

��������	
�����
������������
��������������

��������	
����
��������
����������������������������

������������������� ���!"�

#���
��$�"%�&'(�(
�

������)�*���������
�+��

%�+�� ��
�,��-��
#./��-������0��-���-��1������������$�

#���������������+��-���-��2����������

������!"�"������	+�

,��������$�#	�&���3
�

4��-�*-��
���
�+��

ABSTRACT
This paper reports our experiences using traits, collections of
pure methods designed to promote reuse and understandability
in object-oriented programs. Traits had previously been used to
refactor the Smalltalk collection hierarchy, but only by the crea-
tors of traits themselves. This experience report represents the
first independent test of these language features. Murphy-Hill
implemented a substantial multi-class data structure called ropes
that makes significant use of traits. We found that traits im-
proved understandability and reduced the number of methods
that needed to be written by 46%.

Categories and Subject Descriptors
D.2.3 [Programming Languages]: Coding Tools and Tech-
niques - object-oriented programming

D.3.3 [Programming Languages]: Language Constructs and
Features – classes and objects, inheritance

General Terms
Design, Languages

Keywords
Traits, Ropes, Reuse, Smalltalk, Inheritance

1. INTRODUCTION
Reusability is a very important property of object-oriented pro-
grams. With no reuse, all the methods that a class requires
would need to be defined in the class itself. When two or more
classes define the same method, code is duplicated. In addition
to being wasteful by taking up memory, duplicated code lowers
programmer productivity in two ways. Initially, the programmer
must take the time to make a copy of a certain method. Later, if

the desired semantics of that method changes, or if a bug is
found, the programmer must track down and fix every copy. By
reusing a method, behavior can be defined and maintained in
one place.

In object-oriented programming, inheritance is the normal way
of reusing methods—classes inherit methods from other classes.
Single inheritance is the most basic and most widespread type of
inheritance. It allows methods to be shared among classes in an
elegant and efficient way, but does not always allow for maxi-
mum reuse.

Consider a small example. In Squeak [7], a dialect of Smalltalk,
the class �����-���� is the superclass of all the classes that
implement collection data structures, including %����, ���
,
and ���. The property of being empty is common to many ob-
jects—it simply requires that the object have a size method, and
that the method returns zero. Since all collections have a size, it
makes sense that the method isEmpty should be defined for all
collection classes. Because Squeak uses single inheritance, by
defining isEmpty in the class �����-����, all subclasses of ����
��-���� inherit the isEmpty method.

However, a problem arises with classes outside the collection
hierarchy. Take the class �	5�-�������, a part of the “Genie”
handwriting recognition system in Squeak. This class is not a
subclass of �����-����, but it does have a size and an isEmpty
method. The method isEmpty was written in exactly the same
way twice; once in �����-���� and once in �	5�-�������.

This may seem like a small problem—one repeated method is
not a lot of repeated code. But this problem is compounded by
several factors. First, the method isEmpty occurs in 24 classes,
often defined in a similar manner. Second, a number of similar
methods that rely exclusively on isEmpty are common, includ-
ing notEmpty and ifEmpty:. Third, it is quite common to find
duplicated methods in unrelated classes in the class hierarchy.
For example, the classes 	�-������ and 	�-���������
�,
have much common code that they cannot share because they
are unrelated: their only common superclass is #46�-� [3]. How
can we reuse code more effectively?

One workaround is simply to tolerate the missing methods,
rather than dupliciating them. For example, the user of a
�	5�-������� could be required to convert it into a 5�-�������,

The research described in this experience paper was conducted at the
OGI School of Science & Engineering at OHSU by an undergraduate
student from The Evergreen State College. It was funded by NSF award
CCR 0098323.

