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In this paper we provide a detailed but informal survey of Timber and its characteristic
features. A formal semantic treatment of the language will appear in other papers; here
the exposition will instead be based on short code examples. However, we also intro-
duce the semantic model that underlies one of Timber’s main contributions: the way that
time is integrated into the language.

May of the features of Timber have been adopted from the reactive object-oriented con-
current functional language O’Haskell [15], which was in turn defined as an extension
to the purely functional language Haskell [12]. However, the Haskellian ancestry of
Timber should not cause it to be ignored by the wider (non-functional) programming
language community. Indeed, Timber attempts to combine the best features of three dif-
ferent programming paradigms.

< Timber is animperative object-oriented language offering state encapsulation,
objects with identity, extensible interface hierarchies with subtyping, and the usual
complement of imperative commands such as loops and assignment. Inheritance in
the style of,e.g.,Smalltalk, is not presently supported, but this is an area that we
continue to study. The lack of inheritance is largely counterbalanced by rich facili-
ties for parameterization over functions, methods, and templates for objects. Addi-
tional Timber features not commonly found in object-oriented languages include
parametric polymorphism, type inference, a straightforward concurrency seman-
tics, and a powerful expression sub-language that permits unrestricted equational
reasoning.

« Timber can also be characterized as a strongly tygmedturrent language based
on a monitor-like construct with implicit mutual exclusion, and a message-passing
metaphor offering both synchronous and asynchronous communication. However,
unlike most concurrency models, a Timber process is represented as an object, that
is, as the unit of state encapsulation. Moreover, execution of a process should not
be regarded as continuous, but should instead be thought of as consisting of a
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sequence ofeactionsto external events (made visible to the object as messages).
These reactions always run to completiore.( they are non-blocking) and in
mutual exclusion. The execution order of reactions is determined by baselines and
deadlines associated with these events. When we speak of reactive objects in the
sequel, this is what we mean.

« Timber is finally apurely functional language that supports stateful objects
through the use of monads. Timber allows recursive definitions, higher-order func-
tions, algebraic datatypes, pattern-matching, and Hindley/Milner-style polymor-
phism. Timber also supports type constructor classes and overloading as in
Haskell, but these features are not central and the Timber extensions to Haskell do
not depend on them. To this base Timber conservatively adds two major features:
subtyping and a monadic implementation of statefehctive objectsThe subtyp-
ing extension is defined for records as well as datatypes, and is supported by a
powerful partial type inference algorithm that preserves the types of all programs
typeable in Haskell. The monadic object extension is intended as a replacement for
Haskell's standard IO model, and provides concurrent objects and assignable state
variables while still maintaining referential transparency.

The exposition here largely follows the informal survey of O’Haskell in Nordlander’s
thesis [15]. Section 1 presents a brief overview of the base language Haskell and its syn-
tax, before we introduce the major type system additions of Timbeardsandsubtyp-

ing (Sections 2 and 3). In Section 4 our approachtype inferencein Timber is
presented. The role dimeis introduced in Section (Reactive objectsconcurrency

and encapsulated statare discussed in Section 5. Section 7 presents some additional
syntactic features of Timber, before the paper ends with an example of Timber program-
ming (Section 8). The grammar of Timber appears in the Appendix.

1. Haskell

Haskell [1, 12] is a lazy, purely functional language, and the base upon which Timber is
built. Readers familiar with Haskell may wish to skip this section; it introduces no new
material, and is present to make this paper accessible to those who have not previously
met the language, or who need a reminder of its features and syntax.

Functions Functions are the central concept in Haskell. Applying a function to its arguments is
written as a simple juxtaposition; that isf i a function taking three integer arguments,
then

f7130
is an expression denoting the result of evaluatiagplied to the argumen® 13, and0.
If an argument itself is a non-atomic expression, parentheses must be used as delimiters,
asin
f7(g55)0
2 Timber: A Programming Language for Real-Time Embedded Systems
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Operators like+ (addition) and== (test for equality) are also functions, but are written
between their first two arguments. An ordinary function application always binds more
tightly than an operator, thus

ab+cd
should actually be read as

(ab)+(cd)

The epithetazy means that the arguments to a function are evaluated only when abso-
lutely necessary. So, even if

g 55

is a non-terminating or erroneous computation (including, for example, an attempt to
divide by zero), the computation

f7(g55)0

might succeed in Haskell, ffhappens to be a function that ignores its second argument
whenever the first argumentis This kind of flexibility can be very useful for encoding
and manipulating infinite data structures, and for building functions that play the role of
control structures.

One of the consequences of laziness is that it can sometimes become quite hard to pre-
dict when computation will actually take place, and calculating worst case execution
times is correspondingly difficult. Whether the costs of laziness outweigh the benefits in

a language intended for real-time programming is an open question, and one that we
will continue to examine experimentally. It is important to note that none of the exten-
sions to Haskell that we put forward in Timber relies on laziness. Thus it is perfectly
reasonable to judge the merits of our extensions as if they were intended for an eager
programming language, and it would be perfectly possible to give Timber an eager
semantics without major surgery.

Functions can be defined by equations on the top-level of a program. They can also be
defined locally within an expression. The following fragment defines the funétan
the top-level; the functionsq is defined locally within the body &f

fxyz=letsqi=ili
in sqx Usqy Osq z

Note that the symbal denotesdefinitionalequality in Haskelli(e.,= is neither an
assignment nor an equality test). Local definition of a function within other definitions
is also possible, as in

fxyz=sqxU0sqy sq z where
sqv=vQv

Timber: A Programming Language for Real-Time Embedded Systems 3
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Anonymous functions can be introduced with the so-cédledbda-expressigrwritten
using the symbols...-> in lieu ofA.... So

\xyz->x*y*z

is an expression whose value is the function that multiplies together its three arguments.
An identical function is defined and nam@dduct by the definition

product X y z = x*y*z
The scope of a name can be limited bgtaexpression, so
let product x y z = x*y*z in product

has as its value the same anonymous function as the original lambda expression.

When introducing a new variable, the programmer does not in general have to declare
its type. Instead, the Hindley-Milner-style type inference algorithm employed in Haskell
is able to discover the most general type for each expression. This often results in the
inference of gpolymorphic type, i.ea type expression that includes one or more vari-
ables standing for arbitrary types.

The simplest example of a polymorphic type is that inferred for the identity function,
id x =X

The most general type that can be ascribed to the funidisa -> a: this type is poly-
morphic, sincea is treated as if it were universally quantified, that is, “for all typés
However, the programmer can also use an explicit type annotation to indicate a more
specific type, as in

iid :: Int -> Int
iid x =x

A function like f above that takes three integer arguments and delivers an integer result
has the type

Int -> Int -> Int -> Int
Arrow associates to the right, so this mels> (Int -> (Int -> Int))

Hence such a function need not always be supplied with exactly three arguments.
Instead, functions can hgartially applied a function applied to fewer than its full com-
plement of arguments is treated as denoting an anonymous function, which in turn is
applicable to the missing arguments. This meangtfiais a valid expression of type

Int -> Int -> Int, and tha(f 7 13) denotes a function of typat -> Int. Note that this treat-
ment is consistent with parsing an expressionfliké3 0 as(((f 7) 13) 0).

Timber: A Programming Language for Real-Time Embedded Systems
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Haskell functions are often defined by a sequence of equationpaltiarn-matchon
their arguments, as in the following example:

fac0=1
fac n = n * fac (n-1)

which is equivalent to the more conventional definition
fac n = if n==0then 1 else n * fac (n-1)

Pattern-matching using Boolegnardexpressions is also available, although this form
is a bit contrived in this simple example.

fac n | n== =1
| otherwise =n*fac (n-1)

Moreover, explicitcase expressions are also available in Haskell, as shown in this
fourth variant of the factorial function:

fac n = case n of
0 >1
m -> m Ofac (m-1)

User-defined types (callealgebraic datatype$n Haskell) can be defined using data
definitions, which define a kind of labeled union type with name equality and recursive
scope. Here is an example of a data definition for binary trees: it declares three identifi-
ers,BTree, Leaf andNode.

data BTreea = Leafa
| Node (BTree a) (BTree a)

The type argumera is used to make th&Tree polymorphic in the contents of its

leaves; thus a binary tree of integers has theByipee Int. The identifierd eaf and

Node are called theonstructorsof the datatype. Constructors, which have global scope

in Haskell, can be used both as functions and in patterns, as the following example illus-
trates:

swap (Leaf a) = Leaf a
swap (Node | r) = Node (swap r) (swap I)

This function (of typeBTree a -> BTree a) takes any binary tree and returns a mirror
image of the tree obtained by recursively swapping its left and right branches.

