
 

Timber: A Programming Language for Real-Time 
Embedded Systems

 

Andrew P. Black, Magnus Carlsson, Mark P. Jones, 
Richard Kieburtz and Johan Nordlander

 

Department of Computer Science and Engineering
OGI School of Science & Engineering
Oregon Health & Science University

20000 NW Walker Road
Beaverton, OR 97006-8921 USA

 

Technical Report Number CSE 02-002
April 2002



 

 



Last Modified on 26 April 2002 at 15:51:50

r
Timber: A Programming Language fo
Real-Time Embedded Systems

Andrew P. Black, Magnus Carlsson, Mark P. Jones,
Richard Kieburtz and Johan Nordlander
timber@cse.ogi.edu

Department of Computer Science & Engineering
OGI School of Science & Engineering at OHSU
Beaverton, Oregon, USA
istic
here

intro-
that

con-
sion

of
ing
e dif-

sual
ce in
we
cili-
ddi-
ude
an-

tional

sing
ever,
t, that
d not
of a
In this paper we provide a detailed but informal survey of Timber and its character
features. A formal semantic treatment of the language will appear in other papers;
the exposition will instead be based on short code examples. However, we also
duce the semantic model that underlies one of Timber’s main contributions: the way
time is integrated into the language.

May of the features of Timber have been adopted from the reactive object-oriented
current functional language O’Haskell [15], which was in turn defined as an exten
to the purely functional language Haskell [12]. However, the Haskellian ancestry
Timber should not cause it to be ignored by the wider (non-functional) programm
language community. Indeed, Timber attempts to combine the best features of thre
ferent programming paradigms.

• Timber is animperative object-oriented language, offering state encapsulation,
objects with identity, extensible interface hierarchies with subtyping, and the u
complement of imperative commands such as loops and assignment. Inheritan
the style of,e.g.,Smalltalk, is not presently supported, but this is an area that
continue to study. The lack of inheritance is largely counterbalanced by rich fa
ties for parameterization over functions, methods, and templates for objects. A
tional Timber features not commonly found in object-oriented languages incl
parametric polymorphism, type inference, a straightforward concurrency sem
tics, and a powerful expression sub-language that permits unrestricted equa
reasoning.

• Timber can also be characterized as a strongly typedconcurrent language, based
on a monitor-like construct with implicit mutual exclusion, and a message-pas
metaphor offering both synchronous and asynchronous communication. How
unlike most concurrency models, a Timber process is represented as an objec
is, as the unit of state encapsulation. Moreover, execution of a process shoul
be regarded as continuous, but should instead be thought of as consisting
1
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sequence ofreactions to external events (made visible to the object as messag
These reactions always run to completion (i.e., they are non-blocking) and in
mutual exclusion. The execution order of reactions is determined by baselines
deadlines associated with these events. When we speak of reactive objects
sequel, this is what we mean.

• Timber is finally a purely functional language that supports stateful objects
through the use of monads. Timber allows recursive definitions, higher-order fu
tions, algebraic datatypes, pattern-matching, and Hindley/Milner-style polym
phism. Timber also supports type constructor classes and overloading a
Haskell, but these features are not central and the Timber extensions to Hask
not depend on them. To this base Timber conservatively adds two major feat
subtyping, and a monadic implementation of statefulreactive objects. The subtyp-
ing extension is defined for records as well as datatypes, and is supported
powerful partial type inference algorithm that preserves the types of all progr
typeable in Haskell. The monadic object extension is intended as a replaceme
Haskell’s standard IO model, and provides concurrent objects and assignable
variables while still maintaining referential transparency.

The exposition here largely follows the informal survey of O’Haskell in Nordlande
thesis [15]. Section 1 presents a brief overview of the base language Haskell and its
tax, before we introduce the major type system additions of Timber:recordsandsubtyp-
ing (Sections 2 and 3). In Section 4 our approach totype inferencein Timber is
presented. The rôle oftime is introduced in Section 6.Reactive objects, concurrency,
andencapsulated stateare discussed in Section 5. Section 7 presents some additi
syntactic features of Timber, before the paper ends with an example of Timber prog
ming (Section 8). The grammar of Timber appears in the Appendix.

1. Haskell

Haskell [1, 12] is a lazy, purely functional language, and the base upon which Timb
built. Readers familiar with Haskell may wish to skip this section; it introduces no n
material, and is present to make this paper accessible to those who have not prev
met the language, or who need a reminder of its features and syntax.

Functions Functions are the central concept in Haskell. Applying a function to its argumen
written as a simple juxtaposition; that is, iff is a function taking three integer arguments
then

f 7 13 0

is an expression denoting the result of evaluatingf applied to the arguments7, 13, and0.
If an argument itself is a non-atomic expression, parentheses must be used as delim
as in

f 7 (g 55) 0
2 Timber: A Programming Language for Real-Time Embedded Systems



Haskell

n
ore

bso-

t to

nt

of

o pre-
n

ts in
we
n-

ly
ger

so be

ns
Operators like+ (addition) and== (test for equality) are also functions, but are writte
between their first two arguments. An ordinary function application always binds m
tightly than an operator, thus

a b + c d

should actually be read as

(a b) + (c d)

Laziness The epithetlazymeans that the arguments to a function are evaluated only when a
lutely necessary. So, even if

g 55

is a non-terminating or erroneous computation (including, for example, an attemp
divide by zero), the computation

f 7 (g 55) 0

might succeed in Haskell, iff happens to be a function that ignores its second argume
whenever the first argument is7. This kind of flexibility can be very useful for encoding
and manipulating infinite data structures, and for building functions that play the rôle
control structures.

One of the consequences of laziness is that it can sometimes become quite hard t
dict when computation will actually take place, and calculating worst case executio
times is correspondingly difficult. Whether the costs of laziness outweigh the benefi
a language intended for real-time programming is an open question, and one that 
will continue to examine experimentally. It is important to note that none of the exte
sions to Haskell that we put forward in Timber relies on laziness. Thus it is perfect
reasonable to judge the merits of our extensions as if they were intended for an ea
programming language, and it would be perfectly possible to give Timber an eager
semantics without major surgery.

Function definitions Functions can be defined by equations on the top-level of a program. They can al
defined locally within an expression. The following fragment defines the functionf at
the top-level; the functionsq is defined locally within the body off.

f x y z = let  sq i = i ∗ i
in  sq x ∗ sq y ∗ sq z

Note that the symbol= denotesdefinitional equality in Haskell (i.e.,= is neither an
assignment nor an equality test). Local definition of a function within other definitio
is also possible, as in

f x y z = sq x ∗ sq y ∗ sq z where
sq v = v ∗ v
Timber: A Programming Language for Real-Time Embedded Systems 3
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Anonymous functions can be introduced with the so-calledlambda-expression, written
using the symbols\ …-> in lieu of λ…. So

\ x y z -> x*y*z

is an expression whose value is the function that multiplies together its three argum
An identical function is defined and namedproduct by the definition

product x y z = x*y*z

The scope of a name can be limited by alet  expression, so

let  product x y z = x*y*z in  product

has as its value the same anonymous function as the original lambda expression.

Type inference When introducing a new variable, the programmer does not in general have to de
its type. Instead, the Hindley-Milner-style type inference algorithm employed in Has
is able to discover the most general type for each expression. This often results i
inference of apolymorphic type, i.e.,a type expression that includes one or more va
ables standing for arbitrary types.

The simplest example of a polymorphic type is that inferred for the identity function

id x = x

The most general type that can be ascribed to the functionid is a -> a: this type is poly-
morphic, sincea is treated as if it were universally quantified, that is, “for all typesa”.
However, the programmer can also use an explicit type annotation to indicate a
specific type, as in

iid :: Int -> Int
iid x = x

Partial application A function like f above that takes three integer arguments and delivers an integer r
has the type

Int -> Int -> Int -> Int

Arrow associates to the right, so this meansInt -> (Int -> (Int -> Int))

Hence such a function need not always be supplied with exactly three arguments.
Instead, functions can bepartially applied; a function applied to fewer than its full com-
plement of arguments is treated as denoting an anonymous function, which in turn
applicable to the missing arguments. This means that(f 7) is a valid expression of type
Int -> Int -> Int, and that(f 7 13) denotes a function of typeInt -> Int. Note that this treat-
ment is consistent with parsing an expression likef 7 13 0 as(((f 7) 13) 0).
4 Timber: A Programming Language for Real-Time Embedded Systems
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Pattern-matching Haskell functions are often defined by a sequence of equations thatpattern-matchon
their arguments, as in the following example:

fac 0 = 1
fac n = n * fac (n-1)

which is equivalent to the more conventional definition

fac n = if  n== 0 then  1 else  n * fac (n-1)

Pattern-matching using Booleanguardexpressions is also available, although this form
is a bit contrived in this simple example.

fac n | n== 0 = 1
| otherwise = n * fac (n-1)

Moreover, explicitcase expressions are also available in Haskell, as shown in t
fourth variant of the factorial function:

fac n = case  n of
0 -> 1
m -> m ∗ fac (m-1)

Algebraic datatypes User-defined types (calledalgebraic datatypesin Haskell) can be defined using dat
definitions, which define a kind of labeled union type with name equality and recur
scope. Here is an example of a data definition for binary trees: it declares three ide
ers,BTree, Leaf andNode.

data  BTree a = Leaf a
| Node (BTree a) (BTree a)

The type argumenta is used to make theBTree polymorphic in the contents of its
leaves; thus a binary tree of integers has the typeBTree Int. The identifiersLeaf and
Node are called theconstructorsof the datatype. Constructors, which have global scop
in Haskell, can be used both as functions and in patterns, as the following example
trates:

swap (Leaf a) = Leaf a
swap (Node l r) = Node (swap r) (swap l)

This function (of typeBTree a -> BTree a) takes any binary tree and returns a mirror
image of the tree obtained by recursively swapping its left and right branches.