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

275

�	5�-������� could be required to convert it into a 5�-�������,
which is a subclass of �����-����, and then send the isEmpty
message to the 5�-�������, but this would be grossly inefficient
and exceedingly verbose. Another workaround would be to push
the method isEmpty up the hierarchy into the #46�-� class, but
isEmpty is inappropriate in subclasses of #46�-� that do not
have a size method. Multiple inheritance is another solution, but
it presents its own set of problems, such as the possibility of
conflicting variable and method names. No alternative to single
inheritance has gained widespread acceptance [8].

2. TRAITS
Traits are a new solution to the problem of code duplication
across unrelated classes [5]. A trait is a reusable building block
from which programmers construct classes. Traits are collec-
tions of pure methods, much like classes, except that they have
no superclass and no state. Traits have a set of methods that
define behavior, called the “provides set”, and another set of
methods that have yet to be defined, called the “requires set.”

Suppose that we want to create a trait to solve the isEmpty prob-
lem. We define the method isEmpty in terms of size, but we
cannot yet define size, because it is often dependent on imple-
mentation. Furthermore, the methods notEmpty, ifEmpty:, and
ifNotEmpty: can be defined in terms of isEmpty. So isEmpty,
notEmpty, ifEmpty:, and ifNotEmpty: are in the provides set and
size is in the requires set. We now have a reusable building
block that we will call ���
������ (see Figure 1).

���
������ can be incorporated into the �����-���� class,
into the �	5�-������� class, and into any other class that de-
fines size. To incorporate a trait into a class, the code in this
class has to be refactored so that old, repeated methods are re-
moved. Then, a trait should be made which defines these meth-
ods and the trait itself is used in the class. Each class that
duplicates behavior defined by the trait should be refactored in

this manner. Using traits, we can define behavior in one place
and have that behavior utilized in multiple places. In addition,
the protocols of the classes that use traits tend to become more
uniform. For example, while 20 Squeak classes define isEmpty,
only 2 also define notEmpty. However, if the methods had been
reused from the ���
������ trait, both methods would be
defined in all the classes. Readers wishing to learn more about
traits and the comparison between traits and other language
features are referred to previous publications [3,5].

Small examples are acceptable illustrations of the possibilities
of traits, but little is known about how useful traits are in a real-
istic programming situation. Traits were tested by refactoring
the entire collections hierarchy [3], but the refactoring was done
by two of the creators of traits themselves—Andrew Black and
Nathanael Schärli. Emerson Murphy-Hill, a programmer famil-
iar with object-oriented programming but unfamiliar with traits,
was assigned to evaluate traits in an independent manner, under
the gentle direction of Andrew Black. Murphy-Hill spent a
summer at OGI School of Science and Engineering with a Re-
search Experience for Undergraduates grant from the National
Science Foundation. At the beginning of the project, Murphy-
Hill was unfamiliar with both Smalltalk and traits. While Black
assisted him in learning Smalltalk, Black did not provide guid-
ance on how to use traits. Murphy-Hill learned about traits from
some of the available papers [3,5,6], and utilized this knowledge
to write a significant, multi-class data structure called ropes.
The entire design and implementation process took about one
month, but certainly could have progressed faster if the pro-
grammer had experience with Smalltalk prior to this experience.

3. ROPES
Ropes are an alternative to strings originally developed by
Boehm, Atkinson, and Plass at Xerox PARC [4]. Strings are
almost always implemented as fixed length arrays of characters,
which are not ideal for some of the most common string opera-
tions. In particular, concatenation and substring selection are
common operations that strings perform slowly in traditional
implementations because they require that large portions of the
array be copied. Ropes make both concatenation and substring
selection faster by introducing alternative data structures. Al-
though these data structures require ropes to be immutable,
immutability can be considered an advantage in that it greatly
simplifies sharing of ropes between cooperating processes.

4. THE EXPERIMENT
To see the effect of traits on the development process, we im-
plemented ropes twice: once with traits, and once without. We
based both versions on a Java implementation of ropes by An-
drew Black, which utilized Aspects [2]. Black chose ropes as an
application of traits for Murphy-Hill and let him develop ropes
as he saw fit.