In addition to the integers, Haskell's primitive types include charac@har) as well as
floating-point numbersHloat and Double). The type of Boolean value8¢ol) is pre-
defined, but is an ordinary algebraic datatype. Lists and tuples are also essentially pre-
defined datatypes, but they are supported by some special syntax. The empty list is

Timber: A Programming Language for Real-Time Embedded Systems 5
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written[], and a non-empty list with headand tailxs is writtenx:xs. A list known in its
entirety can be expressed[a%,x2,x3], or equivalentlyx1:x2:x3:[]. Moreover, a pair of
elements andb is written(a,b), and a triple also containiragis written(a,b,c), etc

As an illustration of these issues, here is a function which “zips” two lists into a list of
pairs:

zip (a:as) (b:bs) =(a,b): zip as bs
zip _ _ =] .

Note that the order of these equations is significant.

The names of the types of lists and tuples are analogous to the fairssthe type of
lists containing elements of type and(a,b) denotes the type of pairs formed by ele-
ments of types andb. Thus the type of the functiorip above iga] -> [b] -> [(a,b)].
There is also degenerate tuple typpecalledunit, which contains only the single ele-
ment(), also called unit.

Strings are just lists of characters in Haskell, although conventional string syntax can
also be used for constant strings, witibc" being equivalent tq'a’’b’,c’]. The type
namestring is just atype abbreviationdefined as:

type String = [Char]

String concatenation is an instance of general list concatenation in Haskell, for which
there exists a standard operater defined as

[]++bs=bs
(a:as) ++ bs =a: (as ++ bs)

Haskell also provides a primitive typArray, with an indexing operatot and an
“update” operator/. However, this type suffers from the fact that updates must be
implemented in a purely functional way, which often means creating a fresh copy of an
array each time it is modified. We will see later in this paper how monads and stateful
objects enable us to support theray type in a more intuitive, as well as a more effi-
cient, manner.

Functions are first-class values in Haskell, so it is quite common for a function to take
another function as a parameter; such a function is known as a higher-order function.
map is a typical example of a higher-order functionap takes two arguments, a func-

tion and a list, and returns a new list created by applying the function to each element of
the old list.map is defined as follows:

map f[] =]
map f (x:xs) =fx: map f x

The fact thatnap is higher-order is exposed in its type,

map :: (a->b) ->[a] -> [b]

Timber: A Programming Language for Real-Time Embedded Systems
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where the parentheses are essential. As an example ofmapwan be used, we con-
struct an upper-casing function for strings by defining

upCase = map toUpper

wheretoUpper :: Char -> Char is a predefined function that capitalizes characters. The
type ofupCase must accordingly be

upCase :: [Char] -> [Char]
or, equivalently,

upCase :: String -> String .

Haskell makes extensive use of indentation — two dimensional layout of text on the

page — to convey information that would otherwise have to be supplied using delimit-

ers. We have been using this convention in the foregoing examples, and will continue to
do so. The intended meaning should be obvious. It is occasionally convenient to over-
ride the layout rules with a more explicit syntax, so it may be good to keep in mind that

the two-dimensional code fragment

let fxy=el
gij=e2
ing

is actually a syntactic shorthand for
let {fxy=el;gij=e2}ing

Informally stated, the braces and semicolons are inserted as follows. The layout rule
takes effect whenever the open brace is omitted after certain keywords, sineheas

let, do, record andof. When this happens, the indentation of the next lexeme (whether

or not on a new line) is remembered and the omitted open brace is inserted. For each
subsequent line, if it contains only whitespace or is indented more, then the previous
item is continued (nothing is inserted); if it is indented the same amount, then a new
item begins (a semicolon is inserted); and if it is indented less, then the layout list ends
(aclose brace is inserted). A close brace is also inserted whenever the syntactic category
containing the layout list ends; that is, if an illegal lexeme is encountered at a point
where a close brace would be legal, a close brace is inserted. The layout rule matches
only those open braces that it has inserted; an explicit open brace must be matched by an
explicit close brace.

Timber: A Programming Language for Real-Time Embedded Systems 7
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2. Records

The first Timber extension beyond Haskell is a system for programming with first-class
records. Although Haskell already provides some support for records, we have chosen
to replace this feature with the present system, partly because the Haskell proposal is a
somewhat ad-hoc adaptation of the datatype syntax, and partly because Haskell records
do not fit very well with the subtyping extension that is described in Section 3.

The distinguishing feature of Timber records is that the treatment of records and
datatypes is perfectly symmetric; that is, there is a close correspondence between record
selectors and datatype constructors, between record construction and datatype selection
(i.e., pattern-matching over constructors), and between the corresponding forms of type
extension, which yield subtypes for records and supertypes for datatypes.

Consequently, we tredtoth record selectorand datatype constructors agobal con-

stants. This is the common choice where datatypes are concerned, but not so for records
(see,e.qg.,references [14] and [8]). Nevertheless, we think that a symmetric treatment
has some interesting merits in itself, and that the ability to form hierarchies of record
types alleviates most of the problems of having a common scope for all selector names.
We also note that overloaded names in Haskell are given very much the same treatment,
without creating many problems in practice.

A record type is defined in Timber by a global declaration analogous to the datatype
declaration described previously. The following example defines a record type for two-
dimensional points, with two selector identifiers of t{hmat.

record Point where x,y :: Float

Therecord keyword is also used in the term syntax for record construction. We will
generally rely on Haskell's layout rule (see “Layout” on page 7) to avoid cluttering our
record expressions with braces, as in the following example.

origin = record
x=0.0
y=0.0

Since the selector identifiessandy are global, there is no need to indicate to which
record type a record term belongs; the compiler can deduce that origin is a Point. If one
wishes to make this clear to the human reader, one can explicitly write

origin:: Point

origin = record
x=0.0
y=0.0

but this is entirely redundant. It is a static error to construct a record term where the set
of selector equations is not exhaustive for some record type.

Record selection is performed in the conventional way by means ofldhsyntax.
(Timber also has an operatorused to denote function composition; record selectors

Timber: A Programming Language for Real-Time Embedded Systems
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should immediately follow the dot, while the operatomust be followed by some
amount of white space). Record selection binds more tightly than function and operator
application, as the following example indicates.

dist p = sqrt (sq p.x + sq p.y) where
sqi=i0i

A record selector can moreover be turned into an ordinary prefix function if needed, by
enclosing it betwee@ and), as in

xs = map (.x) some_list_of points

Just as algebraic datatypes may take type arguments, so may record types. The follow-
ing example shows a record type that captures the signatures of the standard equality

operators.

record Eq awhere
eq: a->a->Bool
ne :: a->a-> Bool

This defines a record type with two selectors namgdndne. The types of these selec-
tors are botla -> a -> Bool, where the typa is a parameter tBqg.

A record term of typ&q Point is defined below.

pdict = record
eq=-eq
ne a b =not (eq a b)
where eq ab =ax==b.x && a.y==bh.y

This example also illustrates three minor points about records: (1) record expressions
are not recursive, (2) record selectors possess their own namespace (the eguation

eq above isnot recursive), and (3) selectors may be implemented as functions if so
desired.

t. Strictly speaking, this record type is not legal since its name coincides with that of a predefined
Haskelltype classType classes form the basis of twerloadingsystem of Haskell, whose
ins and outs are beyond the scope of this survey. The iEgphas a deliberate purpose, though
— it connects the example to a known Haskell concept, and it indicates the possibility of
reducing the number of constructs in Timber by eliminating type class declarations in favour of
record types.

Timber: A Programming Language for Real-Time Embedded Systems 9
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3. Subtyping

The subtyping system of Timber is basedm@ame inequalityThis means that a possible
subtype relationship between (say) two record types is determined solely by the names
of the involved types, and not by consideration to whether the record types in question
might have matching substructure. Name inequality is a generalization afatime
equalityprinciple used in Haskell for determining whether two types are equal.

The subtype relation between user-supplied types is induced as a consequence of declar-
ing a new type as an extension of a previously defined type. This makes record subtyp-
ing in Timber look quite similar to interface extension in Java, as the following type
declaration exemplifies:

record CPoint < Point where
color :: Color

This syntax both introduces the record typRoint and declares it to be an extension of
the existing typePoint. The extension is the addition of the seleatotor. As a conse-
quence of this definitionCPoint is a subtype ofPoint, written CPoint < Point. We call
CPoint < Point a subtyping rule. The meaning of this definition is that t@wint pos-
sess the selectoxsandy in addition to its own selectaplor.

The structure o€Point must be observed when constructi®goint terms, as is done in
the following function.

addColor :: Point -> CPoint
addColor p =record X =p.x
y=py
color = Black

cpt = addColor origin

HereaddColor is defined to be a function that conveRsints to CPoints by coloring

them black. Notice that leaving out the equatmator = Black would make the defini-
tion invalid, since the function result would then be a value of tippet instead of
CPoint, contradicting the type definition.

Subtyping can also be defined for algebraic datatypes. Consider the following type mod-
elling the colors black and white.

data BW = Black | White
This type can now be used as the basis for an extended color type:

data Color > BW =
Red | Orange | Yellow | Green | Blue | Violet

Since its set of possible values is larger, the new typler defined here must necessar-
ily be asupertypeof BW (hence we use the symbslinstead of< when extending a

10
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datatype). The subtype rule introduced by this declaration is accorddwjly: Color,

and typeColor possess all of the constructors of its base B¢ in addition to those
explicitly mentioned fotColor. This is analogous to situation for record types formed by
extension, where the extended type has all of the destructors (selectors) of its base type.