Predefined types In addition to the integers, Haskell’s primitive types include characters (Char) as well as
floating-point numbers (Float andDouble). The type of Boolean values (Bool) is pre-
defined, but is an ordinary algebraic datatype. Lists and tuples are also essentially
defined datatypes, but they are supported by some special syntax. The empty
Timber: A Programming Language for Real-Time Embedded Systems 5



Haskell

of

-

can

hich

be
f an
teful
-

take
tion.

nt of
written [], and a non-empty list with headx and tailxs is writtenx:xs. A list known in its
entirety can be expressed as[x1,x2,x3], or equivalentlyx1:x2:x3:[]. Moreover, a pair of
elementsa andb is written(a,b), and a triple also containingc is written(a,b,c), etc.

As an illustration of these issues, here is a function which “zips” two lists into a list
pairs:

zip (a:as) (b:bs) = (a,b) : zip as bs
zip _ _ = [] .

Note that the order of these equations is significant.

The names of the types of lists and tuples are analogous to the terms:[a] is the type of
lists containing elements of typea, and(a,b) denotes the type of pairs formed by ele
ments of typesa andb. Thus the type of the functionzip above is[a] -> [b] -> [(a,b)].
There is also degenerate tuple type(), calledunit, which contains only the single ele-
ment(), also called unit.

Strings are just lists of characters in Haskell, although conventional string syntax
also be used for constant strings, with"abc" being equivalent to[’a’,’b’,’c’]. The type
nameString is just atype abbreviation, defined as:

type  String = [Char]

String concatenation is an instance of general list concatenation in Haskell, for w
there exists a standard operator++, defined as

[] ++ bs = bs
(a:as) ++ bs = a : (as ++ bs)

Haskell also provides a primitive typeArray, with an indexing operator! and an
“update” operator//. However, this type suffers from the fact that updates must
implemented in a purely functional way, which often means creating a fresh copy o
array each time it is modified. We will see later in this paper how monads and sta
objects enable us to support theArray type in a more intuitive, as well as a more effi
cient, manner.

Higher-order functions Functions are first-class values in Haskell, so it is quite common for a function to
another function as a parameter; such a function is known as a higher-order func
map is a typical example of a higher-order function;map takes two arguments, a func-
tion and a list, and returns a new list created by applying the function to each eleme
the old list.map is defined as follows:

map f [] = []
map f (x:xs) = f x : map f x

The fact thatmap is higher-order is exposed in its type,

map :: (a -> b) -> [a] -> [b]
6 Timber: A Programming Language for Real-Time Embedded Systems



Haskell

he

the
mit-
ue to
ver-

that

le

er
ach
us
w
ends
egory
t
ches
by an
where the parentheses are essential. As an example of howmap can be used, we con-
struct an upper-casing function for strings by defining

upCase = map toUpper

wheretoUpper :: Char -> Char is a predefined function that capitalizes characters. T
type ofupCase must accordingly be

upCase :: [Char] -> [Char]

or, equivalently,

upCase :: String -> String .

Layout Haskell makes extensive use of indentation — two dimensional layout of text on
page — to convey information that would otherwise have to be supplied using deli
ers. We have been using this convention in the foregoing examples, and will contin
do so. The intended meaning should be obvious. It is occasionally convenient to o
ride the layout rules with a more explicit syntax, so it may be good to keep in mind
the two-dimensional code fragment

let f x y = e1
g i j = e2

in  g

is actually a syntactic shorthand for

let  { f x y = e1 ; g i j = e2 } in  g .

Informally stated, the braces and semicolons are inserted as follows. The layout ru
takes effect whenever the open brace is omitted after certain keywords, such aswhere ,
let , do , record andof . When this happens, the indentation of the next lexeme (wheth
or not on a new line) is remembered and the omitted open brace is inserted. For e
subsequent line, if it contains only whitespace or is indented more, then the previo
item is continued (nothing is inserted); if it is indented the same amount, then a ne
item begins (a semicolon is inserted); and if it is indented less, then the layout list 
(a close brace is inserted). A close brace is also inserted whenever the syntactic cat
containing the layout list ends; that is, if an illegal lexeme is encountered at a poin
where a close brace would be legal, a close brace is inserted. The layout rule mat
only those open braces that it has inserted; an explicit open brace must be matched
explicit close brace.
Timber: A Programming Language for Real-Time Embedded Systems 7
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2. Records

The first Timber extension beyond Haskell is a system for programming with first-c
records. Although Haskell already provides some support for records, we have ch
to replace this feature with the present system, partly because the Haskell propos
somewhat ad-hoc adaptation of the datatype syntax, and partly because Haskell re
do not fit very well with the subtyping extension that is described in Section 3.

The distinguishing feature of Timber records is that the treatment of records
datatypes is perfectly symmetric; that is, there is a close correspondence between
selectors and datatype constructors, between record construction and datatype se
(i.e., pattern-matching over constructors), and between the corresponding forms of
extension, which yield subtypes for records and supertypes for datatypes.

Consequently, we treatboth record selectorsand datatype constructors asglobal con-
stants. This is the common choice where datatypes are concerned, but not so for re
(see,e.g.,references [14] and [8]). Nevertheless, we think that a symmetric treatm
has some interesting merits in itself, and that the ability to form hierarchies of rec
types alleviates most of the problems of having a common scope for all selector na
We also note that overloaded names in Haskell are given very much the same treat
without creating many problems in practice.

A record type is defined in Timber by a global declaration analogous to the data
declaration described previously. The following example defines a record type for
dimensional points, with two selector identifiers of typeFloat.

record  Point where x,y :: Float

The record keyword is also used in the term syntax for record construction. We w
generally rely on Haskell’s layout rule (see “Layout” on page 7) to avoid cluttering
record expressions with braces, as in the following example.

origin = record
x = 0.0
y = 0.0

Since the selector identifiersx andy are global, there is no need to indicate to whic
record type a record term belongs; the compiler can deduce that origin is a Point. I
wishes to make this clear to the human reader, one can explicitly write

origin:: Point
origin = record

x = 0.0
y = 0.0

but this is entirely redundant. It is a static error to construct a record term where th
of selector equations is not exhaustive for some record type.

Record selection is performed in the conventional way by means of thedot-syntax.
(Timber also has an operator. used to denote function composition; record selecto
8 Timber: A Programming Language for Real-Time Embedded Systems
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should immediately follow the dot, while the operator. must be followed by some
amount of white space). Record selection binds more tightly than function and ope
application, as the following example indicates.

dist p = sqrt (sq p.x + sq p.y) where
sq i = i ∗ i

A record selector can moreover be turned into an ordinary prefix function if needed
enclosing it between(. and), as in

xs = map (.x) some_list_of_points

Just as algebraic datatypes may take type arguments, so may record types. The f
ing example shows a record type that captures the signatures of the standard eq

operators.†

record  Eq a where
eq :: a -> a -> Bool
ne :: a -> a -> Bool

This defines a record type with two selectors namedeq andne. The types of these selec-
tors are botha -> a -> Bool, where the typea is a parameter to Eq.

A record term of typeEq Point is defined below.

pdict = record
eq = eq
ne a b = not (eq a b)

where  eq a b = a.x==b.x && a.y==b.y

This example also illustrates three minor points about records: (1) record expres
are not recursive, (2) record selectors possess their own namespace (the equatioeq =
eq above isnot recursive), and (3) selectors may be implemented as functions if
desired.

†. Strictly speaking, this record type is not legal since its name coincides with that of a predefi
Haskelltype class. Type classes form the basis of theoverloading system of Haskell, whose
ins and outs are beyond the scope of this survey. The nameEq has a deliberate purpose, though
— it connects the example to a known Haskell concept, and it indicates the possibility of
reducing the number of constructs in Timber by eliminating type class declarations in favou
record types.
Timber: A Programming Language for Real-Time Embedded Systems 9
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3. Subtyping

The subtyping system of Timber is based onname inequality. This means that a possible
subtype relationship between (say) two record types is determined solely by the n
of the involved types, and not by consideration to whether the record types in que
might have matching substructure. Name inequality is a generalization of thename
equality principle used in Haskell for determining whether two types are equal.

The subtype relation between user-supplied types is induced as a consequence of
ing a new type as an extension of a previously defined type. This makes record su
ing in Timber look quite similar to interface extension in Java, as the following ty
declaration exemplifies:

record  CPoint < Point where
color :: Color

This syntax both introduces the record typeCPoint and declares it to be an extension o
the existing typePoint. The extension is the addition of the selectorcolor. As a conse-
quence of this definition,CPoint is a subtype ofPoint, written CPoint < Point. We call
CPoint < Point a subtyping rule. The meaning of this definition is that typeCPoint pos-
sess the selectorsx andy in addition to its own selectorcolor.