�	����
����
Provides Requires

�����
� ���0���7��������

���������������������	����
����������������������

���������
���������������
��
���������������

���������
����������������
��

��	�����
� ↑ self size = 0�
�

��	�����
� ↑ self isEmpty not�
�

��	�������,��-��
� ↑ self isEmpty ifTrue: �

8�,��-�������9�
�

�� ��	�������,��-��
� ↑ self notEmpty ifTrue:
� � 8�,��-�������9

276

Collection

SequenceableCollection

Rope

Concat Empty Flat Substring

ArrayedCollection

String

�������!��������������"��������
����������#������
������$���
���������
������%�����������

4.1. First Implementation: Ropes without Traits
The first issue was where to put a Rope class so that it could
reuse as much behavior from String as possible. To gain the
greatest amount of reuse, the Rope class should be a subclass of
String. However, this is both inelegant conceptually and diffi-
cult in practice. It is inelegant in that a single-inheritance hierar-
chy, the parent-child relationship is an “is-a” relationship. A
rope “isn’t-a” String nor an ArrayedCollection physically, and
to make it a subclass of either would be to imply the contrary. It
is difficult in practice because, in Squeak, any class occupying a
variable amount of storage, such as String, cannot have named
instance variables; nor can any of its subclasses. The superclass
SequenceableCollection is an appropriate place to share some
collection behavior with String, without acquiring inappropriate
implementation-specific behavior because SequenceableCollec-
tion is an abstract class that encompasses collections whose
elements are ordered (Figure 2). In order to ensure that it had an
interface similar to that of String, Rope was initially just a copy
of String without any underlying data structure and without any
mutating methods. In this way, the Rope made no assumptions
about instance variables used by its subclasses.

To implement ropes, Murphy-Hill wrote four subclasses of
Rope: Empty, Flat, Substring, and Concat, each with a different
underlying data representation. Empty implements the singleton
pattern and therefore behaves the same across all instantiations.
Flat has an array structure, like String. Substring takes any other
Rope, and stores the index of the start of the requested substring
and its length. Concat stores references to the Ropes being con-
catenated and, for efficiency, caches their lengths. A series of
concatenations leads to a tree of Concats (see Figure 3) with
each leaf being a Flat or a Substring and each internal node
meaning “concatenated with”. All methods that are data-
structure dependent were not implemented in Rope, but were
flagged as abstract so that they would be required in each of the
four subclasses.

Empty needs no instance variables. This class allows ropes of
size zero to respond quickly to messages, since they often have
little or no behavior. For example, the method do: iterates over a
collection and the method capitalized returns the receiver with
the first letter capitalized. For an Empty, do: does nothing and
capitalized returns the receiver, unmodified.

������������

� ↑����0�

:��� was intended to be a copy of ������ without the mutating
methods. To accomplish this, Murphy-Hill made :��� use the
same array data structure as ������, and each implementation-
specific method was simply copied from either ������ or its
superclass %�����+�����-����. With the exception of the mutat-
ing methods, this gave :��� the same interface as ������. The
Java interface would be a good choice, but no such enforcement
mechanism exists in Smalltalk. The similarity was simply a
convention dictated by the programmer and hopefully observed
by future maintainers.

��4������ was fairly straightforward to implement. A substring
selection takes three arguments which are stored in a new ��4�

Concat

“ation” Concat

“represent” “One rope ”

�������&��'�������������
����
����
�����(

����
��
����������

277

������ object: a base Rope from which the substring is re-
quested, the offset of the head of the substring in the base, and
the length of the substring. For most methods on a ��4������,
the method is passed to the base, accounting for the position and
the length of the substring. For example, the at: method, which
indexes into a string, needs only to add the offset of the head to
the requested index, and then send the message to the base rope:

�����
��
��

� ↑�4������;�<4���#00����=���+�>�?�)@
�

Concatenation of two 	�
�� is easy—a new ���-�� object is
built with two variables pointing to the arguments. Methods
performed on ���-��� often are defined by passing the method
to the left rope and then to the right rope. For example, the
method do: in the ���-���-���� is defined as follows.