Timber allows pattern-matching to be incomplete, so there is no datatype counterpart to
the static exhaustiveness requirement that exists for record types. However, the set of
constructors associated with each datatype still influences the meaning of Timber pro-
grams. This is because the type inference algorithm approximates the domain of a pat-
tern-matching construct by the smallest type that contains all of the enumerated

constructors. The functiodsindg, defined as

fBlack =0
f_ =1
gBlack =0
gRed =1
g_ =2

illustrate this point. The domain dfis inferred to beBW, while the domain ofg is
inferred to beColor.

Subtype definitions may be polymorphic. Consider the following example where a
record type capturing the standard set of comparison operators is formed by extending
the typeEq defined above.

record Ord a < Eq a where
It, le, ge, gt :: a -> a -> Bool

The subtype rule induced by the definition®@fd states that for all types, a value of
type Ord a also supports the operationskd a. Ord a must also support the operations
It, le, ge andgt

Polymorphic subtyping works just as well for datatypes. Consider the following exam-
ple, which provides an alternative definition of the standard HaskelEiper.

data Lefta=La
data Righta=R a
data Either a b > Left a, Right b

The first declaration, actually defines both a new datahgfea and a new constructor
for values of that type, calldd The declaration dright is parallel.

The last declaration is an example of type extension with multiple basetypes. Like inter-
face extension in Java, this declaration introduwaspolymorphic subtype rules; one
that says that for alh andb, a value inLeft a also belongs td&ither a b, and one that
says that for alh andb, a value in typeRight b also belongs t&ither a b. The declara-

Timber: A Programming Language for Real-Time Embedded Systems 11
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tion of Either also shows that a datatype declaration need not declare any new construc-
tors.

Subtyping is a reflexive and transitive relation. This, any type is a subtype of itself, and
S <TandT < U impliesS < U for all typesS, T, andU. The fact that type constructors
may be parameterized makes subtyping a bit more complicated, though. For example,
under what circumstances should we be able to concludeEth&tis a subtype ofq

T?

Timber incorporates a flexible rule that allogspth subtypingvithin a type constructor
application, by taking thearianceof a type constructor’s parameters into account. By
variance we mean the réle that a type variable has in the set of type expressions in its
scope—does it occur in a function argument position, in a result position, in both these
positions, or perhaps not at all?

In the definition of the record typeg above

record Eq a where
eq: a->a->Bool
ne::a->a->Bool

all occurrences of the parameteare in an argument position. For these cases Timber
prescribesontravariantsubtyping, which means th&g S is a subtype oEq T only if

T is a subtype of5. Thus we have thaq Point is a subtype oEq CPoint. This means
that an equality test developed feoints can also be applied Points, e.g, it can be
used to partition colored points into equivalence classes.

The parameter of the datatypeft, on the other hand, occurs only as a top-level type
expression (that is, in a result position). In this case subtypinguariant which means
for example that eft CPoint is a subtype of eft Point. As an example oihvariant sub-
typing, consider the record type

record Box a where
in T a->Boxa
out :a

Here the type parametarplays the role of a function argument as well as a result, so
both the co- and contravariant rules apply at the same time. The net resultBothat

is a subtype oBox T only if S andT are identical types. There is also the unlikely case
where a parameter is not used at all in the definition of a record or datatype:

data Contrived a = Unit

Clearly a value of typ&ontrived S also has the typ€ontrived T for any choice ofS

andT, thus depth subtyping for thisonvarianttype constructor can be allowed without
any further preconditions. The motivation behind these rules is of course the classical
rule for subtyping of function types, which states tlgat> T is a subtype o5’ -> T'

only if S'is a subtype oB, andT is a subtype of* [7]. Timber naturally supports this

rule, as well as covariant subtyping for the built-in aggregate types: lists, tuples, and

12
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arrays. Depth subtyping may be transitively combined with declared subtypes to deduce
subtype relationships that are intuitively correct, but perhaps not immediately obvious.
Some illustrative examples follow.

Relation: Interpretation:
Left CPoint < Either Point Int  If either some kind of point or some integer is
expected, a colored point will certainly do.
Ord Point < Eq CPoint If an equality test for colored points is expected, a
complete set of comparison operations for
arbitrary points definitely meets the goal.

The general rule when defining types by subtyping is that the newly defined subtype or
supertype may be any type expression that is not a variable. There are, however, some
restrictions, for example, it is illegal to definecord S a < Bool, because the supertype

is not a record type. We will not dwell on the restrictions here; more information can be
found in reference [15].

4. Automatic type inference

In a polymorphic language, expressions have several typgsingipal typeis a type
sufficiently general for all of the other types to be deducible from it.

In Haskell, the polymorphic function
twice fx = (f x)

has the principal type
(a->a)->a->a

from which every other valid type fawice, e.g, (Point -> Point) -> Point -> Point, can
be obtained as a substitution instance.

However, it is well known that polymorphic subtyping systems need types qualified by
subtype constrainti order to preserve a notion of principal types. To see this, assume
that we allow subtyping, and th@Point < Point. Now twice can also have the type

(Point -> CPaint) -> Point -> CPoint

which is not an instance of the principal Haskell type. In fact, there can be no simple
type fortwice that has botl{Point -> Point) -> Point -> Point and(Point -> CPoaint) ->

Point -> CPoint as substitution instances, since the greatest common anti-instance of
these typedqa -> b) -> a -> b, is not a valid type fomice.

Thus, to obtain a notion of principality in this case, we must restrict the possible
instances of andb to those types that allow a subtyping step frbrto a; that is, we
must associate the subtype constrairta with the typing oftwice. In Timber, subtype

Timber: A Programming Language for Real-Time Embedded Systems 13
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constraints are attached to types using the symboIT, so the principal type fotwice

can be written
(b<a)=>(a->b)->a->b.

This type has two major drawbacks compared to the principal Haskell type: (1) it is syn-
tactically longer than most of its useful instances because of the subtype constraint, and
(2) itis no longer unique modulo renaming, since it can be shown that, for example,

(b<a,c<a,b<d)=>(@->b)->c->d

is also a principal type fotwice. In this simple example the added complexity that
results from these drawbacks is of course manageable, but even just slightly more
involved examples soon get out of hand. The problem is that, in effeety application
nodein the abstract syntax tree can give rise to a new type variable and a new subtype
constraint. Known complete inference algorithms tend to illustrate this point very well,
and even though algorithms for simplifying the type constraints have been proposed that
alleviate the problem to some extent, the general subtype constraint simplification prob-
lem is at least NP-hard. It is also an inevitable fact that no conservative simplification
strategy can ever give us back the attractive typanoe that we have in Haskell.

For these reasons, Timber relinquishes the goal of complete type inference, and employs
a partial type inference algorithm that gives up generality to gain consistently readable
output. The basic idea is to let functions likeice retain their original Haskell type,

and, in the spirit of monomorphic object-oriented languages, infer subtyping steps only
when both the inferred and the expected type of an expression are known. This choice
can be justified on the grounds tHat-> a) -> a -> a is still likely to be a sufficiently
general type fotwice in most situations, and that the benefit of consistently readable
output from the inference algorithm will arguably outweigh the inconvenience of having
to supply a type annotation when this is not the case. We certainly do not want to pro-
hibit exploration of the more elaborate areas of polymorphic subtyping that need con-
straints, but considering the cost involved, we think that it is reasonable to expect the
programmer to supply the type information in these cases.

As an example of where the lack of inferred subtype constraints might seem more
unfortunate than in the typing tfice, consider the function

min x y = if less x y then x else y
which, assuminggss is a relation on typBoint, will be assigned the type
Point -> Point -> Point
by Timber’s inference algorithm. A more useful choice would probably have been

(a<Point)y=>a->a->a

t. The syntax is inspired by the way that type classes are expressed in Haskell.

14
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but, as we have indicated, such a constrained type can only be attained in Timber by
means of an explicit type annotation. On the other hand, note thatithapal type for
min,

(a < Point, b < Point,a<c,b<c)=>a->b->c
is still more complicated, and unnecessarily so in most realistic contexts.

An informal characterization of our inference algorithm is that it improves on ordinary
polymorphic type inference by allowing subtyping under function application when the
types are known, as in

addColor cpt

In addition, the algorithm computes least upper bounds for instantiation variables when
required, so thag.g, the list

[cpt, pt]
will receive the type
[Point]

Greatest lower bounds for function arguments will also be found, resulting in the
inferred type

CPoint -> (Int,Bool)
for the term
\ p -> (p.X, p.color == Black)

Notice, though, that the algorithm assigns constraint-free typedl tsubterms of an
expression, hence a compound expression might receive a less general type, even
though its principal type has no constraints. One example of this is

let twice f x =f (f x) in twice addColor pt
which is assigned the ty@wint, not the principal typ€Point.