The structure ofCPoint must be observed when constructingCPoint terms, as is done in
the following function.

addColor :: Point -> CPoint

addColor p = record x = p.x
y = p.y
color = Black

cpt = addColor origin

HereaddColor is defined to be a function that convertsPoints to CPoints by coloring
them black. Notice that leaving out the equationcolor = Black would make the defini-
tion invalid, since the function result would then be a value of typePoint instead of
CPoint, contradicting the type definition.

Subtyping can also be defined for algebraic datatypes. Consider the following type m
elling the colors black and white.

data  BW = Black | White

This type can now be used as the basis for an extended color type:

data  Color > BW =
Red | Orange | Yellow | Green | Blue | Violet

Since its set of possible values is larger, the new typeColor defined here must necessar
ily be a supertypeof BW (hence we use the symbol> instead of< when extending a
10 Timber: A Programming Language for Real-Time Embedded Systems
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datatype). The subtype rule introduced by this declaration is accordinglyBW < Color,
and typeColor possess all of the constructors of its base typeBW, in addition to those
explicitly mentioned forColor. This is analogous to situation for record types formed b
extension, where the extended type has all of the destructors (selectors) of its bas

Timber allows pattern-matching to be incomplete, so there is no datatype counterp
the static exhaustiveness requirement that exists for record types. However, the
constructors associated with each datatype still influences the meaning of Timber
grams. This is because the type inference algorithm approximates the domain of a
tern-matching construct by the smallest type that contains all of the enumer
constructors. The functionsf andg, defined as

f Black = 0
f _ = 1

g Black = 0
g Red = 1
g _ = 2

illustrate this point. The domain off is inferred to beBW, while the domain ofg is
inferred to beColor.

Polymorphic subtype
rules

Subtype definitions may be polymorphic. Consider the following example wher
record type capturing the standard set of comparison operators is formed by exte
the typeEq defined above.

record  Ord a < Eq a where
lt, le, ge, gt :: a -> a -> Bool

The subtype rule induced by the definition ofOrd states that for all typesa, a value of
typeOrd a also supports the operations ofEq a. Ord a must also support the operation
lt, le, ge andgt

Polymorphic subtyping works just as well for datatypes. Consider the following exa
ple, which provides an alternative definition of the standard Haskell typeEither.

data  Left a = L a

data  Right a = R a

data  Either a b > Left a, Right b

The first declaration, actually defines both a new datatypeLeft a and a new constructor
for values of that type, calledL. The declaration ofRight is parallel.

The last declaration is an example of type extension with multiple basetypes. Like in
face extension in Java, this declaration introducestwo polymorphic subtype rules; one
that says that for alla andb, a value inLeft a also belongs toEither a b, and one that
says that for alla andb, a value in typeRight b also belongs toEither a b. The declara-
Timber: A Programming Language for Real-Time Embedded Systems 11
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tion of Either also shows that a datatype declaration need not declare any new cons
tors.

Depth subtyping Subtyping is a reflexive and transitive relation. This, any type is a subtype of itself,
S < T andT < U impliesS < U for all typesS, T, andU. The fact that type constructors
may be parameterized makes subtyping a bit more complicated, though. For exa
under what circumstances should we be able to conclude thatEq S is a subtype ofEq
T?

Timber incorporates a flexible rule that allowsdepth subtypingwithin a type constructor
application, by taking thevarianceof a type constructor’s parameters into account. B
variance we mean the rôle that a type variable has in the set of type expressions
scope—does it occur in a function argument position, in a result position, in both th
positions, or perhaps not at all?

In the definition of the record typeEq above

record  Eq a where
eq :: a -> a -> Bool
ne :: a -> a -> Bool

all occurrences of the parametera are in an argument position. For these cases Timb
prescribescontravariantsubtyping, which means thatEq S is a subtype ofEq T only if
T is a subtype ofS. Thus we have thatEq Point is a subtype ofEq CPoint. This means
that an equality test developed forPoints can also be applied toCPoints, e.g., it can be
used to partition colored points into equivalence classes.

The parameter of the datatypeLeft, on the other hand, occurs only as a top-level typ
expression (that is, in a result position). In this case subtyping iscovariant, which means
for example thatLeft CPoint is a subtype ofLeft Point. As an example ofinvariant sub-
typing, consider the record type

record  Box a where
in :: a -> Box a
out :: a

Here the type parametera plays the rôle of a function argument as well as a result,
both the co- and contravariant rules apply at the same time. The net result is thatBox S
is a subtype ofBox T only if S andT are identical types. There is also the unlikely cas
where a parameter is not used at all in the definition of a record or datatype:

data  Contrived a = Unit

Clearly a value of typeContrived S also has the typeContrived T for any choice ofS
andT, thus depth subtyping for thisnonvarianttype constructor can be allowed withou
any further preconditions. The motivation behind these rules is of course the clas
rule for subtyping of function types, which states thatS -> T is a subtype ofS' -> T'
only if S' is a subtype ofS, andT is a subtype ofT' [7]. Timber naturally supports this
rule, as well as covariant subtyping for the built-in aggregate types: lists, tuples,
12 Timber: A Programming Language for Real-Time Embedded Systems
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arrays. Depth subtyping may be transitively combined with declared subtypes to de
subtype relationships that are intuitively correct, but perhaps not immediately obvi
Some illustrative examples follow.

Restrictions on subtyping The general rule when defining types by subtyping is that the newly defined subtyp
supertype may be any type expression that is not a variable. There are, however,
restrictions, for example, it is illegal to definerecord S a < Bool, because the supertype
is not a record type. We will not dwell on the restrictions here; more information can
found in reference [15].

4. Automatic type inference

In a polymorphic language, expressions have several types. Aprincipal typeis a type
sufficiently general for all of the other types to be deducible from it.

In Haskell, the polymorphic function

twice f x = f (f x)

has the principal type

(a -> a) -> a -> a

from which every other valid type fortwice, e.g., (Point -> Point) -> Point -> Point, can
be obtained as a substitution instance.

However, it is well known that polymorphic subtyping systems need types qualified
subtype constraintsin order to preserve a notion of principal types. To see this, assu
that we allow subtyping, and thatCPoint < Point. Now twice can also have the type

(Point -> CPoint) -> Point -> CPoint

which is not an instance of the principal Haskell type. In fact, there can be no sim
type for twice that has both(Point -> Point) -> Point -> Point and(Point -> CPoint) ->
Point -> CPoint as substitution instances, since the greatest common anti-instanc
these types,(a -> b) -> a -> b, is not a valid type fortwice.

Thus, to obtain a notion of principality in this case, we must restrict the poss
instances ofa andb to those types that allow a subtyping step fromb to a; that is, we
must associate the subtype constraintb < a with the typing oftwice. In Timber, subtype

Relation: Interpretation:
Left CPoint < Either Point Int If either some kind of point or some integer is

expected, a colored point will certainly do.
Ord Point < Eq CPoint If an equality test for colored points is expected, 

complete set of comparison operations for
arbitrary points definitely meets the goal.
Timber: A Programming Language for Real-Time Embedded Systems 13
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constraints are attached to types using the “=>” symbol†, so the principal type fortwice
can be written

(b < a ) => (a -> b) -> a -> b .

This type has two major drawbacks compared to the principal Haskell type: (1) it is
tactically longer than most of its useful instances because of the subtype constrain
(2) it is no longer unique modulo renaming, since it can be shown that, for example

(b < a, c < a, b < d) => (a -> b) -> c -> d

is also a principal type fortwice. In this simple example the added complexity tha
results from these drawbacks is of course manageable, but even just slightly
involved examples soon get out of hand. The problem is that, in effect,every application
nodein the abstract syntax tree can give rise to a new type variable and a new sub
constraint. Known complete inference algorithms tend to illustrate this point very w
and even though algorithms for simplifying the type constraints have been proposed
alleviate the problem to some extent, the general subtype constraint simplification p
lem is at least NP-hard. It is also an inevitable fact that no conservative simplifica
strategy can ever give us back the attractive type fortwice that we have in Haskell.

For these reasons, Timber relinquishes the goal of complete type inference, and em
a partial type inference algorithm that gives up generality to gain consistently read
output. The basic idea is to let functions liketwice retain their original Haskell type,
and, in the spirit of monomorphic object-oriented languages, infer subtyping steps
when both the inferred and the expected type of an expression are known. This c
can be justified on the grounds that(a -> a) -> a -> a is still likely to be a sufficiently
general type fortwice in most situations, and that the benefit of consistently reada
output from the inference algorithm will arguably outweigh the inconvenience of hav
to supply a type annotation when this is not the case. We certainly do not want to
hibit exploration of the more elaborate areas of polymorphic subtyping that need
straints, but considering the cost involved, we think that it is reasonable to expec
programmer to supply the type information in these cases.

As an example of where the lack of inferred subtype constraints might seem m
unfortunate than in the typing oftwice, consider the function

min x y = if  less x y then  x else  y

which, assumingless is a relation on typePoint, will be assigned the type

Point -> Point -> Point

by Timber’s inference algorithm. A more useful choice would probably have been

(a < Point) => a -> a -> a

†.  The syntax is inspired by the way that type classes are expressed in Haskell.
14 Timber: A Programming Language for Real-Time Embedded Systems
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but, as we have indicated, such a constrained type can only be attained in Timb
means of an explicit type annotation. On the other hand, note that theprincipal type for
min,

(a < Point, b < Point, a < c, b < c) => a -> b -> c

is still more complicated, and unnecessarily so in most realistic contexts.

