal
...

end anInteger

end create

end Integer

B.9 Node, NodeList, NodeListElement

A number of miscellaneous operations are implemented by Nodes. The nodeEventHandler

entries allow appropriate operations to be invoked when the node detects changes in the

network topology. The operations that query network topology use the auxiliary types

NodeList and NodeListElement which are described below. The object Node is immutable

and has the following interface:
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const Node == immutable object Node

export getSignature, create, getStdIn, getStdout

const NodeType == type NodeType

operation getActiveNodes ! [NodeList]
operation getAllNodes ! [NodeList]
operation getNodeInformation ! [NodeListElement]
operation getTimeOfDay ! [Time]
operation delay [Time]
operation waitUntil [Time]
operation getLoadAverage ! [Real]
operation setNodeEventHandler [HandlerType]
operation removeNodeEventHandler [HandlerType]
operation getStdin ! [InStream]
operation getStdout ! [OutStream]
function getLNN ! [Integer]

function getName ! [String]
end NodeType

function getSignature ! [result : Signature]
result  NodeType

end getSignature

function create ! [result : Node]
result  immutable object aNode

export

getActiveNodes, getAllNodes, getNodeInformation,

getTimeOfDay, delay, waitUntil, getLoadAverage, setNodeEventHandler,

removeNodeEventHandler, getStdin, getStdout, getLNN
...

end aNode

end create

operation getStdin ! [result : InStream]
...

end getStdin

operation getStdout ! [result : OutStream]
...

end getStdout

end Node
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const NodeListElement == immutable type NodeListElement

function getTheNode ! [Node]
function getUp ! [Boolean]
function getIncarnationTime ! [Time]
function getLNN ! [Integer]

end NodeListElement

const NodeList == ImmutableVector.of [NodeListElement]

const HandlerType == type HandlerType

operation nodeUp [Node, Time]
operation nodeDown [Node, Time]

end HandlerType

B.10 None

None is the type that supports all operations, and is therefore implemented only by the nil

object. It is de�ned to complete the lattice structure of Emerald types; None represents the

top element of the type lattice.

B.11 OutStream

The OutStream object represents the output stream of a given Node (explained in this

appendix) object.

Objects with type OutStream have the following interface:

const OutStreamType == type OutStreamType

operation putChar [Character]
operation putInt [n : Integer, width : Integer]
operation putReal [Real]
operation putString [String]
operation 
ush

operation close

end OutStreamType
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B.12 Real

The Real type is implemented as a 32-bit 
oating-point number.

const Real == immutable object Real

export getSignature, create

const RealType == immutable type RealType

function + [Real] ! [Real]
function � [Real] ! [Real]
function � [Real] ! [Real]
function = [Real] ! [Real]
function > [Real] ! [Boolean]
function >= [Real] ! [Boolean]
function < [Real] ! [Boolean]
function <= [Real] ! [Boolean]
function = [Real] ! [Boolean]
function ! = [Real] ! [Boolean]
function ~ ! [Real]
function � ! [Real]
functionasString [Real] ! [String]
functionasInteger[Real] ! [Integer]

end RealType

function getSignature ! [result : Signature]
result  RealType

end getSignature

function create [rep : String] ! [result : Real]
result  immutable object aReal

export +, �, �, =, >, >=, <, <=, =, ! =, ~, asString, asInteger
...

end aReal

end create

end Real

B.13 Signature

The Signature object, as explained in the earlier subsection on AbstractType, permits the
complete de�nition of types in Emerald.

const Signature == immutable object Signature

export getSignature, create
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const SignatureType == immutable type SignatureType

function getSignature ! [Signature]
end SignatureType

function getSignature ! [result : Signature]
result  SignatureType

end getSignature

function create ! [result : SignatureType]
result  immutable object aSignature

export getSignature
...

end aSignature

end create

end Signature

B.14 String

The jj operation on strings returns a new string which is the catenation of the two argument

strings. The getSlice operation returns a new string, a substring of the original starting at

the given index (0 origin) and with the given length.

