
 

A Domain-sepcific Langauge for Infopipes

 

Rebekah Leslie

 

Department of Computer Science and Engineering
OGI School of Science & Engineering
Oregon Health & Science University

20000 NW Walker Road
Beaverton, OR 97006-8921 USA

 

Technical Report Number CSE 04-004

28

 

th

 

 July 2004

This material is based upon work supported by the 

National Science Foundation under Grant No. CCR-0219686. 

Any opinions, findings and conclusions or recomendations expressed in 

this material are those of the author and do not necessarily reflect the 

views of the National Science Foundation. 



 

— This page is blank —



A Domain Specific Language For Infopipes

Rebekah Leslie

July 28, 2004

1 Introduction

This paper presents the state of the domain specific language for Infopipes as
of June 2004. The paper describes the langauge, preliminary implementation,
and remaining development issues.

Section 2 presents the details of the language. This includes a description
of the constructs available in the language, the assumptions made about the
language capabilities, and the concrete representation. Section 3 presents the
implementation of a configuration language for Infopipes. The configuration lan-
guage is a limited subset of the proposed Infopipes language but the compiler for
the configuration language provides an extensible framework for implementing
the full language. Section 4 discusses the remaining decisions to be made in the
language design and the issues surrounding the implementation of the Infopipes
language.

2 Language Description

This section presents a domain specific language for Infopipes. The language
is incomplete, but a number of design decisions have been made. Section 2.1
defines the set of features for the DSL. Section 2.2 contains the expectations
of the langauge. Finally, section 2.3 illustrates the use of the language through
concrete examples.

2.1 Language Constructs

The principle goal in designing the Infopipes DSL is the creation of a language
that is exactly powerful enough to describe Infopipes and their operations. The
design requires abstractions that fit the Infopipes domain and meet the needs
of distributed systems developers. Superfluous operations are undesirable. The
language features proposed in this section attempt to address this goal.

1



2.1.1 Component Definition

Component definition, instantiation, and connection are top level declarations
in the Infopipes language. This section describes component definition. Instan-
tiation and connection are left to section 2.1.6.

Component definitions contain methods and control variables. The methods
take several forms: constructors, transfer functions, and configuration functions.
Every component includes at least one constructor function which initializes in-
stances of the component. Every component also contains a transfer function
which defines the computation performed by the component. The implementa-
tion coordinates the invocation of these functions. Configuration methods are
optional. The application writer invokes these methods at connection time in
order to obtain information about the state of the component. Control vari-
ables maintain the state of the component. The following sections describe the
method types in greater detail.

2.1.2 Constructor Functions

Each component definition contains one or more constructor functions. Con-
structor functions define the port layout and data flow properties of the com-
ponent. They are invoked when the component is instantiated.

The application writer defines the port layout of a component using the built
in functions inport and outport. Each port declaration contains the name and
type of the port. The type specification has data type and polarity components.
Type variables may be used in both cases. The keyword optional modifies port
declarations. Failure to connect a port declared using optional will not cause
an error. This capability is designed to be used with control ports.

Constructor functions may take parameters. These parameters provide in-
formation used in the initialization process. Generally these parameters are the
initial values for control variables. The language allows multiple constructor
functions with varying argument lists.

2.1.3 Transfer Function

Transfer functions define the computation performed by a component. Transfer
functions have dependency lists that indicate which ports the function interacts
with. Multiple transfer functions are allowed so long as their dependency lists
are different. Each port must belong to the dependency list of exactly one
transfer function.

The body of the transfer function contains arithmetic expressions, port in-
teractions, library calls, and control flow operations. Port interactions are rep-
resented using a reciprocal arrow syntax: ← gets data from an in port and
stores it in a variable and → sends data to an out port. Section 2.1.5 presents
the control flow statements in greater detail.

2



2.1.4 Configuration Methods

Configuration methods provide information about the state of a component
at connection time. They are declared using the keyword config before the
method declaration. Configuration methods contain arithmetic expressions, li-
brary calls, and control flow operations. Unlike transfer functions, configuration
methods can return a value to the caller but cannot interact with ports.

2.1.5 Control Flow Operations

The Infopipes language provides three kinds of control flow statements. There
is a standard if-else construct as well as two looping constructs. The looping
constructs iterate over space or time. Both kinds of loops are bounded.

2.1.6 Component Instantiation and Connection

Like component definition, component instantiation and connection are top level
statements in the Infopipes language. The Infopipes DSL uses the syntax pre-
sented in the Infopipes literature unchanged.

2.2 Assumptions

This section enumerates the current set of assumptions about the capabilities
of the Infopipes DSL. These assumptions are a basis for further design. The
assumptions may change if further experience with the language dictates that
they are insufficient.

Infopipes must include a mechanism for feedback in order to maintain quality
of service parameters. The current design assumes that Infopipelines control
the feedback between Infopipe components. Without further restriction this
assumption leads to feedback structures with an infinite depth. To avoid this
obviously undesirable consequence, control ports (ports used for feedback rather
than forward data flow) may be optional. With optional control ports, the user
creates a feedback structure that is exactly as deep as their application requires.

As discussed in section 2.1.2, each component has a set of in ports and a set
of out ports. The polarities of the ports within a set may vary from each other.
This assumption complicates the synchronization of data transfer in the imple-
mentation but is essential. Initially it seemed reasonable to assume that the
ports in a given set must all have the same polarity. It quickly became evident
that there are many cases where this restriction is overly limiting. Theoreti-
cally, any polarity mismatches resulting from uniform polarities could be solved
using an intermediate component, but this complicates the resulting pipeline
and introduces unnecessary latency.