An informal characterization of our inference algorithm is that it improves on ordin
polymorphic type inference by allowing subtyping under function application when
types are known, as in

addColor cpt

In addition, the algorithm computes least upper bounds for instantiation variables w
required, so that,e.g., the list

[cpt, pt]

will receive the type

[Point]

Greatest lower bounds for function arguments will also be found, resulting in
inferred type

CPoint -> (Int,Bool)

for the term

\ p -> (p.x, p.color == Black) .

Notice, though, that the algorithm assigns constraint-free types toall subterms of an
expression, hence a compound expression might receive a less general type
though its principal type has no constraints. One example of this is

let  twice f x = f (f x) in  twice addColor pt

which is assigned the typePoint, not the principal typeCPoint.

Unfortunately, a declarative specification of the set of programs that are amenab
this kind of partial type inference is still an open problem. Completeness relative
system that lacks constraints is also not a realistic property to strive for, due to
absence of principal types in such a system. However, experience strongly sugges
the algorithm is able to find solutions to most constraint-free typing problems that o
in practice—in fact, an example of where it mistakenly fails has yet to be found in
experience with O’Haskell and Timber programming. Moreover, the algorithm is pro
bly complete with respect to the Haskell type system, and hence possesses anothe
important property: programs typeable in Haskell retain their inferred types when
Timber: A Programming Language for Real-Time Embedded Systems 15
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sidered as Timber programs. Additionally, the algorithm can also be shown to acce
programs typeable in the core type system of Java (see section 5.3 of [15]).

5. Reactive objects

The dynamic behavior of a Timber program is the composition of the behavior of m
state-encapsulating, time sensitivereactive objects executing concurrently. In this sec
tion we will survey this dynamic part of the language as it is seen by the program
The number of new concepts introduced here is quite large, so we proceed step b
and ask the reader to be patient while the structure of the language unfolds.

Some of the language features will initially appear to be incompatible with a pu
functional language. However, it is in fact the case that all constructs introduced in
section are syntactically transformable into a language consisting of only the Ha
kernel and a set of primitive monadic constants. This “naked” view of Timber will n
be pursued here; the interested reader is referred to chapter 6 of Nordlander’s T
[15].

Objects and methods Objects are created by executing atemplate construct, which defines theinitial stateof
an object together with itscommunication interface. Unlike Smalltalk or Java, there is
no notion of class; in this way Timber is similar to classless languages like Emerald
and Self [17].

The communication interface can be a value of any type, but it will usually contain
or moremethods. (It can be useful to put other things in the communications interfa
too, as we will see in some of the examples.) Methods allow the object to react tomes-
sage sends. We use the termmessage sendin its usual sense in object-oriented program
ming: a message send is directed from one object (the sender) to another objec
receiver); in response, the receiver first selects and then executes a method. Me
send is sometimes called method invocation or even method call, but the term me
send is preferred because it emphasises that the coupling between the message
method occurs in the receiving object.

A method takes one of two forms: an asynchronousaction or a synchronousrequest .
An action lets the sender continue immediately, and thus introduces concurrency.
sequently, actions have no result. A synchronousrequest causes the sender to wait fo
the method to complete, but allows a result value to be passed back to the sender

The body of a method, finally, is a sequence ofcommands, which can basically do three
things: update the local state, create new objects, and send messages to other o
The following template defines a simple counter object:
16 Timber: A Programming Language for Real-Time Embedded Systems
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counter = template
val := 0

in record
inc =

action  val := val + 1
read =

request  return val

Executing thistemplate command creates a new counter object with its own state v
ableval, and returns an interface through which this new object can be accessed
interface is a record containing two methods: an asynchronousaction inc, and a syn-
chronousrequest read. Sending the messageinc to this interface will cause theaction
val := val + 1 to be executed, with the effect that the counter object behind the interf
will update its state, concurrently with the continued execution of the sender. In c
trast, sending the messageread will essentially perform a rendezvous with the counte
object, and return its current value to the sender.

Procedures and
commands

Actions, requests and templates are all expressions that denote commands; such e
sions have a type in amonadcalledCmd. A monad is a structure that allows us to dea
with effect-full computations in a mathematically consistent way by formalizing the d
tinction betweenpure computations (those that simply compute values), andimpure
computations, which may also have effects, such as changing a state or access
external device.

Cmd is actually a type constructor:Cmd a denotes the type of commands that may pe
form effects before returning a value of typea. If Counter is a record type defined as

record  Counter where
inc :: Cmd ()
read :: Cmd Int

then the type of the example shown above is given by

counter :: Cmd Counter

This says thatcounter is a command that, when executed, will return a value of ty
Counter.

The result returned from the execution of a monadic command may be bound to a v
ble by means of thegenerator notation. For example

do c <- counter
...

means that the commandcounter is executed (i.e., a counter object is created), andc is
bound to the value returned—the interface of the new counter object.

Note that a generator expression cannot be the final command in ado -construct. There
would be no point in using it in such a position, because the bound variable could n
be referenced. Executing a command and discarding the result is written withou
Timber: A Programming Language for Real-Time Embedded Systems 17
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left-arrow. For example, the result of invoking an asynchronous method is always
uninteresting value(), so the usual way of incrementing counterc is

do c <- counter
c.inc

This do -construct is by itself an expression: it represents a command sequence, th
an anonymous procedure, likeprogn in Lisp or like a block in Smalltalk.When this
command sequence is executed,it executes its component commands in sequence. Th
the commandcounter is executed first. This in turn executes thetemplate expression
shown on page 17, which has the effect of creating a counter object and returnin
interface record, which is bound toc. Next, the commandc.inc is executed, which sends
the messageinc to the counter object. The result is().

The value returned by a procedure is the value returned by its last command, so the
of the above expression isCmd ().

Since theread method ofc is a synchronousrequest  that returns anInt, we can write

do c <- counter
c.inc
c.read

and obtain a procedure with the typeCmd Int.

Just as for other commands, the result of executing theread method can be captured by
means of the generator notation:

do c <- counter
c.inc
v <- c.read
return v

This procedure is actually equivalent to the previous one. The identifierreturn denotes
the built-in command that, when executed, produces a result value (in this case s
v) without performing any effects. Unlike most imperative languages, however,return is
not a branching construct in Timber—areturn in the middle of a command sequenc
means only that a command without effect is executed and its result is discarded. T
pointless, but not incorrect. For example

do ...
return (v+1)
return v

is simply identical to

do ...
return v

A procedure constructed withdo  can be named just like any other expression:
18 Timber: A Programming Language for Real-Time Embedded Systems
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testCounter = do c <- counter
c.inc
c.read

testCounter is thus the name of a simple procedure that,when executed,creates a new
counter object and returns its value after it has been incremented once. The co
itself is then simply forgotten, which means that space used in its implementation ca
reclaimed by the garbage collector.

A very useful procedure with a predefined name is

done = do  return ()

which plays the rôle of anull command in Timber.

Notice the difference between the equals sign= and the generator arrow<-.

• The symbol = denotes definitional equality: it defines the name on the left to
equivalent to the expression on the right, which may be a command (as in
example) or a simple value, such as a factorial function defined on page 5; =
appear at the top level, or inlet andwhere clauses. Since a definition can neve
have any effect, the order of execution of a set of definitions made with = is irr
vant, and mutual recursion is allowed.

• In contrast, the generator arrow<- can appear only inside ado -construct. The right
hand side must be a command, that is, it must have the typeCmd a for some value
type a. The effect is toexecutethe command, and to bind the resulting value to th
identifier on the left hand side. A sequence of generator bindings is executed i
order written, and the values bound by the earlier bindings can be used in the
expressions, but not vice-versa.

Notice that the definition ofcounter in “Objects and methods” on page 16 does not b
itself create an object. What it does is definecounter to be a command. If and when tha
command is executed, an object will be created; ifcounter is executed three times, three
new counter objects are created. Thus, the commandcounter is analogous to the expres-
sionCounterClass new in Smalltalk ornew Counter() in Java: it is the means to make
a new object.

Assignable local state The method-forming constructsaction andrequest are syntactically similar to proce-
dures, but with different operational behaviors. Whereas calling a procedure mean
its commands are executed by the caller, sending a message triggers execution
commands that make up the corresponding method within the receiving object. T
methods have no meaning other than within an object, and theaction andrequest key-
words are accordingly not available outside thetemplate  syntax.

In actions and requests, as well as in procedures that occur within the scope of an o
two additional forms of commands are available: commands that obtain the value
state variables (for example the commandreturn val in the counter object), and com-
mands that assign new values to these variables (e.g.val := val + 1).
Timber: A Programming Language for Real-Time Embedded Systems 19
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The use of state variables is restricted in order to preserve the purely functional se
tics of expression evaluation.

• First, references to state variables may occur only within commands. For exa

template
x := 1

in  x

is statically illegal, since the state variablex is not visible outside the commands o
a method or a procedure (i.e., it can only be used inside ado , action or request ).

• Secondly, there are no aliases in Timber, which means that state variables ar
first-class values. Thus the procedure declaration

someProc r = do  r := 1

is illegal even ifsomeProc is applied only to integer state variables, becauser is
syntactically a parameter, not a state variable. Parameterization over s
unknown state can instead be achieved in Timber by turning the parameter c
dates into full-fledged objects.

• Thirdly, the scope of a state variable does not extend into nested objects.
makes the following example ill-formed:

template
x := 1

in
template

y := 2
in

do  x := 0

• Fourthly, there is a restriction that prevents other local bindings from shadowin
state variable. An expression like the following is thus disallowed:

template
x := 1

in  \ x -> ...