const String == immutable object String

export getSignature, create

const StringType == immutable type StringType

function getElement [Integer] ! [Character]
function getSlice [lb : Integer, length : Integer] ! [String]
function length ! [Integer]
function jj [String] ! [String]
function > [String] ! [Boolean]
function >= [String] ! [Boolean]
function < [String] ! [Boolean]
function <= [String] ! [Boolean]
function = [String] ! [Boolean]
function ! = [String] ! [Boolean]

end StringType

function getSignature ! [result : Signature]
result  StringType

end getSignature
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function create [v : Vector.of [Character]] ! [result : String]
result  immutable object aString

export getElement, getSlice, jj, >, >=, <, <=, =, ! =
...

end aString

end create

end String

B.15 Time

Times represent times and dates. They are stored as a number of seconds (since Jan 1, 1970)

and a number of microseconds. They can be used as either dates or times, and the standard

arithmetic operations are de�ned on them (where they make sense).

const Time == immutable object Time

export getSignature, create

const TimeType == immutable type TimeType

function + [Time] ! [Time]
function � [Time] ! [Time]
function � [Integer] ! [Time]
function = [Integer] ! [Time]
function > [Time] ! [Boolean]
function >= [Time] ! [Boolean]
function < [Time] ! [Boolean]
function <= [Time] ! [Boolean]
function = [Time] ! [Boolean]
function ! = [Time] ! [Boolean]
function getSeconds ! [Integer]
function getMicroSeconds ! [Integer]
function asString ! [String]
function asDate ! [String]

end TimeType

function getSignature ! [result : Signature]
result  TimeType

end getSignature
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function create [rep : Any] ! [result : Time]
result  immutable object aTime

export

+, �, �, =, >, >=, <, <=, =, ! =,
getSeconds, getMicroSeconds, asDate, asString

...

end aTime

end create

end Time

B.16 Vector

There are two 
avors of vectors: mutable and immutable. Vector is the name of an object

with a polymorphic operation of that creates mutable vectors. ImmutableVector is the

name of the corresponding object that creates immutable vectors (see B.17. Vectors provide

the most primitive mechanism for acquiring indexable storage. The builtin object Array is

implemented entirely in Emerald, using the facilities o�ered by Vector. The object Vector is

immutable and has the following interface:

const Vector ==
immutable object Vector

export of

function of [ElementType : AbstractType] ! [result : NVT ]
where

NV ==
type NV

function getElement [Integer] ! [ElementType]
operation setElement [Integer, ElementType]
function upperbound ! [Integer]
function lowerbound ! [Integer]
function getSlice [Integer, Integer] ! [NV ]

end NV

NVT ==
immutable type NVT

operation create [Integer] ! [NV ]
function getSignature ! [Signature]

end NVT

end where

result  

immutable object aNVT

export create, getSignature
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function getSignature ! [result : Signature]
result  NV

end getSignature

operation create [length : Integer] ! [result : NV ]
result  

object aNV

export getElement, setElement, upperbound, lowerbound, getSlice
...

end aNV

end create

end aNVT

end of

end Vector

const ImmutableVector ==
immutable object ImmutableVector

export of

function of [ElementType : AbstractType] ! [result : NIVT ]
where

NIV ==
type NIV

function getElement [Integer] ! [ElementType]
function upperbound ! [Integer]
function lowerbound ! [Integer]
function getSlice [Integer, Integer] ! [NIV ]

end NIV

NIVT ==
immutable type NIVT

operation create [Integer] ! [NIV ]
function getSignature ! [Signature]

end NIVT

end where

result  

immutable object aNIVT

export create, getSignature

function getSignature ! [result : Signature]
result  NIV

end getSignature
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operation create [length : Integer] ! [result : NIV ]
result  

object aNIV

export getElement, upperbound, lowerbound, getSlice
...

end aNIV

end create

end aNIVT

end of

end ImmutableVector

B.17 ImmutableVector

ImmutableVector is the name of an object that creates immutable vectors. Vector is the name

of the corresponding object that creates mutable vectors (see B.16. The primary function

of ImmutableVectors is to implement the Vector literals in the language, but they are also

available for use whenever read-only vectors are necessary. The object ImmutableVector is

immutable and has the following interface:
function of [T : Type] ! [NVT ]

forall T

The object resulting from ImmutableVector .of [T ] is immutable and has the following inter-

face (herein abbreviated NVT):
function getSignature ! [Signature]
operation create[Integer ] ! [NV ]

Objects with type ImmutableVector .of [T ] have the following interface (herein abbreviated

NV):
function getElement [Integer ] ! [T ]
function upperbound ! [Integer ]
function lowerbound ! [Integer ]
operation catenate [NV ] ! [NV ]
function getSlice[lb : Integer, length: Integer ] ! [NV ]

B.18 BitChunk

BitChunks allow the manipulation of arbitrarily sized sequences of bits. There are operations

to set or retrieve collections of bits at arbitrary bit positions with lengths up to 32 bits.