�����)���*�
� ��0��+�;��,��-�
�
� ������+�;��,��-�

The method at: is a constant-time operation on an array-based
data structure, but takes logarithmic time on a ���-�� tree. For
this reason, methods such as do: which relied on a sequence of
at: operations in class String, had to be reimplemented in ����
-��.

In addition to implementing methods in the protocol of ������,
methods were needed across the 	�
� hierarchy to balance
���-�� trees. Although concatenation and substring selection
are highly efficient with ropes, other methods can become
inefficient if a 	�
� contains an unbalanced concatenation tree.
For example, the at: method becomes very inefficient when it
has to traverse a very deep tree. For this reason, the ability to
rebalance themselves is a very important property of ropes.
Some methods necessary for balancing, such as isBalanced,
needed to be implemented in each subclass of 	�
� because
��4������ and :��� ropes are always balanced, whereas ���-��

objects may or may not be balanced, depending on their depth
and length. Other methods, such as those that do the majority of
the actual balancing, needed to be implemented only in the
	�
� class.

4.2. Second Implementation: Ropes with Traits
Once the first implementation was complete, Murphy-Hill con-
sidered how to implement ropes with traits. It was advantageous
to place our 	�
� class in the refactored collections hierarchy
(see Figure 4). This refactoring had been designed previously
using traits and reduced the number of methods in the hierarchy
by about 10% [3]. By placing the 	�
� class and its subclasses
in this hierarchy, we immediately gain some of the savings in-
troduced by traits and the refactored collections hierarchy. Ad-
ditionally, two traits useful for ropes already existed: �������/
and �������/�
�. �������/, the T- prefix meaning that it is a
trait rather than a class and the -I postfix indicating that it is
immutable, is a large trait composed of smaller traits that pro-
vide implementation details for strings. In conjunction with
�������/, �������/�
� provides almost all of the remaining
methods of ������, with the exception of the methods requiring
mutability.

It would have been acceptable to make 	�
� a subclass of ���
7���-�+�>
��-����, just like ������ in the refactored collections
hierarchy. However, there already existed an abstract class
called ��7���-�+/�����4�� with an interface with exactly
the same methods. ��7���-�+/�����4�� was a more natural
choice because, unlike ��7���-�+�>
��-����, it does not re-
quire the mutating method at:put:, a method which writes a
value at a specified index in a sequenced collection.

Unlike the trait-free implementation described in Section 4.1, it
was not necessary to copy methods in ������ into 	�
� in order
to make the interface of 	�
� similar to that of ������. Instead,
the trait �������/ provided most of the methods in the ������
class. The classes ��4������ and ���-�� were written in much

SequencedImmutable
TSequencedimmutable

Collection
TCommon + TBasicImpl

SequencedExplicitly
TSequencedExplicitly

String
TString + TStringImpl

Rope
TBalance + TStringI

Concat SubstringFlat
TStringImpl

Empty
TEmptyString

�������+�����������������"��������
�������������������������	�����������������
��
����������

278

�������,��-��������
��������.�����

A' �A

)3(

A3)A

)�

3&�

&

�

(�

)��

)(�

���

�(�

	
�

�

�
��
-�
�

��

�
�

:�
��

��
4�
���
��

"����

-
�
��
�
�
�

Methods Implemented with Traits

Methods Reused with Traits

Own Methods of Class

�������/��-��������
������(�����.�����

)&B

�A

3�
A')A

�

(�

)��

)(�

���

�(�

	
�

�

�
��
-�
�

��

�
�

:�
��

��
4�
���
��

"����

-
�
��
�
�
�

Own Methods of Class

in the same way as the trait-free implementation; methods
whose efficiency was implementation-dependent were overrid-
den or implemented only in the appropriate subclass.