While not necessary for preserving the purity of the language, this last restric
has the merit of making the question of assignability a simple lexical matter
well as emphasizing the special status that state variables enjoy in Timber.

A word about overloading Sequencing by means of thedo -construct, and command injection (viareturn), are not
limited to theCmd monad. Indeed, just as in Haskell, these fundamental operations
overloadedand available for any type constructor that is an instance of thetype class
Monad [9, 11]. Type classes and the overloading system will not be covered in
paper, partly because this feature constitutes a virtually orthogonal complement t
subtyping system of Timber, and partly because we do not capitalize on overloadin
any essential way. In particular, monadic programming in general will not be a topi
this paper.
20 Timber: A Programming Language for Real-Time Embedded Systems
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Nevertheless, we are about to introduce one more monad that is related toCmd by
means of subtyping. We will therefore take the liberty of reusingreturn and thedo -syn-
tax for this new type constructor, even though strictly speaking this means that the
loading system must come into play behind the scenes. The same trick is also emp
for the equality operator== in a few places. However, the uses of overloading that occ
in this paper are all statically resolvable, so our naive presentation of the matter is i
tively quite correct. We feel that glossing over Haskell’s most conspicuous type sys
feature in this way avoids more confusion than it creates.

The O monad While all commands are members of the monadCmd, commands that refer to or assign
to the local state of an object belong to a richer monadO s, wheres is the type of the
local state. Accordingly,O s a is the type of state-sensitive commands that return resu
of typea. An assignment command always returns(), whereas a state-referencing com
mand can return any type. Any procedure that contains a state-referencing comma
itself a state-referencing command, and will therefore have a typeO s.

The type of the local state of an object with more than one state variable is a tuple
there is no information about the names of the state variables encoded in the type
state. For example, consider the definitions

a = template
x := 1
f := True

in  ...

and

b = template
count := 0
enable := False

in  ...

The commandsa andb, when executed, both generate objects with local states of t
(Int,Bool).

Procedures defined within an object areparametricin the state on which they operate
The state of the object within which the procedure is eventually executed is, in ef
provided to it as an implicit parameter. There exists no connection at runtime betwe
value of someO type (a procedureor a method) and the object in which its definition is
syntactically nested.

What this means is that, as long as the state types match, a procedure declared
one object can be used as a local procedure within another object. This does not c
tute a loophole in Timber’s object encapsulation, because the state accessed by th
cedure will be the state of the caller. It remains true that the only way in which an ob
may affect the state of another object is by sending a message tothat object. However,
the ability to export procedures provides a way of sharing code between templates
very much like inheritance in class-based languages, which permits one class to r
the code originally defined in another. In such a language, encapsulation is pres
Timber: A Programming Language for Real-Time Embedded Systems 21
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Object Identity A sometimes controversial issue in the design of object-oriented languages is wh
clients should be able to compare two object references for identity. That is, given
identifiersa andb that name objects, can a client ask whethera andb are in fact the
same object?

Allowing such an identity test breaches encapsulation, because whether two pos
distinct interfaces are actually implemented by the same object is an implement
decision that may be changed and which should accordingly be hidden. However,
ing to provide an efficient identity test can impose an unreasonable burden on the
grammer. For a more complete discussion of these issues, see reference [6].

Timber makes the compromise of letting the programmer decide whether or not ide
comparison shall be possible. Objects themselves cannot be compared, so encaps
is preserved. However, Timber provides a special variableself, which is implicitly in
scope inside everytemplate expression, and which may not be shadowed. All occu
rences ofself have typeRef s, wheres is the type of the current local state. The value o
self uniquely identifies a particular object at runtime.

It should be noted that the variableself in Timber has nothing to do with theinterfaceof
an object (in contrast to, for example,this in C++ and Java). This is a natural conse
quence of the fact that a Timber object may have multiple interfaces — some ob
may even generate new interfaces on demand (recall that an interface is simply a
that contains at least one method).

To facilitate straightforward comparison of arbitrary object reference values, Tim
provides the primitive typeObjRef with the built-in subtype rule

Ref a < ObjRef .

By means of this rule, all object references can be compared for equality (using
overloaded primitive==) when considered as values of the supertypeObjRef. Timber
moreover provides a predefined record typeObjIdentity, which forms a convenient base
from which interface types supporting a notion of object identity can be built.

record  ObjIdentity where
self :: ObjRef

For example, suppose that we wish to defineICounter as a subtype of the counter type
whose objects can be compared for identity.

record  ICounter < ObjIdentity, Counter

iCounter :: Template ICounter
22 Timber: A Programming Language for Real-Time Embedded Systems
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iCounter = template
c <- counter

in record
self = self
inc = c.inc
read = c.read

Now we can compare the identity of two iCounters:

do c1 <- iCounter
c2 <- iCounter
return (c1 == c2) -- always false

Expressions vs.
commands

Although commands are first-class values in Timber, there is a sharp distinc
between theexecutionof a command, and theevaluationof a command considered as a
functional value. The following examples illustrate this point.

f :: Counter -> (Cmd (), Cmd Int)
f cnt = (cnt.inc, cnt.read)

The identifierf defined here is a function, not a procedure: it cannot beexecuted; it can
only be applied to arguments of typeCounter. The fact that the returned pair has com
mand-valued components does not change the status off. In particular, the occurrence of
sub-expressionscnt.inc andcnt.read in the right-hand side off doesnot imply that the
methods of some counter object are invoked when evaluating applications off. Extract-
ing the first component of a pair returned byf is also a pure evaluation with no side
effects. However, the result in this case is a command value, which has the sp
property of beingexecutable.

By placing a command in the body of a procedure, the command becomes subje
execution,whenever the procedure itself is executed. Such a procedure is shown below

do c <- counter
fst (f c)

The second line applies f to a counter object, resulting in a pair. The standard fun
fst extracts the first element of the pair, which is a command. This command is exec
when the procedure (thedo  construct) in which it is defined is executed.

The separation betweenevaluationandexecutionof command values can be made mor
explicit by introducing a name for the evaluated command. This is achieved by thelet -
command, which is a purely declarative construct: as usual, the equality sign de
definitional equality.

do c <- counter
let  newCmd = fst (f c) -- Now newCmd denotes a command

newCmd -- this causes the command to be executed
Timber: A Programming Language for Real-Time Embedded Systems 23
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Hence the two preceding examples are actually equivalent, and in each case a c
will be created once and incremented once. The following fragment is yet ano
equivalent example,

do c <- counter
let aCmd = fst (f c) -- Now aCmd and bCmd

bCmd = fst (f c) -- both name the same command
in  aCmd

whereas the next procedure has a different operational behaviour (here theinc method
of c will actually be invoked twice).

do c <- counter
let  newCmd = fst (f c)
in newCmd

newCmd

A computation that behaves likef above, but which also has the effect of incrementin
the counter it receives as an argument, must be expressed as a procedure.

g :: Counter -> Cmd (Cmd (), Cmd Int)
g cnt = do c.inc

return (c.inc, c.read)

Note that the type system clearly separates the effectfull computation from the pure
the result type off is a value, whereas the result type ofg is a command.

Likewise, the type system demands that computations that depend on the current s
some object be implemented as procedures. For example,

h :: Counter -> Int
h cnt = cnt.read ∗ 10

is not type correct, sincecnt.read is not an integer — it is acommandthat,when exe-
cuted,returns an integer. If we really want to compute the result of multiplying t
counter value by 10 we can write

h :: Counter -> Cmd Int
h cnt = do v <- cnt.read

return (v ∗ 10)

The fact thath calls theread method of the counter is reflected in the return type ofh,
which isCmd Int.

Subtyping in the O monad We have already indicated that theCmd andO s monads are related by subtyping. Thi
is formally expressed as a built-in subtype rule.

Cmd a < O s a
24 Timber: A Programming Language for Real-Time Embedded Systems
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This rule can be read as a higher-order relation: “all commands in the monadCmd are
also commands in the monadO s, for anys”.

One way of characterizing theCmd monad is as a refinement of theO monad that repre-
sents those commands that are independent of the current local state. Timber tak
idea even further by providing three more primitive command types, which are rel
to theCmd monad via the following built-in subtyping rules.

Template a < Cmd a
Action < Cmd ()
Request a < Cmd a

The intention here is to provide more precise typings for thetemplate , action , and
request constructs. For example,Template a is the type of atemplate that, when exe-
cuted, constructs an object with an interface of typea. Thus, the type inferred for
counter defined on page 17 is actuallyTemplate Counter (rather thanCmd Counter),
and the types of its two methods areAction andRequest Int. The record typeCounter
can of course be updated to take advantage of this increased precision.

record  Counter where
inc :: Action
read :: Request Int

Unlike the refinement step of going fromO s to Cmd, which actually makes more pro-
grams typeable because of the rank-2 polymorphism, the distinction betweenCmd and
its subtypes has mostly a documentary value. However, by turning a document
practice into type declarations, the type system can be relied on to guarantee c
operational properties. For example, a command of typeTemplate a cannot change the
state of any existing objects when executed: object instantiation onlyaddsobjects to the
system state. Moreover, commands of typeAction or Template a are guaranteed to be
deadlock-free, since a synchronous method can never possess any of these type
that none of these properties hold for a general command of typeCmd a.