BitChunk is an immutable object with the following interface:
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export function getSignature ! [Signature]
export operation create[n : Integer ] ! [Bitchunk ]

% Create a bitChunk large enough to hold n bytes of information.

% This really should be measured in bits, but that proves problematic at

% this point.

An object whose type is BitChunk has the following interface:
function getSigned [o�: Integer, len: Integer ] ! [Integer ]

% return the bits at o�set o� for length len as a signed Integer

% (treat the highest order bit as a sign bit)

function getUnsigned [Integer, Integer ] ! [Integer ]
% return the bits at o�set o� for length len as an unsigned Integer

function getElement [Integer, Integer ] ! [Integer ]
% equivalent to getUnsigned

operation setSigned [o�:Integer, len:Integer, val:Integer ]
% set the bits at o�set o� for length len to the low order bits of val.

operation setUnsigned [Integer, Integer, Integer ]
% equivalent to setSigned

operation setElement [Integer, Integer, Integer ]
% equivalent to setSigned

operation ntoh[Integer, Integer ]
% Convert the bits at o�set o� with length len from network to host

% byte order. len must be either 16 or 32.

B.19 VectorOfChar

A VectorOfChar is merely a Vector.of[Character].

B.20 Unix

This has been thought about, but is not currently a builtin. The idea was that it would give

you access to other Unix facilities not currently available to Emerald programs. These could

include �le system operations, command execution, etc.

B.21 RISC

The literal operation on String requires a readable indexed sequence of characters, so we

invented RISC. It is just what you want. Note that Vector.of[Character], ImmutableVec-

tor.of[Character], and Array.of[Character] all conform to RISC.

The object RISC is immutable and has just one operation:

function getSignature ! [Signature]

Objects whose type is RISC have the following interface:
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function lowerbound ! [Integer ]
function upperbound ! [Integer ]
function getElement [Integer ] ! [Character ]
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C Compiling Emerald Programs

This appendix presents a sample Emerald program, and shows how Emerald programs are

compiled and executed. More details about practical programming in Emerald may be

found in the Emerald System User's Guide [Jul 88c], and examples of the Emerald style of

programming in [Raj 88].

The Emerald run-time system runs on top of Unix, with the Emerald compiler cross-

compiling Emerald programs from Unix to the Emerald world. Source Emerald programs

are created as Unix text-�les, and the Emerald compiler translates the program into a set of

executable code �les for use by the Emerald run-time system. To permit the sharing object

de�nitions between di�erent compilations, a special mechanism is used to export objects

being de�ned in one compilation to the Emerald environment, and import them back into

another compilation. Each Emerald compilation is de�ned as follows:

compilation ::= environmentImports

::= environmentExports

::= constantDeclarations

environmentImports ::= [ \ ["environmentImport f \ ;" environmentImport g\ ]" ]

environmentExports ::= [ \ ["environmentExport f \ ;" environmentExport g\ ]" ]

environmentImport ::= import symbolDefinitions from environmentPathName j

environmentExport ::= export symbolDefinitions to environmentPathName j

environmentPathName ::= stringLiteral

symbolDefinitions ::= \ [" symbolDefinition f \ ;" symbolDefinition g \ ]"

symbolDefinition ::= identifier

The environment mechanism permits the sharing of object de�nitions between compilations.

Object (actually, identi�ers) exported from one compilation unit that are to be used in

another must be exported to the environment in order to be visible to later compilation

units. An Emerald compilation unit is de�ned as follows:

For example, if an object Directory is being de�ned in compilation, and needs to be used

by other objects (being compiled later), a statement:

export Directory to 00
MyStuff

00

is needed. In later compilations, Directory may be used by imported by using:

import Directory from 00
MyStuff

00

These clauses must not be confused with the export statement within an object construc-

tor that permits the given object to accept invocations to the exported operations. At

present, only symbols representing completely manifest object de�nitions may be exported

and imported from the environment path.
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C.1 A Sample Program

This simple example involves an integer stack creator (Stack), which is compiled �rst, and a

test object (Tester), which is compiled later and makes use of the Stack. The two programs

are entered into separate Unix �les.