Of all the classes that Murphy-Hill wrote, the :��� class benefits
most from reusability. As with the trait-free version, the pro-
grammer made its interface identical to ������, minus the mutat-
ing methods. Because :��� uses �������/�
� and its superclass
uses �������/, :��� has exactly the interface desired—the inter-
face of ������ without the mutating methods.

Instead of putting the balancing methods directly in the 	�
�
classes, the programmer instead created a new trait called �,���
��-� that included the methods necessary to balance ���-��
trees. Not all balancing methods could be implemented in
�,����-�, however. For example, as with the trait-free version,
isBalanced is best defined separately in :���$� ��
��$� and�
	�
�. Thus, isBalanced becomes a required method of the trait
�,����-�.

Another trait that the programmer created was ���
��������.
This trait provided almost all the methods for the ��
�� class.
Although there was no code savings and understandability of
the code was not changed, creating and using this trait made
sense for two reasons. First, since both traits and ��
�� have
no state, all the behavior of an ��
�� can be put into a trait. For
example, it is easy to define length for an ��
�� rope inside of
a trait:

�
��
����

� ↑��
�

Second, if in the future anyone needs to write a class like ������
with static behavior, then this trait would be very easily reus-
able.

5. FINDINGS
From our experience implementing ropes with and without
traits, we were able to make a number of observations about
traits in general.

5.1. Traits Are Easy to Learn
Although Murphy-Hill had to learn about Smalltalk, ropes, and
traits, he found that traits were the least difficult concept to
grasp. The programmer was able to easily grasp the concept of
traits, not because the previous writing on traits was exception-
ally clear, but because the use of traits was intuitive to an ob-
ject-oriented programmer. Almost without exception, issues
associated with traits, such as composition, nesting, conflict
resolution, overriding, and precedence, were easy to understand
during development.

5.2. Traits Allow Methods to be Reused
Figure 5 shows the composition of classes in the version of
ropes with traits. Each class is made up of three components:
“own” methods of the class, methods reused from traits, and
methods implemented with traits. Own methods are those that
have been implemented as usual, in the class itself. Methods
reused from traits are those that exist in traits that had been
previously created and used in the refactored �����-���� hierar-
chy. An example is �������/�
�, which is also used in the class
������. Methods implemented with traits are those that exist in
traits that were written expressly for this application, such as
�,����-�.

Figure 6 shows the number of methods in each class written in
the version of ropes without traits. All methods were the “own”
methods of the class, that is, all were written in the class itself.

In comparing Figures 5 and 6, we can see that each has roughly

279

the same number of methods per class, and roughly the same
number of methods overall. The small differences in the number
of methods implemented across the versions can be accounted
for by the previous refactoring of the collection hierarchy and
by the organization of the traits. Some methods were refactored
into a superclass, while others were left for individual imple-
mentations. Howsoever, each version was designed to be identi-
cal in use. In the traits version, fewer methods had to be written
— 46 per cent of the methods were reused from previously de-
fined traits. In all, 77 per cent of the code exists in traits, and
could therefore be reused without subclassing the existing data
structure. In the version of ropes without traits, none of the data
structure is reusable, except when creating a subclass.

The :��� class had the greatest potential for reuse, since it
needed to be behaviorally very similar to the ������ class. If you
consider the bulk of the behavior in the :��� interface as defined
in the :��� and 	�
� class, 78% of the behavior was obtained
from preexisting traits. We feel this is a very significant saving
in both code size and programmer time.