Of the type constructors mentioned here,Cmd, Template, andRequest are all covariant
in their single argument. This also holds for the typeO s a in case of its second argu-
ment. However, theO constructor, like all types that support both dereferencing a
assignment, must be invariant in its state component. Similarly,Ref is also invariant.

The main template So far, we have seen how to define functions and procedures, and have emphasiz
procedures are executed only when some other procedure calls them. How, then,
execution of a Timber program started?

A Timber program should have a special template calledmain. This template is parame-
terized by anenvironmentthat gives the program the ability to interact with the rest
the system. The type of themain template must be

      main :: Environment -> Template Program
Timber: A Programming Language for Real-Time Embedded Systems 25
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The definitions of the typesEnvironment andProgram depend on the capabilities of the
particular system for which the Timber program is written. The section “Reactivity”
page 27 provides more details of these types.

When a Timber program is started, the system will applymain to an environment
parameter. The resulting template is then used by the system to create an object
constitutes the system's interface to the running program. This interface is requir
contain an actionstart, which the system executes to initialize the program.

Here is the traditional “Hello World” program in Timber:

main env = template
-- no state

in record
start = action

env.putStr "Hello World!\n"

Concurrency In general, execution of a Timber program is concurrent: many commands may po
tially be active simultaneously. However, each Timber object behaves like a monito
methods execute in mutual exclusion, so at most one of its methods can be active
given time. Since all state is encapsulated in some object, this ensures orderly upd
the state.

In the following example, two contending clients send messages to a counter ob
Mutual exclusion between method executions in the counter guarantees that there
danger of simultaneous updates to the counter’s state.

proc cnt = template
-- this object has no state of its own

in record
doIt = action  cnt.inc

f env = do c <- counter
p <- proc c
p.doIt
c.inc
v <- c.read
env.putStr (show v)

Hereproc is function that returns a template (a particular kind ofCmd). The command
p <- proc c (inside thedo ) parameterizesproc by the counter objectc andexecutesproc
c: the result is a new object with a single method calleddoIt. The message sendp.doIt
starts execution of this method, which then executes autonomously and asynchron
because the method is an action.

Methods are not guaranteed to be executed in the order that the corresponding me
are sent. Their execution is instead scheduled subject to timing constraints, which
be discussed in Section 6. However, in the absence of explicit timing constraints, if
message send precedes (in the sense of Lamport’s “happened before” relation) a
send to the same object, it is safe to assume that the corresponding methods will b
26 Timber: A Programming Language for Real-Time Embedded Systems
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cuted in the same order. This is also illustrated by the previous example, as we
explain.

In the proceduref the messageinc is sent to p before the messageread. There are no
explicit timing annotations on the message sendsc.inc and c.read. Thus, inc will be
executed beforeread, and it is safe to assume that the valuev returned from theread
request is at least1. In contrast, the send ofdoIt to p initiates a concurrent activity,
becausedoIt is an action. Nothing can be said about whether thedoIt action of objectp
will be scheduled to send itsinc message before, in between, or after the two messa
sent in proceduref.

Reactivity Objects alternate between indefinitely long phases of inactivity and periods of me
execution that must be finite, unless the programmer has explicitly written an infi
loop. Given a sufficiently fast processor, in many applications the method execu
may be considered to be instantaneous. When used with very short duration met
Timber then approximates Berry’sperfectly synchronous model of computation [3].

The existence of value-returning synchronous methods does not change the fac
method executions are finite, since, assuming that the system is not in deadlock,
are noothercommands that may block indefinitely, and hence sending a request ca
block indefinitely either. Thus, it is important that the computing environment a
adheres to this reactive view, bynotproviding any operations that might block a proces
indefinitely.

This means, for example, that a Timber program cannot read input from a console
a blocking primitive. Instead, interactive Timber programs installcallback methodsin
the computing environment, with the intention that these methods will be invo
whenever the event that they are set to handle occurs. As a consequence, Timbe
grams do not generally terminate when thestart action of the main template returns
instead, they are considered to be alive as long as there is at least one active ob
one installed callback method in the system. (Alternatively, the environment may
vide aquit method that terminates the whole program).

The overall form of a Timber program is thusnot a (potentially) infinite main loop.
Instead, a Timber program defines a set of objects and binds events in the environ
to message sends to those objects. When the events occur, the messages will be se
the corresponding methods will be scheduled for execution.

The actual shape of the interface to the computing environment must of cours
allowed to vary with the type of application being constructed. The current Tim
implementation supports several environment types, includingTixEnv, BotEnv, and
StdEnv, which model the computing environments offered by a Tk server with gra
building extensions [2], a mobile Robot, and thestdiofragment of a Unix operating sys-
tem, respectively.

As an illustration of the use of environments, let us see how a text-based Timber
gram might work in a minimal Unix-like computing environment:
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record  StdEnvironment where
putStr :: String -> Action
quit :: Action

record  StdProgram where
start :: Action
char :: Char -> Action
signal :: Int -> Action

main :: StdEnvironment -> Template StdProgram

The program can send the messageputStr to the environment to output strings. The sys
tem will deliver characters and signals to the program by executing the actionschar and
signal when a new character is typed or a signal is generated.

For an example of a more elaborate environment interface, the reader is referred
vehicle controller discussed in Section 8.

6. Time

So far, our discussion of Timber has (intentionally) avoided the topic of time. This
conventional in the definition of programming languages; ignoring time has the g
advantage of allowing conforming implementations of a language to exist on va
hardware and software platforms. Unfortunately, ignoring time makes a langu
unsuitable for programming real-time systems, with the result that embedded syste
almost alone in the universe of modern software—are frequently programme
assembly language or in a way that must escape from the programming languag
appeal to the primitives of a real-time operating system for all critical operations.

With Timber we attempt to find some middle ground by allowing the programmer
placeboundson the execution time of actions, while allowing the implementation t
freedom to schedule the actions within those bounds. We use the notion ofdeadline—
the latest time before which an action must complete, andbaseline—the earliest time
after which the action may commence. We call the closed interval bounded by a b
line and a deadline atimeline; while an action is executing the current time will nor
mally be within the timeline for that action. It is possible to read the current tim
directly, but since this will vary from one execution to the next, the timeline is in pr
tice more useful.

Specifying Time Timber has two built-in datatypes for time:TimeInstant and TimeDuration.
TimeInstant refers to a calendar date and time;TimeDuration to the interval between

two TimeInstants†. Neither the precision nor the accuracy of the clock against wh

†. The namesTimeDurationandTimeInstantare taken from ISO 8601[10] and the XML Schema
Specifications for DataTypes [5]
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times are measured are dictated by the Timber language. This means that implem
tions are free to provide as coarse or as fine a notion of time as their applications re
or their platforms permit. However, Timber does require that time is monotonic w
respect to the Lamport Logical Clock [13]. That is, if an actiona “happened before” an
actionb, then the current time observable ina must not be later than the current time
observable inb. Note that, because of the finite granularity of the clock, the two tim
may be equal.

The datatypeTimeInterval is used to represent the interval between and including t
TimeInstants. The operatorsuntil, from andending can be used to construct TimeInter
vals:

until :: TimeInstant -> TimeInstant -> TimeInterval
from :: TimeDuration -> TimeInstant -> TimeInterval
lasting :: TimeInstant -> TimeDuration -> TimeInterval
ending :: TimeDuration -> TimeInstant -> TimeInterval

In the following,tod1 is aTimeInstant, andhours is aTimeDuration. tod2 is defined to
denote a timeInstant that is one hour later than tod1:

tod2 = tod1 + (1 * hours)

The following definitions all specify the sameTimeInterval, namely, the interval
betweentod1 andtod2.

i1 = tod1 `until` tod2
i2 = (1 * hours) `from` tod1
i3 = tod1 `lasting` (1 * hours)
i4 = (1 * hours) `ending` tod2

The operatorsbaseline, deadline andduration can be used to examine aTimeInterval:

baseline :: TimeInterval -> TimeInstant
deadline:: TimeInterval -> TimeInstant
duration :: TimeInterval -> TimeDuration

In the scope of the above let expression, the following are true:

baseline i1 == tod1
deadline i1 == tod2
duration i1 == (1 * hours)

Timelines for Actions Every method execution in a Timber program has an associated timeline. Normally
timeline is the same as the timeline of the method that initiated the execution; ind
this is always the case for requests. However, for actions, it is possible to specify a
ferent timeline, as we will see shortly.

Actions invoked by the environment are also assigned timelines. For example, the
line for thestart action is determined by the operating system command that initiate
Normally it has a baseline representing theTimeInstant at which the program is started
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and a deadline specifying when initialization must be completed. To give another ex
ple: when the environment receives an interrupt from a sensor, it sends a messa
some Timber object that initiates an action. The timeline for this action might ext
from the instant that the interrupt arrives until the instant when the sensor reading
no longer guaranteed to be available in the device register.

Specifying the Timeline If a Timber action with timelineτ sends a message initiating an actionA, then the
default timeline forA is alsoτ. The baseline forA can be specified to be something othe
thanτ.baseline than by means of the constructafter b A, whereb is aTimeDuration.
This gives the actionA a baseline ofb + τ.baseline; A’s deadline isτ.deadline. Simi-
larly, the deadline forA can be specified by means of the constructbefore d A, whered
is a TimeDuration; this initiates the actionA with a deadline of d +τ.baseline. In this
caseA’s baseline isτ.baseline.