Unfortunately, a declarative specification of the set of programs that are amenable to
this kind of partial type inference is still an open problem. Completeness relative to a
system that lacks constraints is also not a realistic property to strive for, due to the
absence of principal types in such a system. However, experience strongly suggests that
the algorithm is able to find solutions to most constraint-free typing problems that occur

in practice—in fact, an example of where it mistakenly fails has yet to be found in our
experience with O’Haskell and Timber programming. Moreover, the algorithm is prova-
bly complete with respect to the Haskell type system, and hence possesses another very
important property: programs typeable in Haskell retain their inferred types when con-
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sidered as Timber programs. Additionally, the algorithm can also be shown to accept all
programs typeable in the core type system of Java (see section 5.3 of [15]).

5. Reactive objects

The dynamic behavior of a Timber program is the composition of the behavior of many
state-encapsulating, time sensitieactive objea executing concurrently. In this sec-

tion we will survey this dynamic part of the language as it is seen by the programmer.
The number of new concepts introduced here is quite large, so we proceed step by step
and ask the reader to be patient while the structure of the language unfolds.

Some of the language features will initially appear to be incompatible with a purely
functional language. However, it is in fact the case that all constructs introduced in this
section are syntactically transformable into a language consisting of only the Haskell
kernel and a set of primitive monadic constants. This “naked” view of Timber will not
be pursued here; the interested reader is referred to chapter 6 of Nordlander’s Thesis
[15].

Objects and methods Objects are created by executingeaplate construct, which defines thiitial state of
an object together with itsommunication interfacdJnlike Smalltalk or Java, there is
no notion of class; in this way Timber is similar to classless languages like Emerald [16]
and Self [17].

The communication interface can be a value of any type, but it will usually contain one

or moremethods (It can be useful to put other things in the communications interface

too, as we will see in some of the examples.) Methods allow the object to remetsto

sage sendd/NVe use the terrmessage send its usual sense in object-oriented program-
ming: a message send is directed from one object (the sender) to another object (the
receiver); in response, the receiver first selects and then executes a method. Message
send is sometimes called method invocation or even method call, but the term message
send is preferred because it emphasises that the coupling between the message and the
method occurs in the receiving object.

A method takes one of two forms: an asynchronactson or a synchronousequest .

An action lets the sender continue immediately, and thus introduces concurrency. Con-
sequently, actions have no result. A synchronegsiest causes the sender to wait for
the method to complete, but allows a result value to be passed back to the sender.

The body of a method, finally, is a sequenceommandswhich can basically do three
things: update the local state, create new objects, and send messages to other objects.
The following template defines a simple counter object:
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counter = template
val :=0
in record
inc =
action val :=val + 1
read =
request return val

Executing thigemplate command creates a hew counter object with its own state vari-
ableval, and returns an interface through which this new object can be accessed. The
interface is a record containing two methods: an asynchroactism inc, and a syn-
chronougsequest read. Sending the message to this interface will cause thaction

val := val + 1 to be executed, with the effect that the counter object behind the interface
will update its state, concurrently with the continued execution of the sender. In con-
trast, sending the messagmd will essentially perform a rendezvous with the counter
object, and return its current value to the sender.

Actions, requests and templates are all expressions that denote commands; such expres-
sions have a type inmonadcalledCmd. A monad is a structure that allows us to deal

with effect-full computations in a mathematically consistent way by formalizing the dis-
tinction betweenpure computations (those that simply compute values), amgure
computations, which may also have effects, such as changing a state or accessing an
external device.

Cmd is actually a type constructo€md a denotes the type of commands that may per-
form effectsbefore returning a value of type If Counter is a record type defined as

record Counter where
inc:: Cmd ()
read :: Cmd Int
then the type of the example shown above is given by

counter :: Cmd Counter

This says thatounter is a command that, when executed, will return a value of type
Counter.

The result returned from the execution of a monadic command may be bound to a varia-
ble by means of thgeneratornotation. For example

do c<-counter
means that the commarrdunter is executedi(e., a counter object is created), anis
bound to the value returned—the interface of the new counter object.
Note that a generator expression cannot be the final commandarcanstruct. There

would be no point in using it in such a position, because the bound variable could never
be referenced. Executing a command and discarding the result is written without the
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left-arrow. For example, the result of invoking an asynchronous method is always the
uninteresting valué, so the usual way of incrementing courttés

do c <-counter
c.inc

This do-construct is by itself an expression: it represents a command sequence, that is,
an anonymous procedure, lilggogn in Lisp or like a block in SmalltalkWhen this
command sequence is execuiedxecutes its component commands in sequence. Thus,
the commandounter is executed firstThis in turn executes themplate expression
shown on page 17, which has the effect of creating a counter object and returning its
interface record, which is bound ¢oNext, the command.inc is executed, which sends

the messagiac to the counter object. The resul()is

The value returned by a procedure is the value returned by its last command, so the type
of the above expression@nd ().

Since thaead method oft is a synchronousquest that returns amt, we can write

do c <-counter
c.inc
c.read

and obtain a procedure with the typmd Int.

Just as for other commands, the result of executingehé method can be captured by
means of the generator notation:

do c <-counter
c.inc
v <- c.read
return v

This procedure is actually equivalent to the previous one. The identiem denotes

the built-in command that, when executed, produces a result value (in this case simply
v) without performing any effects. Unlike most imperative languages, howetern is

not a branching construct in Timber—return in the middle of a command sequence
means only that a command without effect is executed and its result is discarded. This is
pointless, but not incorrect. For example

do

return (v+1)
return v

is simply identical to

do ...
return v

A procedure constructed witlo can be named just like any other expression:

18
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testCounter =do c¢ <- counter
c.inc
c.read

testCounter is thus the name of a simple procedure thdien executed;reates a new
counter object and returns its value after it has been incremented once. The counter
itself is then simply forgotten, which means that space used in its implementation can be
reclaimed by the garbage collector.

A very useful procedure with a predefined name is
done =do return ()
which plays the réle of aull command in Timber.

Notice the difference between the equals sigmd the generator arrow.

e The symbol = denotes definitional equality: it defines the name on the left to be
equivalent to the expression on the right, which may be a command (as in this
example) or a simple value, such as a factorial function defined on page 5; = can
appear at the top level, or Iat andwhere clauses. Since a definition can never
have any effect, the order of execution of a set of definitions made with = is irrele-
vant, and mutual recursion is allowed.

« In contrast, the generator arrewcan appear only insidedn -construct. The right
hand side must be a command, that is, it must have theGymka for some value
type a. The effect is texecutehe command, and to bind the resulting value to the
identifier on the left hand side. A sequence of generator bindings is executed in the
order written, and the values bound by the earlier bindings can be used in the later
expressions, but not vice-versa.

Notice that the definition ofounter in “Objects and methods” on page 16 does not by
itself create an object. What it does is defam@inter to be a command. If and when that
command is executed, an object will be createdpifnter is executed three times, three
new counter objects are created. Thus, the commanuter is analogous to the expres-
sionCounterClass new in Smalltalk ornew Counter() in Java: it is the means to make
a new object.

The method-forming constructgtion andrequest are syntactically similar to proce-
dures, but with different operational behaviors. Whereas calling a procedure means that
its commands are executed by the caller, sending a message triggers execution of the
commands that make up the corresponding method within the receiving object. Thus,
methods have no meaning other than within an object, anacdie andrequest key-

words are accordingly not available outsidetdmeplate syntax.

In actions and requests, as well as in procedures that occur within the scope of an object,
two additional forms of commands are available: commands that obtain the values of
state variables (for example the commastlrn val in the counter object), and com-
mands that assign new values to these variables/ét:g.val + 1).
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The use of state variables is restricted in order to preserve the purely functional seman-
tics of expression evaluation.

First, references to state variables may occur only within commands. For example

template
x:=1
in X
is statically illegal, since the state varialslés not visible outside the commands of
a method or a procedured,, it can only be used insidedn, action orrequest ).

Secondly, there are no aliases in Timber, which means that state variables are not
first-class values. Thus the procedure declaration

someProcr=dor:=1

is illegal even ifsomeProc is applied only to integer state variables, becatise
syntactically a parameter, not a state variable. Parameterization over some
unknown state can instead be achieved in Timber by turning the parameter candi-
dates into full-fledged objects.

Thirdly, the scope of a state variable does not extend into nested objects. This
makes the following example ill-formed:

template
x:=1
in
template
y:=2
in
do x:=0

Fourthly, there is a restriction that prevents other local bindings from shadowing a
state variable. An expression like the following is thus disallowed:

template
x:=1
in\x->..
While not necessary for preserving the purity of the language, this last restriction

has the merit of making the question of assignability a simple lexical matter, as
well as emphasizing the special status that state variables enjoy in Timber.