To say that 78 per cent of the methods were obtained “for free”
would be to understate the impact of traits. Although a variety
of traits already exist for �����-����� in Squeak, traits are useful
because they give one the ability to create reusable components,
rather than because a huge library of traits already exists. For
this project, although it was helpful to have traits on hand that
captured the interface of ������, a set of traits could have been
constructed from scratch. This is not a difficult task if a class

already exists which exhibits the desired behavior. The Traits
Browser [6], a tool for working with classes, methods, and traits
in the Squeak environment, includes a feature that allows one to
make a trait from a class, even if the class contains no traits to
start with. Essentially, the tool automatically generates a copy of
the class in trait form by replacing all references to instance and
class variables by message sends to accessor methods. These
accessor methods become requirements of the new trait, and
need to be defined in every concrete class that uses the trait.
This process is an easy way create traits from preexisting
classes. Even if a set of traits had not been conveniently avail-
able for reuse, traits would have still allowed us to create our
own reusable behavior.

5.3. Traits Have Unanticipated Side Effects
We found that using preexisting traits or making traits from
preexisting classes had a negative side effect. In the version of
ropes without traits, although it was tedious to copy and paste
methods from the ������ class, at least this copying forced us to
look briefly at each method. In each case, we could determine
whether the method was written efficiently for our implementa-
tion. If it was not, we could reimplement it in a more efficient
manner.

We found that using methods provided by traits had a “black-
box” effect. The ease of using traits encourages the programmer
to assume that they work as-is, as long as all the required meth-
ods are defined. Indeed, methods implemented in traits often do
work in a class, but not necessarily in the most efficient manner.

�������0������$����*���1�������'���������������������)���
�����������
����
������������)���
��#�������(

1������������������������������������%����2�������
��
�����������
�#��
�����������
�3��

280

�������4�������������1�����������������)�������2�����
����
�������
���3���������*�
���5(��
(6�1��(

��
��
���������������������)���
����1���
����������������%������������������������������������

������������
�����
������������)���
����

The desire to have a trait with the smallest set of required meth-
ods can conflict with the desire to have methods that are effi-
cient across many implementations.

5.4. Traits Demand Reliable Tools
This experiment highlighted the need for reliable tools when
working with traits. Squeak, in addition to being a flavor of
Smalltalk, is also a development environment. All code is pack-
aged into a monolithic image, so Squeak and the development
tools packed therein are the only access to the code itself. Al-
though traits can be created and used without any special tools,
we found that the standard tool for working with traits, the Trait
Browser [6], is an important ingredient in developing traits and
classes that use traits. Emerson Murphy-Hill came to rely on
many features of the browser, such as the automatic and instan-
taneous calculation of required methods and the ability to make
traits from classes. Even in the trait-free version of ropes, the
programmer used the Traits Browser as the central development
tool. For example, after structuring the classes and defining the
bulk of the 	�
� interface, the programmer relied on the Traits
Browser’s display of the required methods to tell him which
methods still needed to be defined in each subclass.

Furthermore, we found that modifying the methods of a trait can
be counterintuitive at times. After a trait is used in a class, it can
be viewed in the Traits Browser in two ways: as part of the trait
or as part of the class that uses the trait. However, the Squeak
debugger always forced us to view such a method as though it
were implemented in the class (see Figure 7). This is true of

other tools in Squeak that are not yet aware of traits. The effect
is that after editing a method in the debugger, a new version of
the method is committed to the class, rather than modifying the
method in the trait. Inadvertently and frequently, the program-
mer overrode the trait method. In essence, the programmer was
making changes to the class when he thought he was making
changes to the trait. This led to bugs that were difficult to track
down, since introduced problems were subtle in effect. This is
similar to what Allen calls “The Rogue Tile” [1]: in this case, a
bug is fixed in the class but still exists in the trait.

A remedy for this inadvertent overriding exists in the Traits
Browser. The browser has a bar that indicates whether the cur-
rent method is implemented in the class, a trait that the class
uses, or in one of the superclasses (see Figure 8). However, the
programmer hadn’t noticed the function of the bar for the first
half of the project! Moreover, a similar indicator had yet to be
added to other tools such as the debugger.