The before and after constructs give the programmer an explicit way of specifyin
which aspects of a reaction are time-critical. If an actionA sends a message that initiate
an actionB in some other object, the deadline forB will by default be the same as that o
A itself. However, by using thebefore command, the deadline forB can be changed to
be later than the deadline forA.

Whether it is appropriate to change the deadline in this way depends entirely on
application. For example,A may be a time-critical reaction to a real-time event, butB
may be a housekeeping operation that can be deferred indefinitely; in this case,B may
be given a very much more generous (even infinite) deadline. In contrast, if comple
of B is part of the required response to the external event, then it may be necess
giveB the same deadline asA.

By using a recursive message send that specifies a new baseline, it is possible to e
periodicscheduling. For example, the following controller schedules itself with a per
of 0.1 seconds:

controller = action
do_periodic_stuff
after  (0.1 * seconds) controller

It is important to note that thenth execution of this action will have terminated befor

the (n+1)th execution starts.

Execution Model The model of concurrent execution used by Timber is based on the idea of the Che
Abstract Machine [4]. The state of an executing program is envisioned as a “soup
molecules. Sometimes these molecules react together, becoming absorbed and p
ing new molecules as a result.

There are two kinds of molecules in the Timber “soup”:objects andmessages.

Objects.Objects are alwaysnamed. The names bear no relationship to any identifi
that might be used to reference an object in the Timber program. Instead, a name s
be thought of as a unique identifier that distinguishes an object from all others.
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Objects can either beactiveor inactive. An active object is denotedo:Obj〈C, τ, s〉. Such
an object, namedo, is executing the command sequenceC in response to a message sen
from the object nameds, using the timelineτ. An inactive object is denotedo:Obj〈〉.

Messages.Messages are denotedMsg〈o, C, τ, s〉, which amounts to a message targete
at objecto, containing the command sequenceC, to be executed with the timelineτ, on
behalf of the invoking objects. If the message corresponds to an invoked action,
will use the special identifier_ for the invoking object.

Object creation.When an object is created by executing a template command, a
objecto:Obj〈〉 is created, using a fresh nameo. The state variables ofo is initialized as
described by the template, and sub-objects are recursively created. All actions
requests in the template are alsoassociatedwith the nameo, so that messages can b
sent to the correct target. The interface (containing the associated actions and req
is returned.

Action message send.When a (asynchronous) action message is sent, a new mes
of the formMsg〈o, C, τ, _〉 is created, whereo is the target object associated with th
action,C is the command sequence in the action, andτ is the timeline specified for the
action (see “Specifying the Timeline” on page 30). The identity of the sender is irr
vant in this case, and so is denoted by_.

Request message send.When a (synchronous) request message is sent, a new mes
of the formMsg〈o, C, τ, s〉 is created, whereo is the target object associated with th
request,C is the command sequence in the action, andτ is the timeline of the invoking
method. The invoking method is blocked, awaiting a reply fromo.

Dispatching of a message.If an idle objecto:Obj〈〉 and a messageMsg〈o, C, τ, s〉 that
targetso both exist at the same time, then the message can bedispatched. This means
that both o and the message are consumed and are replaced by the active o
o:Obj〈C, τ, s〉. Note that this dispatch is constrained by thescheduling rulesoutlined in
the next section.

Completing an action.When an active object has finished executing an action co
mand sequence, it is transformed into the idle object.

Completing a request.When an active object has finished executing a request co
mand sequence, it is on the formo:Obj〈return e, τ, s〉. It will be transformed into the
idle object o:Obj〈〉, and the objects that originally sent the request message
unblocked. The return value of the message send is the value ofe.

Scheduling In the Timber execution model, scheduling reduces to the problem of choosing w
message to dispatch next. The exact scheduling algorithm is not a part of the Ti
language specification. Instead, we envisage the scheduler as a “plug in compon
different schedulers may be chosen to meet the needs of different applications.

However, any schedulermust preserve the following properties:

1. No message may be dispatched before its baseline.
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2. If two messages to the same objecto, A = Msg〈o, m, τ1, _ 〉 andB = Msg〈o, n, τ2, _ 〉
are both eligible for dispatch, andA was sentbeforeB, in the sense of Lamport’s
“happened before” relation, thenB can only be dispatched beforeA if

• τ2.baseline < τ1.baseline, or

• τ2.baseline = τ1.baseline and τ2.deadline < τ1.deadline.

The second property guarantees that the order is preserved in a sequence of m
sends from one object to another, provided that all the messages have the same tim
However, if a programmer explicitly gives a later message an earlier baseline or an
lier deadline, then the later message may be dispatched before the earlier one.

Example of Reduction
Semantics

Recall our definition of the counter template:

counter = template
val := 0

in record
inc = action  val := val + 1
read = request return  val

Suppose we have an active objecto:Obj〈C, τ, _ 〉, where isC is the following command
sequence:

c <- counter
c.inc
c.inc
v <- c.read
env.putStr (show v)

Here is how the system can evolve:

o:Obj〈c <- counter
       c.inc
       c.inc
       v <- c.read
       env.putStr (show v), τ, _ 〉

Unfold definition ofcounter, create new object, with fresh nameo1. Return interface
with methods associated with o1

o:Obj〈c <- return  (record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

        c.inc
        c.inc
        v <- c.read
        env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 0]

Bind c to returned expression
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o:Obj〈let  c = record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

        c.inc
        c.inc
        v <- c.read
        env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 0]

Evaluatec.inc

o:Obj〈let c = record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

action 〈o1〉 val := val + 1
        c.inc
        v <- c.read
        env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 0]

Invoke the first action, creating a new message

o:Obj〈let c = record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

        c.inc
        v <- c.read
        env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 0]

Msg〈o1, val := val + 1, τ,  _ 〉

Dispatch the message (this is just one of many possible schedules)

o:Obj〈let c = record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

c.inc
        v <- c.read
        env.putStr (show v), τ, _ 〉

o1:Obj〈val := val + 1, τ, _ 〉 [val := 0]

Invoke the second action (this is just one of many possible schedules)

o:Obj〈let c = record inc = action 〈o1〉 val := val + 1
read = request 〈o1〉 return val)

        v <- c.read
        env.putStr (show v), τ, _ 〉

o1:Obj〈val := val + 1, τ, _ 〉 [val := 0]

Msg〈o1, val := val + 1, τ,  _ 〉
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o:Obj〈v <- request 〈o1〉 return val
        env.putStr (show v), τ, _ 〉

o1:Obj〈val := val + 1, τ, _ 〉 [val := 0]

Msg〈o1, val := val + 1, τ,  _ 〉

Invoke request (this is just one of many possible schedules)

o:Obj〈v <- 〈blocked〉
        env.putStr (show v), τ, _ 〉

o1:Obj〈val := val + 1, τ, _ 〉 [val := 0]

Msg〈o1, val := val + 1, τ, _ 〉

Msg〈o1, return val, τ, o〉

Execute assignment, complete action

o:Obj〈v <- 〈blocked〉
        env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 1]

Msg〈o1, val := val + 1, τ, _ 〉

Msg〈o1, return val, τ, o〉

Dispatch message (scheduling requirements state that this is the only possible me
to dispatch foro1)

o:Obj〈v <- 〈blocked〉
        env.putStr (show v), τ, _ 〉

o1:Obj〈val := val + 1, τ, _ 〉 [val := 1]

Msg〈o1, return val, τ, o〉

Execute assignment, complete action

o:Obj〈v <- 〈blocked〉
        env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 2]

Msg〈o1, return val, τ, o〉

Dispatch message
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o:Obj〈v <- 〈blocked〉
        env.putStr (show v), τ, _ 〉

o1:Obj〈return val, τ, o〉 [val := 2]

Evaluate local state variable

o:Obj〈v <- 〈blocked〉
        env.putStr (show v), τ, _ 〉

o1:Obj〈return 2, τ, o〉 [val := 2]

Complete request, unblock invoking object

o:Obj〈v <- return 2
        env.putStr (show v), τ, _ 〉

o1:Obj〈〉 [val := 2]

Bind v to returned expression, garbage collect o1

o:Obj〈 let  v = 2
env.putStr (show v), τ, _ 〉

Evaluate expression, garbage collect v

o:Obj〈env.putStr "2", τ, _ 〉

7. Additional Features

Timber also provides a number of minor, mostly syntactic extensions to the Has
base, which we will briefly review in this section.

Extended do-syntax Thedo -syntax of Haskell already contains an example of an expression construct l
to a corresponding role as a command: thelet -command, illustrated in “Expressions vs
commands” on page 23. Timber defines commands corresponding to theif - andcase -
expressions as well, using the following syntax.

do if  e then
cmds

else
cmds

if  e then
cmds

case  e of
p1 -> cmds
p2 -> cmds
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In addition, Timber provides syntactic support for recursive generator bindings,
iteration.

do fix x <- cmd y
y <- cmd x

forall  i <- e do
cmds

while  e do
cmds

Array updates To simplify programming with the primitiveArray type, Timber supports a specia
array-update syntax for arrays declared as state variables. Assuminga is such an array,
an update toa at indexi with expressione can be done as follows. (The array indexin
operator in Haskell is!)

a!i := e

Semantically, this form of assignment is equivalent to

a := a // [(i,e)]

where// is Haskell’s pure array update operator. But apart from being intuitively si
pler, the former syntax has the merit of making it clear that normal use of an enca
lated array is likely to be single-threaded,i.e., implementable by destructive update. Th
rare cases wherea is used for a purpose other than indexing become easily identifia
and hence conservative of the array can be reserved for these occasions. Or
updates toa can be performed in place, which is also exactly what the array-update
tax above suggests.