Sequencing by means of tke -construct, and command injection (vieturn), are not
limited to theCmd monad. Indeed, just as in Haskell, these fundamental operations are
overloadedand available for any type constructor that is an instance ofyibe class
Monad [9, 11]. Type classes and the overloading system will not be covered in this
paper, partly because this feature constitutes a virtually orthogonal complement to the
subtyping system of Timber, and partly because we do not capitalize on overloading in
any essential way. In particular, monadic programming in general will not be a topic of
this paper.

20
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Nevertheless, we are about to introduce one more monad that is rela@dddy

means of subtyping. We will therefore take the liberty of reusetgrn and thedo -syn-

tax for this new type constructor, even though strictly speaking this means that the over-
loading system must come into play behind the scenes. The same trick is also employed
for the equality operator= in a few places. However, the uses of overloading that occur

in this paper are all statically resolvable, so our naive presentation of the matter is intui-
tively quite correct. We feel that glossing over Haskell's most conspicuous type system
feature in this way avoids more confusion than it creates.

While all commands are members of the moaad, commands that refer to or assign

to the local state of an object belong to a richer mo@as] wheres is the type of the

local state. Accordingly® s a is the type of state-sensitive commands that return results

of typea. An assignment command always retu¢psvhereas a state-referencing com-
mand can return any type. Any procedure that contains a state-referencing command is
itself a state-referencing command, and will therefore have atygpe

The type of the local state of an object with more than one state variable is a tuple type;
there is no information about the names of the state variables encoded in the type of the
state. For example, consider the definitions

a = template

x:=1
f := True
in ..
and
b = template
count:=0

enable := False
in ...

The commanda andb, when executed, both generate objects with local states of type
(Int,Bool).

Procedures defined within an object aarametricin the state on which they operate.
The state of the object within which the procedure is eventually executed is, in effect,
provided to it as an implicit parameter. There exists no connection at runtime between a
value of someD type (a procedurer a methodland the object in which its definition is
syntactically nested.

What this means is that, as long as the state types match, a procedure declared within
one object can be used as a local procedure within another object. This does not consti-
tute a loophole in Timber's object encapsulation, because the state accessed by that pro-
cedure will be the state of the caller. It remains true that the only way in which an object
may affect the state of another object is by sending a messdpattobject However,

the ability to export procedures provides a way of sharing code between templates. It is
very much like inheritance in class-based languages, which permits one class to re-use
the code originally defined in another. In such a language, encapsulation is preserved
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because the state on which the re-used code operates that of the currently executing
object.

A sometimes controversial issue in the design of object-oriented languages is whether
clients should be able to compare two object references for identity. That is, given two
identifiersa andb that name objects, can a client ask whethemdb are in fact the

same object?

Allowing such an identity test breaches encapsulation, because whether two possibly
distinct interfaces are actually implemented by the same object is an implementation
decision that may be changed and which should accordingly be hidden. However, fail-
ing to provide an efficient identity test can impose an unreasonable burden on the pro-
grammer. For a more complete discussion of these issues, see reference [6].

Timber makes the compromise of letting the programmer decide whether or not identity
comparison shall be possible. Objects themselves cannot be compared, so encapsulation
is preserved. However, Timber provides a special variable which is implicitly in

scope inside evertemplate expression, and which may not be shadowed. All occur-
rences obelf have typeRef s, wheres is the type of the current local state. The value of

self uniquely identifies a particular object at runtime.

It should be noted that the varialdelf in Timber has nothing to do with thaterfaceof

an object (in contrast to, for examplejs in C++ and Java). This is a natural conse-
quence of the fact that a Timber object may have multiple interfaces — some objects
may even generate new interfaces on demand (recall that an interface is simply a value
that contains at least one method).

To facilitate straightforward comparison of arbitrary object reference values, Timber
provides the primitive typ®bjRef with the built-in subtype rule

Ref a < ObjRef .
By means of this rule, all object references can be compared for equality (using the
overloaded primitive==) when considered as values of the supert@mRef. Timber
moreover provides a predefined record tgigldentity, which forms a convenient base

from which interface types supporting a notion of object identity can be built.

record Objldentity where
self :: ObjRef

For example, suppose that we wish to defi@eunter as a subtype of the counter type
whose objects can be compared for identity.

record ICounter < Objldentity, Counter

iCounter :: Template ICounter
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iCounter = template
c <- counter
in record
self = self
inc = c.inc
read = c.read

Now we can compare the identity of two iCounters:

do cl <-iCounter
c2 <- iCounter
return (cl == c2) -- always false

Although commands are first-class values in Timber, there is a sharp distinction
between thexecutiorof a command, and thevaluationof a command considered as a
functional value. The following examples illustrate this point.

f:: Counter -> (Cmd (), Cmd Int)
f cnt = (cnt.inc, cnt.read)

The identifierf defined here is a function, not a procedure: it cannadteeutedit can

only be applied to arguments of ty@»unter. The fact that the returned pair has com-
mand-valued components does not change the stafukgfarticular, the occurrence of
sub-expressionent.inc andcnt.read in the right-hand side of doesnotimply that the
methods of some counter object are invoked when evaluating applicatibrSxfact-

ing the first component of a pair returned bis also a pure evaluation with no side-
effects. However, the result in this case is a command value, which has the specific
property of beingxecutable

By placing a command in the body of a procedure, the command becomes subject to
executionwhenever the procedure itself is executach a procedure is shown below.

do c <-counter
fst (f c)

The second line applies f to a counter object, resulting in a pair. The standard function
fst extracts the first element of the pair, which is a command. This command is executed
when the procedure (th construct) in which it is defined is executed.

The separation betwe@valuationandexecutiorof command values can be made more
explicit by introducing a name for the evaluated command. This is achieved It the
command, which is a purely declarative construct: as usual, the equality sign denotes
definitional equality.

do c <-counter
let newCmd = fst (f ¢) -- Now newCmd denotes a command
newCmd -- this causes the command to be executed
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Hence the two preceding examples are actually equivalent, and in each case a counter
will be created once and incremented once. The following fragment is yet another
equivalent example,

do c <-counter

let aCmd = fst (f ¢) -- Now aCmd and bCmd
bCmd = fst (f ¢) -- both name the same command
in aCmd

whereas the next procedure has a different operational behaviour (héne thethod
of ¢ will actually be invoked twice).

do c <-counter
let newCmd = fst (f ¢)

in newCmd

newCmd

A computation that behaves likeabove, but which also has the effect of incrementing
the counter it receives as an argument, must be expressed as a procedure.

g :: Counter -> Cmd (Cmd (), Cmd Int)
gcent=do c.nc
return (c.inc, c.read)

Note that the type system clearly separates the effectfull computation from the pure one:
the result type of is a value, whereas the result typegyaé a command.

Likewise, the type system demands that computations that depend on the current state of
some object be implemented as procedures. For example,

h :: Counter -> Int
h cnt = cnt.read 010

is not type correct, sincent.read is not an integer — it is @ommandhat, when exe-
cuted, returns an integer. If we really want to compute the result of multiplying the
counter value by 10 we can write

h :: Counter -> Cmd Int
hcnt=do v<-cntread
return (v 0J10)

The fact thah calls theread method of the counter is reflected in the return typé,of
which isCmd Int.

We have already indicated that tBend andO s monads are related by subtyping. This
is formally expressed as a built-in subtype rule.

Cmda<Osa
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This rule can be read as a higher-order relation: “all commands in the n@mddare
also commands in the mon@ds, for anys”.

One way of characterizing tf@md monad is as a refinement of t@emonad that repre-

sents those commands that are independent of the current local state. Timber takes this
idea even further by providing three more primitive command types, which are related
to theCmd monad via the following built-in subtyping rules.

Template a < Cmd a
Action < Cmd ()
Requesta<Cmd a

The intention here is to provide more precise typings fortthmaplate , action , and
request constructs. For exampl@emplate a is the type of aemplate that, when exe-
cuted, constructs an object with an interface of tgperhus, the type inferred for
counter defined on page 17 is actualigmplate Counter (rather thanCmd Counter),
and the types of its two methods aketion andRequest Int. The record type&ounter
can of course be updated to take advantage of this increased precision.

record Counter where
inc :: Action
read :: Request Int

Unlike the refinement step of going fro@ s to Cmd, which actually makes more pro-
grams typeable because of the rank-2 polymorphism, the distinction be@vegand

its subtypes has mostly a documentary value. However, by turning a documentation
practice into type declarations, the type system can be relied on to guarantee certain
operational properties. For example, a command of fgmeplate a cannot change the

state of any existing objects when executed: object instantiationaglgobjects to the

system state. Moreover, commands of tyymion or Template a are guaranteed to be
deadlock-free, since a synchronous method can never possess any of these types. Note
that none of these properties hold for a general command oftype.

Of the type constructors mentioned heZend, Template, andRequest are all covariant

in their single argument. This also holds for the types a in case of its second argu-
ment. However, thé® constructor, like all types that support both dereferencing and
assignment, must be invariant in its state component. SimiRetys also invariant.

So far, we have seen how to define functions and procedures, and have emphasized that
procedures are executed only when some other procedure calls them. How, then, is the
execution of a Timber program started?