The �le stack.m

This Emerald program �le de�nes the stack-creator (see Figure 5); once created, this object

accepts create invocations and returns a new stack-like object (conforming to Stacktype)

on each such invocation. See [Hutchinson 87a, Raj 91] for a better understanding of this

program. Note that the name Stack is exported to the compilation environment using the

export directive.

The �le tester.m

This �le (see Figure 6) contains a simple object that can be used to test the Stack object

de�ned in Figure 5. This object invokes the stack-creator object Stack to create the new

stack named myStack; the rest of the program is fairly straight-forward. The name Stack

in unbound in this example, therefore this program must be compiled in a compilation

environment that includes the name Stack . Also note the prede�ned identi�er stdin and

stdout which name the (already opened) standard input and output streams respectively.

C.2 Compiling the Program

The �les are compiled using the Emerald compiler, ec, by executing the following Ultrix

commands:

ec -C stack.m

ec -C tester.m

where the -C switch forces the compiler to stop after creating the objects and placing their

object-ids in corresponding .g �les.

When the �rst �le is compiled, the Stack object de�nition is exported to the Emerald

environment path \Junk"; you can set up suitable environments by using di�erent names here

for di�erent objects. The Stack de�nition can now be used in any subsequent compilations on

the same node. Note that recompilation of the �le stack.m results in the name Stack naming

a new object with a new object-id; this means that recompilation should used cautiously

because exportation/importation of symbols introduces compilation dependencies.
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% This �le de�nes the Stack object, which implements the single operation \create"

% that returns an object conforming to type Stacktype.

export Stack to \Junk"

const Stack ==
immutable object iStack

export getSignature, create

const StackType ==
type iStackType

operation Push[n: Integer]
operation Pop ! [n: Integer]
function Empty ! [result : Boolean]

end iStackType

function getSignature ! [r : Signature]
r  StackType

end getSignature

operation create ! [result : StackType]
result  

object aStack

export Push, Pop, Empty

monitor

var store: Array.of [Integer]  Array.of [Integer].create[0 ]

operation Push[n: Integer]
store.addUpper [n]

end Push

operation Pop ! [n: Integer]
n  store.removeUpper

end Pop

function Empty ! [result : Boolean]
result  store.empty

end Empty

end monitor

end aStack

end create

end iStack

Figure 5: The �le stack.m

C.3 Executing the Program

To start up an Emerald object on a given node, we have to ensure that the Emerald kernel

is running on that node. We shall simply assume that the Emerald kernel is up and running
68



% This program �rst creates the stack named myStack by invoking Stack.

% It pushes 4 integers into myStack, and then pops and prints them.

import Stack from \Junk"

const Tester == object Tester

process

var i: Integer  0

const myStack: Stack == Stack.create

stdout.PutString [\Playing looney tunes now!\^J"]

for (i  0 : i < 4 : i  i+1)
stdout.PutString [\Pushing " jj i.asString jj \ on my Stack.\^J"]
myStack.Push[i ]

end for

stdout.PutString [\Printing in Reverse Order.\^J"]
loop

var x: Integer
exit when myStack.Empty

x  myStack.Pop

stdout.PutString [\Popped " jj x.asString jj \ from my Stack.\^J"]
end loop

stdout.PutString [\That's all for now, folks!\^J"]

stdout.close

stdin.close

end process

end Tester

Figure 6: The �le tester.m

(details about this are provided in [Jul 88c]). The Ultrix command

runec -i tester.g

starts up the object, and the i switch makes the stdin/stdout input and output streams

of the object the same as that of the Ultrix shell. On executing this command, we get the

following output:

Playing looney tunes now!

Pushing 0 on my Stack.

Pushing 1 on my Stack.

Pushing 2 on my Stack.

Pushing 3 on my Stack.
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Printing in Reverse Order.

Popped 3 from my Stack.

Popped 2 from my Stack.

Popped 1 from my Stack.

Popped 0 from my Stack.

That's all for now, folks!

This has been a brief introduction to the Emerald compilation and run-time environment;

more details about using the Emerald system can be found in [Jul 88c].
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