Record stuffing Record expressions may optionally be terminated by a type constructor name, as
following examples:

record  ..S

record  a = exp; b = exp; ..S

These expressions utilizerecord stuffing, a syntactic device for completing record defi
nitions with equations that just map a selector name to an identical variable alrea
scope. The missing selectors in such an expression are determined by the appende
constructorS, which must stand for a record type, on condition that corresponding v
ables are defined in the enclosing scope. So ifS is a (possibly parameterized) record
type with selectorsa, b, andc, the two record values above are actually

record  a = a; b = b; c = c

and

record  a = exp; b = exp; c = c
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wherec, and in the first case evena andb, must already be bound. Record stuffing
most useful in conjunction withlet -expressions, as we will see in the examples.

8. An Autonomous Vehicle Controller

We present here a complete Timber program. The example is idealized for brevity,
illustrates Timber’s reactive style of programming and many of the features of the l
guage. This example also shows the separation between the calculations performe
program and the interactions in which it is involved. Since it is an implementation of
interrupt-driven system with parallel processes that also performs significant comp
tion, it captures many of the characteristics of an embedded system.

The environment that this program assumes is as follows:

record  Register where
load :: Cmd Int
store :: Int -> Cmd ()

record  EmbeddedEnv where
register_at :: Int -> Template Register
reset :: Action

record  EmbeddedProgram where
start :: Action
interrupts :: [(Int,Action)]

Here is the controller program itself:

module  AGV where

type  Angle = Float
type  Speed = (Angle,Float)
type  Pos = (Float,Float)

calcpos :: [Angle] -> [Pos] -> Pos
regulate :: Pos -> Pos -> Speed -> Speed
room :: [Pos]

calcpos = undefined
regulate = undefined
room = undefined

----------------------------------------------------------------

record  Driver where
new_scan :: [Angle] -> Action
new_path :: [Pos] -> Action
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driver :: Servo -> Template Driver
driver servo =

template
speed := (0.0,0.0)
path  := repeat (0.0,0.0)

in record
new_scan angles = action

let  is_pos = calcpos angles room
should_pos:path' = path
speed' = regulate is_pos should_pos speed

speed := speed'
path  := path'
servo.set_speed speed'

new_path p = action
path := p

-----------------------------------------------------------------

record  Scanner where
detect :: Action
zero_cross :: Action

tick_period = 100*milliseconds
reg_change= 10*microseconds

scanner :: Register -> Driver -> Template Scanner
scanner angle_reg driver =

template
angles := [ ]

in record
detect = before reg_change action

a <- angle_reg.load
angles := 2*pi*(fromIntegral a)/4000 : angles

zero_cross = action
before  tick_period driver.new_scan angles
angles := []

-----------------------------------------------------------------

record  Servo where
set_speed  :: Speed -> Action

servo :: Register -> Register -> Template Servo
servo  = undefined

-----------------------------------------------------------------

record  Radio where
incoming :: Action

radio :: Register -> Driver -> Template Radio
radio  = undefined
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-----------------------------------------------------------------

main :: EmbeddedEnv -> Template EmbeddedProgram
main env =

template
thrust_reg <- env.register_at 0xFFFF0001
steer_reg <- env.register_at 0xFFFF0002
angle_reg <- env.register_at 0xFFFF0003
radio_reg <- env.register_at 0xFFFF0004

serv <- servo thrust_reg steer_reg
driv <- driver serv
scan <- scanner angle_reg driv
comm <- radio radio_reg driv

in record
start = action done
interrupts = [

(0x80, scan.detect),
(0x81, scan.zero_cross),
(0x82, comm.incoming)

]

Appendix:  A Context-Free Grammar for Timber

Module Header module :'module '  CONID 'where '  body

body : '{' topdecls '}'
| topdecls   -- using layout

Top-level declarations topdecls : topdecls ';' topdecl
| topdecl

topdecl :' type '  CONID tyvars '=' type
| 'data '  CONID tyvars optsubs optcs
| ' record '  CONID tyvars optsups optbs
| 'class '  CONID tyvars optsups optbs
| ' instance '  qtype optbs
| bind

tyvars : tyvars VARID
| {- empty -}

optsups : '<' types
| '<' type
| {- empty -}

optsubs : '>' types
| '>' type
| {- empty -}
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Datatype declarations optcs : '=' constrs
| {- empty -}

constrs : constrs '|' qconstr
| qconstr

qconstr : context '=>' constr
| constr

constr : constr atype
| CONID

Bindings optbs :'where '  bindlist
| {- empty -}

bindlist : '{' binds '}'
| binds -- using layout
| '..' CONID -- only in a record expression

binds : binds ';' bind
| bind

bind : vars '::' qtype
| pat rhs -- unless inside a record declaration

vars : vars ',' var
| var

rhs : '=' exp
| gdrhss
| rhs'where '  bindlist

gdrhss : gdrhss gdrhs
| gdrhs

gdrhs : '|' quals '=' exp

Qualified types qtype : context '=>' type
| type

context : '(' preds ')'
| pred

preds : preds ',' pred
| pred

pred : classpred
| type '<' type

classpred : classpred atype
| CONID

Types type : btype '->' type
| btype
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btype : btype atype
| atype

atype : CONID
| VARID
| '[' ']'
| '(' '->' ')'
| '(' commas ')'
| '(' ')'
| '(' type ')'
| '(' types ')'
| '[' type ']'

types : types ',' type
| type  ',' type

commas : commas ','
| ','

Expressions exp : '\' apats '->' exp
| ' let '  bindlist ' in '  exp
| ' if '  exp ' then '  exp 'else '  exp
| 'case '  exp 'of '  altlist
| ' record '  bindlist
| 'do '  stmtlist
| 'action '  stmtlist
| ' request '  stmtlist
| ' template '  stmtlist ' in '  exp
| ' template ' ' in '  exp
| 'after '  aexp exp
| 'before '  aexp exp
| exp '::' qtype
| infixexp

infixexp : infixexp op infixexp
| '-' fexp
| fexp

fexp : fexp aexp
| aexp

aexp : aexp SELID
| bexp

bexp : var
| 'self '
| con
| lit
| '(' ')'
| '(' exp ')'
| '(' exps ')'
| '[' list ']'
| '(' infixexp op ')'
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| '(' op infixexp ')'
| '(' commas ')'

lit : INT
| RATIONAL
| CHAR
| STRING

List expressions list : {- empty -}
| exp
| exps
| exp '|' quals

exps : exps ',' exp
| exp ',' exp

quals : quals ',' qual
| qual

qual : pat '<-' exp
| exp
| ' let '  bindlist

Case alternatives altlist : '{' alts '}'
| alts   -- using layout

alts : alts ';' alt
| alt

alt : pat rhs1

rhs1 : '->' exp
| gdrhss1
| rhs1'where '  bindlist

gdrhss1 : gdrhss1 gdrhs1
| gdrhs1

gdrhs1 : '|' quals '->' exp

Statement sequences stmtlist : '{' stmts '}'
| stmts      -- using layout

stmts : stmts ';' stmt
| stmt

stmt : pat '<-' exp
| exp
| pat ':=' exp
| ' let '  bindlist
| ' if '  exp ' then '  stmtlist 'else '  stmtlist
| ' if '  exp ' then '  stmtlist
| 'case '  exp 'of '  altlist2
| ' forall '  quals'do '  stmtlist
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| 'while '  exp 'do '  stmtlist
| ' fix '  stmtlist

altlist2 : '{' alts2 '}'
| alts2       -- using layout

alts2 : alts2 ';' alt2
| alt2

alt2 : pat rhs2

rhs2 : '->' stmtlist
| gdrhss2
| rhs2'where '  bindlist

gdrhss2 : gdrhss2 gdrhs2
| gdrhs2

gdrhs2 : '|' quals '->' stmtlist

Patterns pat : pat op pat
| apats

apats : apats apat
| apat

apat : '_'
| var
| con
| lit
| '-' INT
| '-' RATIONAL
| '(' ')'
| '(' pat ')'
| '(' pats ')'
| '[' pats ']'
| '(' commas ')'

pats : pats ',' pat
| pat ',' pat

Variables, Constructors
and Operators

var : VARID
| '(' VARSYM ')'

con : CONID
| '(' CONSYM ')'

varop : VARSYM
| '`' VARID '`'

conop : CONSYM
| '`' CONID '`'

op : varop
| conop
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Terminal symbols Rather than providing full definitions for the terminals, we illustrate them by examp

Variable Identifiers

VARID:  abc |  aBC |  ab_c |  abc1 |  ...

Constructor Identifiers.

CONID:  Abc |  ABC |  Ab_c |  Abc1 |  ...

Selector Identifiers:

SELID:  .abc |  .aBC |  .ab_c |  .abc1 |  ...

Variable Symbols

VARSYM:  + |  < |  <= |  ...

Constructor Symbols

CONSYM:  : |  :+ |  :< |  :<= |  ...

Integers

INT:  0 |  123 |  0x123ABC |  ...

Rational Numbers

RATIONAL:  0.12 |  0.12E4 |  0.12E-4 |  ...

Character Constants

CHAR: 'a' | 'X' |  '\n' |  ...

String Constants

STRING:  "abc" |  "abc\n" |  ...
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