A Timber program should have a special template caflath. This template is parame-
terized by arenvironmenthat gives the program the ability to interact with the rest of
the system. The type of theain template must be

main :: Environment -> Template Program
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The definitions of the typeBnvironment andProgram depend on the capabilities of the
particular system for which the Timber program is written. The section “Reactivity” on
page 27 provides more details of these types.

When a Timber program is started, the system will applgin to an environment
parameter. The resulting template is then used by the system to create an object which
constitutes the system's interface to the running program. This interface is required to
contain an actiostart, which the system executes to initialize the program.

Here is the traditional “Hello World” program in Timber:

main env = template
-- no state
in record
start = action
env.putStr "Hello World'\n"

In general, execution of a Timber program is concurrent: many commands may poten-
tially be active simultaneously. However, each Timber object behaves like a monitor: its
methods execute in mutual exclusion, so at most one of its methods can be active at any
given time. Since all state is encapsulated in some object, this ensures orderly update of
the state.

In the following example, two contending clients send messages to a counter object.
Mutual exclusion between method executions in the counter guarantees that there is no
danger of simultaneous updates to the counter’s state.

proc cnt = template
-- this object has no state of its own
in record
dolt = action cnt.inc

fenv= do ¢ <- counter
p <- proc c
p.dolt
c.inc
v <- c.read
env.putStr (show v)

Hereproc is function that returns a template (a particular kindCofid). The command

p <- proc c (inside thedo) parameterizeproc by the counter objeat andexecutegproc

c: the result is a new object with a single method catlett. The message sempddolt

starts execution of this method, which then executes autonomously and asynchronously,
because the method is an action.

Methods are not guaranteed to be executed in the order that the corresponding messages
are sent. Their execution is instead scheduled subject to timing constraints, which will
be discussed in Section 6. However, in the absence of explicit timing constraints, if one
message send precedes (in the sense of Lamport’s “happened before” relation) another
send to the same object, it is safe to assume that the corresponding methods will be exe-
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cuted in the same order. This is also illustrated by the previous example, as we now
explain.

In the proceduréd the messagenc is sent to p before the messagad. There are no
explicit timing annotations on the message sends andc.read. Thus,inc will be
executed beforeead, and it is safe to assume that the valuesturned from theead
request is at least. In contrast, the send afolt to p initiates a concurrent activity,
becauselolt is an action. Nothing can be said about whetherdbié action of objecp

will be scheduled to send itac message before, in between, or after the two messages
sent in procedurg

Reactivity Objects alternate between indefinitely long phases of inactivity and periods of method
execution that must be finite, unless the programmer has explicitly written an infinite
loop. Given a sufficiently fast processor, in many applications the method executions
may be considered to be instantaneous. When used with very short duration methods,
Timber then approximates Bernygerfectly synchronousodel of computation [3].

The existence of value-returning synchronous methods does not change the fact that
method executions are finite, since, assuming that the system is not in deadlock, there
are noothercommands that may block indefinitely, and hence sending a request cannot
block indefinitely either. Thus, it is important that the computing environment also
adheres to this reactive view, gt providing any operations that might block a process
indefinitely.

This means, for example, that a Timber program cannot read input from a console using
a blocking primitive. Instead, interactive Timber programs installback methodn

the computing environment, with the intention that these methods will be invoked
whenever the event that they are set to handle occurs. As a consequence, Timber pro-
grams do not generally terminate when 8iart action of the main template returns;
instead, they are considered to be alive as long as there is at least one active object or
one installed callback method in the system. (Alternatively, the environment may pro-
vide aquit method that terminates the whole program).

The overall form of a Timber program is thuet a (potentially) infinite main loop.
Instead, a Timber program defines a set of objects and binds events in the environment
to message sends to those objects. When the events occur, the messages will be sent, and
the corresponding methods will be scheduled for execution.

The actual shape of the interface to the computing environment must of course be
allowed to vary with the type of application being constructed. The current Timber
implementation supports several environment types, includingnv, BotEnv, and
StdEnv, which model the computing environments offered by a Tk server with graph
building extensions [2], a mobile Robot, and #tdiofragment of a Unix operating sys-
tem, respectively.

As an illustration of the use of environments, let us see how a text-based Timber pro-
gram might work in a minimal Unix-like computing environment:
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record StdEnvironment where
putStr :: String -> Action
quit  :: Action

record StdProgram where
start :: Action
char :: Char -> Action
signal :: Int -> Action

main :: StdEnvironment -> Template StdProgram
The program can send the messpgeStr to the environment to output strings. The sys-
tem will deliver characters and signals to the program by executing the actianand

signal when a new character is typed or a signal is generated.

For an example of a more elaborate environment interface, the reader is referred to the
vehicle controller discussed in Section 8.

6. Time

So far, our discussion of Timber has (intentionally) avoided the topic of time. This is
conventional in the definition of programming languages; ignoring time has the great
advantage of allowing conforming implementations of a language to exist on varied
hardware and software platforms. Unfortunately, ignoring time makes a language
unsuitable for programming real-time systems, with the result that embedded systems—
almost alone in the universe of modern software—are frequently programmed in
assembly language or in a way that must escape from the programming language and
appeal to the primitives of a real-time operating system for all critical operations.

With Timber we attempt to find some middle ground by allowing the programmer to
placeboundson the execution time of actions, while allowing the implementation the
freedom to schedule the actions within those bounds. We use the notizadifine—

the latest time before which an action must complete, lzaskline—the earliest time

after which the action may commence. We call the closed interval bounded by a base-
line and a deadline imeline while an action is executing the current time will nor-
mally be within the timeline for that action. It is possible to read the current time
directly, but since this will vary from one execution to the next, the timeline is in prac-
tice more useful.

Timber has two built-in datatypes for timeTimelnstant and TimeDuration.
Timelnstant refers to a calendar date and tinfémneDuration to the interval between

two Timelnstants'. Neither the precision nor the accuracy of the clock against which

t. The name3imeDurationandTimelnstantre taken from 1ISO 8601[10] and the XML Schema
Specifications for DataTypes [5]
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times are measured are dictated by the Timber language. This means that implementa-
tions are free to provide as coarse or as fine a notion of time as their applications require
or their platforms permit. However, Timber does require that time is monotonic with
respect to the Lamport Logical Clock [13]. That is, if an actiothappened before” an
actionb, then the current time observableammust not be later than the current time
observable irb. Note that, because of the finite granularity of the clock, the two times
may be equal.

The datatypdimelnterval is used to represent the interval between and including two
Timelnstants. The operatousitil, from andending can be used to construct Timelnter-
vals:

until :» Timelnstant  -> Timelnstant -> Timelnterval
from :: TimeDuration -> Timelnstant -> Timelnterval
lasting :: Timelnstant -> TimeDuration -> Timelnterval
ending :: TimeDuration -> Timelnstant -> Timelnterval

In the following,tod1 is aTimelnstant, andhours is aTimeDuration. tod2 is defined to
denote a timelnstant that is one hour later than tod1:

tod2 = todl + (1 * hours)

The following definitions all specify the sam&melnterval, namely, the interval
betweenodl andtod?2.

i1 =tod1 “until’ tod2

i2 = (1 * hours) ‘from” tod1
i3 = tod1 “lasting” (1 * hours)
i4 = (1 * hours) “ending” tod2

The operatorbaseline, deadline andduration can be used to examinganelnterval:

baseline :: Timelnterval -> Timelnstant
deadline:: Timelnterval -> Timelnstant
duration :: Timelnterval -> TimeDuration

In the scope of the above let expression, the following are true:

baseline i1 == tod1
deadline i1 == tod2
duration il == (1 * hours)

Every method execution in a Timber program has an associated timeline. Normally, this
timeline is the same as the timeline of the method that initiated the execution; indeed,
this is always the case for requests. However, for actions, it is possible to specify a dif-
ferent timeline, as we will see shortly.

Actions invoked by the environment are also assigned timelines. For example, the time-
line for thestart action is determined by the operating system command that initiates it.
Normally it has a baseline representing Timelnstant at which the program is started,
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and a deadline specifying when initialization must be completed. To give another exam-
ple: when the environment receives an interrupt from a sensor, it sends a message to
some Timber object that initiates an action. The timeline for this action might extend
from the instant that the interrupt arrives until the instant when the sensor readings are
no longer guaranteed to be available in the device register.

If a Timber action with timelinet sends a message initiating an actiénthen the
default timeline forA is alsot. The baseline foA can be specified to be something other
thant.baseline than by means of the construgfter b A, whereb is a TimeDuration.
This gives the actio\ a baseline ob +1.baseline; As deadline ist.deadline. Simi-
larly, the deadline foA can be specified by means of the consthetbre d A, whered

is a TimeDuration; this initiates the actio\ with a deadline of d €.baseline. In this
caseAs baseline ig.baseline.