5.5. Traits Enhance Understanding
In addition to providing reusability, we found traits were also
useful for understandability. For example, since concatenation
trees need to be balanced to maintain their efficiency, the pro-
grammer factored-out a balancing trait, �,����-�, that captures
the bulk of the balancing operation. When the programmer
wanted to modify how a concatenation tree is balanced, he sim-
ply modified the trait.

281

However, the ability to divide the semantic portions of ropes
was limited. Although most of the methods relating to balancing
were contained in the trait �,����-�, some portions were im-
possible to factor out using traits. Ideally, we would like to sim-
ply use �,����-�, then sit back and expect our tree to balance.
Despite having a balance method that does the balancing for us,
that method still has to be called explicitly whenever a concate-
nation tree becomes unbalanced. The version of ropes written in
Java [2] utilizes Aspects to factor out balancing, successfully
making a complete semantic separation. In this Java version of
ropes, a snippet of code was written that calls the balancing
method. This snippet is later woven into the head of a set of
specified methods. The programmer was unable to accomplish
this complete separation because traits are unable to achieve a
finer level of granularity for code reuse than methods. However,
the programmer still achieved a large degree of reuse in balanc-
ing behavior by adding the “glue” code by hand.

While the Aspects version of traits achieved a complete separa-
tion of core rope behavior from balancing behavior, we feel that
traits had a significant advantage over Aspects in terms of code
reuse. Consider the example of a programmer in the future
wanting to reuse the balancing code, either with the Aspects
version or the traits version. The Aspects version could not be
reused directly, because the Balance Aspect contains explicit
references to the classes it inserts code into. The traits version
could be reused directly because the Balance trait contains no
references to any of the classes that use it. Since it would be
necessary for the programmer to use a modified version of the
Balance Aspect but could use the Balance trait as-is, traits have
a greater degree of reuse than Aspects in our experience.

6. CONCLUSION
While both versions of ropes were functionally equivalent, we
found that the development of ropes was more enjoyable with
traits than without. We found the ability to use traits as reusable
units of code across the single-inheritance hierarchy a liberating
experience. It took the programmer less time to develop ropes

by reusing code, via traits, than it took to copy code, via cut-
and-paste. By reusing 46% of the methods, we cut down on
code duplication significantly. Furthermore, we were able to
understand our code more thoroughly by separating semantic
aspects of our code using traits. Although we ran across minor
technical problems, we feel that traits are a beneficial addition
to software development.

7. REFERENCES
[1] E. Allen, Bug Patterns in Java. Berkeley: Apress, 2002.

[2] A. P. Black, "Cords," 1.0 ed. Beaverton, Oregon, USA:

OGI School of Science & Engineering, 1998,
http://www.cse.ogi.edu/~black/3AspectExamples/cords.html

[3] A. P. Black, N. Schärli, and S. Ducasse, "Applying Traits

to the Smalltalk Collection Hierarchy," ACM Conference
on Object Oriented Systems, Languages and Applications
(OOPSLA 2003), Anaheim, California, USA, 2003.

[4] H.-J. Boehm, R. R. Atkinson, and M. F. Plass, "Ropes: an

Alternative to Strings," Software Practice & Experience,
vol. 25, pp. 1315-1330, 1995.

[5] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black,

"Traits: Composable Units of Behavior," European Con-
ference on Object-Oriented Programming (ECOOP),
Springer LNCS 2743, Darmstadt, Germany, June 2003.

[6] A. P. Black and N. Schärli. “Traits: Tools and Methodol-

ogy”. International Conference on Software Engineering
(ICSE) Edinburgh, Scotland, May 2004, pp 676-686.

[7] Squeak, "Squeak, Home Page" accessed June 2003: Squeak

Foundation, 2000. http://www.squeak.org

[8] A. Taivalsaari, "On the notion of inheritance," ACM Com-

puting Surveys, vol. 28, pp. 438–479, 1996.

282