The before andafter constructs give the programmer an explicit way of specifying
which aspects of a reaction are time-critical. If an ac#osends a message that initiates
an actiorB in some other object, the deadline #will by default be the same as that of
A itself. However, by using theefore command, the deadline f& can be changed to
be later than the deadline far

Whether it is appropriate to change the deadline in this way depends entirely on the
application. For exampléd may be a time-critical reaction to a real-time event, But

may be a housekeeping operation that can be deferred indefinitely; in thiBoass,

be given a very much more generous (even infinite) deadline. In contrast, if completion

of B is part of the required response to the external event, then it may be necessary to
give B the same deadline as

By using a recursive message send that specifies a new baseline, it is possible to express
periodicscheduling. For example, the following controller schedules itself with a period
of 0.1 seconds:

controller = action
do_periodic_stuff
after (0.1 * seconds) controller

It is important to note that tha" execution of this action will have terminated before
the(n+1)th execution starts.

The model of concurrent execution used by Timber is based on the idea of the Chemical
Abstract Machine [4]. The state of an executing program is envisioned as a “soup” of
molecules. Sometimes these molecules react together, becoming absorbed and produc-
ing new molecules as a result.

There are two kinds of molecules in the Timber “sowijectsandmessages
Objects. Objects are alwaysamed The names bear no relationship to any identifier

that might be used to reference an object in the Timber program. Instead, a hame should
be thought of as a unique identifier that distinguishes an object from all others.
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Objects can either bactiveor inactive An active object is denotedObj[T, T, s0] Such
an object, named, is executing the command sequecie response to a message sent
from the object names] using the timeling. An inactive object is denotedObjT]

MessagesMessages are denotétsgla, C, T, s[ which amounts to a message targeted
at objecto, containing the command sequer@édo be executed with the timelirg on
behalf of the invoking object. If the message corresponds to an invoked action, we
will use the special identifier for the invoking object.

Object creation. When an object is created by executing a template command, a new
objecto:ObjMis created, using a fresh narmeThe state variables afis initialized as
described by the template, and sub-objects are recursively created. All actions and
requests in the template are alssociatedvith the nameo, so that messages can be

sent to the correct target. The interface (containing the associated actions and requests),
is returned.

Action message send/Vhen a (asynchronous) action message is sent, a new message
of the formMsglo, C, T, _Tis created, where is the target object associated with the
action,C is the command sequence in the action, amglthe timeline specified for the
action (see “Specifying the Timeline” on page 30). The identity of the sender is irrele-
vant in this case, and so is denoted by

Request message send/hen a (synchronous) request message is sent, a new message
of the formMsg(o, C, T, slis created, where is the target object associated with the
requestC is the command sequence in the action, amglthe timeline of the invoking
method. The invoking method is blocked, awaiting a reply fsom

Dispatching of a messagéf an idle objecto:Objland a messadgdsgla, C, T, sCthat
targetso both exist at the same time, then the message catispatched This means

that botho and the message are consumed and are replaced by the active object
0:0bj[T, T, sl Note that this dispatch is constrained by ftheduling rulesutlined in

the next section.

Completing an action.When an active object has finished executing an action com-
mand sequence, it is transformed into the idle object.

Completing a requestWhen an active object has finished executing a request com-
mand sequence, it is on the forerDbjieturn e, T, s It will be transformed into the
idle object 0:0bjM) and the objects that originally sent the request message is
unblocked. The return value of the message send is the value of

In the Timber execution model, scheduling reduces to the problem of choosing which
message to dispatch next. The exact scheduling algorithm is not a part of the Timber
language specification. Instead, we envisage the scheduler as a “plug in component”:
different schedulers may be chosen to meet the needs of different applications.

However, any schedulenustpreserve the following properties:

1. No message may be dispatched before its baseline.
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2. If two messages to the same objech = Msgl®, m, 1;, _ CandB = Msg[®, n, 1y, _ O
are both eligible for dispatch, andwas senbeforeB, in the sense of Lamport’s
“happened before” relation, th&can only be dispatched befoxéf

* Ty.baseline < 1y.baseline, or

* Ty.baseline = 1;.baseline and 1,.deadline < 14.deadline.
The second property guarantees that the order is preserved in a sequence of message
sends from one object to another, provided that all the messages have the same timeline.

However, if a programmer explicitly gives a later message an earlier baseline or an ear-
lier deadline, then the later message may be dispatched before the earlier one.

Example of Reduction Recall our definition of the counter template:
Semantics
counter = template
val:=0
in record
inc  =action val:=val+1
read =requestreturn val

Suppose we have an active objeaDbj(T, T, _ [Jwhere isC is the following command
sequence:

¢ <- counter
c.inc
c.inc
v <- c.read
env.putStr (show v)

Here is how the system can evolve:

0:0bjl@ <- counter
c.inc
c.inc
v <- c.read
env.putStr (show v), 1, _ O

Unfold definition ofcounter, create new object, with fresh namg. Return interface
with methods associated with o1

0:0bjl@ <- return (record inc = action 01val :=val + 1
read =request [010return val)
c.inc
c.inc
v <- c.read

env.putStr (show v), 1, _ O
01:0bjval := 0]

Bind c to returned expression
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action [010val :=val + 1
request [@10return val)

0:0bjllet c =record inc =
read =

c.inc

c.inc

v <- c.read

env.putStr (show v), 1, _ O
01:0bjval := 0]
Evaluatec.inc

0:0bjllet c =record inc action [@1[val :=val +1

read request [@100return val)
action @10val :=val + 1
c.inc
v <- c.read

env.putStr (show v), t, _ 0
01:ObjMval := 0]

Invoke the first action, creating a new message

0:0bjlletc =record inc  =action [®@1[Val :=val + 1
read =request [010return val)
c.inc
v <- c.read

env.putStr (show v), t, _ 0O
01:0bjval := 0]
Msgol, val:=val+1, 1, _ 0O
Dispatch the message (this is just one of many possible schedules)

action [@1[val :=val +1
request [@100return val)

0:0bjllet c =record inc
read

c.inc
v <- c.read
env.putStr (show v), 1, _ 0
01:0bjval :=val + 1, 1, _ [Jval := 0]
Invoke the second action (this is just one of many possible schedules)
0:0Objllet c =record inc  =action [@1[al :=val +1
read =request [010return val)
v <- c.read
env.putStr (show v), t, _ 0O

o0l:Objwal :=val + 1, 1, _ (val := 0]

Msgl, val :=val+1, 1, _0O
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Evaluatec.read (this is just one of many possible schedules), garbage collect

0:0bjl¥ <- request @10return val
env.putStr (show v), t, _ 0O

0l:Objwal :=val + 1, 1, _ (val := 0]
Msgl, val:=val+1,1, _0O
Invoke request (this is just one of many possible schedules)

0:0bjv <- blockedO
env.putStr (show v), t, _ 0O

01:0bjval :=val + 1, 1, _ [Jval := 0]
Msgol, val:=val+1, 1, _ 0O
Msg(o1, return val, T, o

Execute assignment, complete action

0:0bjv <- blocked
env.putStr (show v), 1, _ 0O

01:0bjval := 1]
Msgol, val:=val+ 1,1, _[O
Msgol, returnval, 1, o

Dispatch message (scheduling requirements state that this is the only possible message
to dispatch fon1)

0:0bjv <- blockedO
env.putStr (show v), t, _ 0O

0l:Objwal :=val + 1, 1, _ Oval := 1]
Msgol, return val, T, o0l
Execute assignment, complete action

0:0bjv <- blockedO
env.putStr (show v), t, _ 0O

01:0bjMval := 2]
Msg(o1, return val, T, o

Dispatch message
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0:0bjv <- blockedO
env.putStr (show v), t, _ 0O

01:Objeturn val, T, oval := 2]
Evaluate local state variable

0:0bjv <- blocked
env.putStr (show v), 1, _ 0O

01:0bjMeturn 2, T, oval := 2]
Complete request, unblock invoking object

0:0bj¥ <- return 2
env.putStr (show v), t, _ 0O

0l1:ObjMval := 2]
Bind v to returned expression, garbage collect ol

0:0bj0 letv=2
env.putStr (show v), T, _ O

Evaluate expression, garbage collect v

0:0bjénv.putStr "2", 1, _ O

7. Additional Features

Timber also provides a number of minor, mostly syntactic extensions to the Haskell
base, which we will briefly review in this section.

Thedo -syntax of Haskell already contains an example of an expression construct lifted
to a corresponding role as a command:lthecommand, illustrated in “Expressions vs.
commands” on page 23. Timber defines commands corresponding ife #melcase -
expressions as well, using the following syntax.

do if ethen

cmds

else
cmds

if ethen
cmds

case e of
pl ->cmds
p2 -> cmds
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Additional Features

In addition, Timber provides syntactic support for recursive generator bindings, and
iteration.

do fix x<-cmdy
y <-cmd X
forall i <- e do
cmds
while e do
cmds

To simplify programming with the primitiveArray type, Timber supports a special
array-update syntax for arrays declared as state variables. Assansrsgich an array,
an update t@ at indexi with expressiore can be done as follows. (The array indexing
operator in Haskell i§

ali:=e
Semantically, this form of assignment is equivalent to
a:=all[(ie)]

where// is Haskell's pure array update operator. But apart from being intuitively sim-
pler, the former syntax has the merit of making it clear that normal use of an encapsu-
lated array is likely to be single-threadée,,implementable by destructive update. The

rare cases wheeis used for a purpose other than indexing become easily identifiable,
and hence conservative of the array can be reserved for these occasions. Ordinary
updates t@ can be performed in place, which is also exactly what the array-update syn-
tax above suggests.

Record expressions may optionally be terminated by a type constructor name, as in the
following examples:

record ..S

record a =exp; b =exp;..S
These expressions utilizecord stuffinga syntactic device for completing record defi-
nitions with equations that just map a selector name to an identical variable already in
scope. The missing selectors in such an expression are determined by the appended type
constructolS, which must stand for a record type, on condition that corresponding vari-
ables are defined in the enclosing scope. S® i§ a (possibly parameterized) record
type with selectora, b, andc, the two record values above are actually

record a=a;b=b;c=c

and

record a=exp;b=exp;c=c
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wherec, and in the first case evenandb, must already be bound. Record stuffing is
most useful in conjunction witlet-expressions, as we will see in the examples.

8. An Autonomous Vehicle Controller

We present here a complete Timber program. The example is idealized for brevity, but
illustrates Timber's reactive style of programming and many of the features of the lan-
guage. This example also shows the separation between the calculations performed by a
program and the interactions in which it is involved. Since it is an implementation of an
interrupt-driven system with parallel processes that also performs significant computa-
tion, it captures many of the characteristics of an embedded system.

The environment that this program assumes is as follows:
record Register where
load ::Cmd Int
store ::Int->Cmd ()
record EmbeddedEnv where
register_at :: Int -> Template Register
reset :: Action
record EmbeddedProgram where

start ;2 Action
interrupts :: [(Int,Action)]

Here is the controller program itself:

module AGV where

type Angle = Float
type Speed = (Angle,Float)
type Pos = (Float,Float)

calcpos :: [Angle] -> [Pos] -> Pos
regulate :: Pos -> Pos -> Speed -> Speed

room  :: [Pos]

calcpos = undefined
regulate = undefined
room = undefined

record Driver where
new_scan :: [Angle] -> Action
new_path  :: [Pos]-> Action
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driver :: Servo -> Template Driver
driver servo =
template
speed := (0.0,0.0)
path :=repeat (0.0,0.0)

in record
new_scan angles = action
let is_pos = calcpos angles room
should_pos:path’ = path
speed' = regulate is_pos should_pos speed
speed := speed’
path := path’

servo.set_speed speed’
new_path p = action
path :=p

record Scanner where
detect .- Action
zero_cross :: Action

tick_period = 100*milliseconds
reg_change= 10*microseconds

scanner :: Register -> Driver -> Template Scanner
scanner angle_reg driver =
template
angles :=[]
in record
detect = before reg_change action
a <- angle_reg.load
angles := 2*pi*(fromlintegral a)/4000 : angles
Zero_cross = action
before tick_period driver.new_scan angles
angles =]

record Servo where
set_speed :: Speed -> Action

servo :: Register -> Register -> Template Servo
servo = undefined

record Radio where
incoming :: Action

radio :: Register -> Driver -> Template Radio
radio = undefined
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main :: EmbeddedEnv -> Template EmbeddedProgram
main env =
template
thrust_reg <- env.register_at OxFFFF0001
steer_reg <- env.register_at OxFFFF0002
angle_reg <- env.register_at OxFFFF0003
radio_reg  <- env.register_at OXFFFF0004
serv <- servo thrust_reg steer_reg
driv <- driver serv
scan <- scanner angle_reg driv
comm <- radio radio_reg driv
in record

start = action done

interrupts = [
(0x80, scan.detect),
(Ox81, scan.zero_cross),
(0x82, comm.incoming)

Appendix: A Context-Free Grammar for Timber

module
body

topdecls

topdecl

tyvars

optsups

optsubs

‘module ' CONID 'where' body

: {' topdecls '}
| topdecls -- using layout

: topdecls ';' topdecl
| topdecl

‘type' CONID tyvars '='type
| 'data’ CONID tyvars optsubs optcs
| 'record ' CONID tyvars optsups optbs
| 'class' CONID tyvars optsups optbs
| 'instance ' gtype optbs
| bind
: tyvars VARID
| {- empty -}
D '<'"types
| '<'type
| {- empty -}
1> types
| > type
| {- empty -}
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Datatype declarations optcs :'=" constrs
| {- empty -}
constrs  : constrs ' gconstr
| gconstr
qconstr  : context '=>' constr
| constr
constr : constr atype
| CONID
Bindings optbs “where' bindlist
| {- empty -}
bindlist :'{' binds '}'
| binds -- using layout
| '.." CONID -- only in a record expression
binds : binds *;" bind
| bind
bind s vars ' gtype
| pat rhs -- unless inside a record declaration
vars vars ', var
| var
rhs '=texp
| gdrhss
| rhs'where' bindlist
gdrhss  : gdrhss gdrhs
| gdrhs
gdrhs ' quals '=" exp
Qualified types gtype : context '=>" type
| type
context :'(‘preds ")
| pred
preds : preds ', pred
| pred
pred : classpred
| type ‘<’ type
classpred : classpred atype
| CONID
Types type : btype '->' type
| btype
40 Timber: A Programming Language for Real-Time Embedded Systems



Expressions

Appendix: A Context-Free Grammar for Timber

btype

atype

types

commas

exp

infixexp

fexp

aexp

bexp

: btype atype
| atype

: CONID
| VARID

:types ', type
| type ', type
:commas ',

:'\" apats ->' exp

|'let’ bindlist'in' exp

| 'if* exp'then' exp'else’ exp
| 'case' exp'of' altlist

| 'record ' bindlist

| 'do’ stmtlist

| 'action ' stmtlist

| 'request ' stmtlist

| 'template ' stmtlist'in’ exp
| 'template ' 'in' exp

| 'after' aexp exp

| 'before ' aexp exp

| exp "::' gtype

| infixexp

: infixexp op infixexp

| - fexp

| fexp

: fexp aexp
| aexp

- aexp SELID
| bexp

:var
| 'self!

| con

| lit

¢

|'('exp’)

| '( exps )

| T list '

| '(" infixexp op )’
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lit

List expressions list

exps

quals

qual

Case alternatives altlist
alts
alt
rhsl

gdrhssl

gdrhsl

Statement sequences stmtlist
stmts

stmt

| '( op infixexp )’
| '( commas ")’

DINT

| RATIONAL
| CHAR
| STRING

- {- empty -}
| exp
| exps
| exp'|' quals
sexps', exp
| exp ', exp
: quals ', qual
| qual

: pat '<-' exp
| exp
| 'let' bindlist

:{ alts '}

| alts -- using layout

calts ;" alt
| alt

: pat rhsl

D>t exp
| gdrhss1
| rhsl'where' bindlist

: gdrhss1 gdrhsl
| gdrhs1

2'|' quals '->' exp

;' stmts '}

| stmts -- using layout

D stmts ;' stmt
| stmt

: pat '<-' exp

| exp

| pat =" exp

|'let' bindlist

|'if* exp'then' stmtlist'else' stmtlist
| 'if* exp'then' stmtlist

| 'case' exp'of' altlist2

| 'forall ' quals'do’ stmtlist
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| 'while ' exp'do’ stmtlist

| 'fix ' stmtlist
altlist2  : '{ alts2 '}’
| alts2 -- using layout
alts2 s alts2 ' alt2
| alt2
alt2 : pat rhs2
rhs2 :->' stmtlist
| gdrhss2

| rhs2'where ' bindlist

gdrhss2  : gdrhss2 gdrhs2
| gdrhs2

gdrhs2  :'|' quals '->' stmtlist

pat : pat op pat
| apats

apats : apats apat
| apat

apat s
| var
| con
| lit
[-"INT

pats . pats ') pat
| pat',' pat

var :VARID

| ' VARSYM )
con : CONID

| ' CONSYM )
varop : VARSYM

| ™" VARID "

conop : CONSYM

| " CONID "
op : varop

| conop
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Rather than providing full definitions for the terminals, we illustrate them by example.

Variable Identifiers
VARID: abc| aBC| ab_c| abcl]| ...

Constructor Identifiers.
CONID: Abc| ABC| Ab c| Abcl] ..

Selector Identifiers:
SELID: .abc| .aBC| .ab_c| .abcl]| ...

Variable Symbols

VARSYM: +| <| <= ...
Constructor Symbols

CONSYM: | i+| <] i <=] ...
Integers

INT: 0] 123 | 0x123ABC| ...

Rational Numbers
RATIONAL: 0.12| 0.12E4| 0.12E-4 ] ...

Character Constants
CHAR:'a' |'X'| \n'| ...

String Constants
STRING: "abc"| "abc\n"| ...
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