Data flow characteristics are the focus of the Infopipes architecture. For this
reason, the unifying characteristic of Infopipe “classes” is shape (port layout)
rather than computation. Subcomponents may override all methods in the
supercomponent as long as they do not alter the shape. The subcomponent can
only alter the polarity of ports in such a way that the polarity becomes more

3



specific. For example, an α → β polarity may become + → − but a + → +
polarity may not become + → −. The default characteristics of a top level
component are a single in port and out port of type a with α → β polarity.

Transfer functions describe the computation an Infopipe component per-
forms. Often the Infopipes language will be insufficient to define the transfer
functions needed in real applications. Rather than give the Infopipes language
the power of a language like C, the language includes a mechanism for calling
library functions written in other languages. This ability requires the further
assumption that library calls never block. These assumptions severely impact
on the Infopipes implementation (see section 4.2).

2.3 Concrete Representation

This section illustrates the use of the language constructs introduced in section
2.1. The emphasis of these examples is the use of the language rather than the
syntax. The concrete representation is secondary at this stage in the language
development, but is useful in understanding the language concepts.

Figure 1 shows the definition of an n-way merge pipe. This component takes
an array of numbers and outputs their sum. This example creates a new top

NWayMergePipe
NWayMergePipe() {

inport in::(Float[2], +)
outport out::(Float, -)

}

NWayMergePipe(numInPorts::Int) {
inport in::(Float[numInPorts],+)
outport out::(Float,-)

}

transferFunction[in,out](items <- in) {
sum(items) -> out

}

Figure 1: Concrete Syntax Example - N-Way Merge Pipe

level component called NWayMergePipe. This component has two constructor
functions: one that takes no parameters and one that takes an integer parameter.
The former function defines an instance with an array of in ports of length two
and a single out port. The latter defines an instance with a variable length
in port array. The caller of the constructor provides the desired number of
in ports. In both cases, the in ports are active while the out port is passive.
NWayMergePipe also has a transfer function that describes the computation of
the component. The dependency list of the transfer function shows that the

4



transfer function interacts with the in port named in and the out port named
out. A local variable called items retrieves a piece of data from the in port in.
The transfer function calls the built-in array function sum and sends the result
to the out port out.

Figure 2 contains an example of a multiplication filter. This example illus-
trates the use of configuration methods and multiple in ports which are not part
of an array.

MultFilter
MultFilter() {

inport in1::(Int,a)
inport in2::(Int,a)
inport in3::(Int,a)
outport out::(Int,b)

}

transferFunction[in1,in2,in3,out]
(item1 <- in1, item2 <- in2, item3 <- in3) {
(item1 * item2 * item3) -> out

}

config inPorts() {
return ["in1", "in2", "in3"]

}

Figure 2: Concrete Syntax Example - Multiplication Filter

The constructor function defines three in ports and a single outport. The com-
ponent operates on integers, as indicated by the data type of the ports. The
component has α → β polarity. The transfer function’s dependency list contains
all of the ports defined by the constructor function. The local variables item1,
item2, and item3 store integers from the first, second, and third in ports respec-
tively. The transfer function sends the result of multiplying the input data to
the out port. In addition to the standard constructor and transfer functions,
the MultFilter component defines a configuration method called inPorts. This
function returns an array containing the name of each of the component’s in
ports.

5



Figure 3 contains the code for a Pump component. This example demon-
strates the use of control ports for feedback between components.

Pump
rate::Float

Pump(startRate::Float) {
inport in::(a,+)
optional inport c1::(Float,-)
outport out::(a,+)
rate = startRate

}

transferFunctioni[in,out](item <- in) {
item -> out

}

transferFunction[c1](fillLevel <- c1) {
if (fillLevel < 0.5) then -- increase rate --
else if (fillLevel > 0.75) then -- decrease rate --

}

Figure 3: Concrete Syntax Example - Pump

The definition of the Pump component includes the definition of a control vari-
able called rate. The constructor function initializes this variable. The rest of
the constructor function is quite similar to those seen in the previous examples
except for the use of the keyword optional. The keyword optional indicates that
the compiler should not generate an error if the port c1 is not connected. The
first transfer function in Figure 3 defines the standard data operation of Pumps.
Pump uses a second transfer function to handle the operation of the optional
port. The dependency list distinguishes the two functions.

3 Existing Implementation

The current implementation works with a configuration language for Infopipes.
This configuration language contains a subset of the features required by the
full-fledged Infopipes DSL. The language has mechanisms for instantiating, con-
necting, and defining components. These features, particularly component def-
inition, have limited power.

The value of the implementation is the extensible framework it establishes,
rather than the configuration language itself. The implementation of the config-
uration language contains two parts: a monadic embedded compiler written in

6



Haskell and a graphical simulator written in Smalltalk. The embedded compiler
produces intermediate language code which the graphical simulator interprets.

The embedded compiler produces two different intermediate languages. In-
stantiation and connection compile to the input language of the graphical sim-
ulator. Component declaration translates to the Squeak file in format. The
file in format contains valid Smalltalk wrapped with extra information that lets
Squeak know what to do with the input. Squeak is the target environment so
that the configuration language can take advantage of the graphical simulator
and existing component class hierarchy. These Smalltalk elements make the
DSL usable more immediately than if it were implemented from scratch.

This section details the inner workings of the embedded compiler and how
it can be used in the development of a more powerful language for Infopipes.

3.1 Abstract Syntax

The configuration language consists only of the abstract syntax which is defined
using Haskell’s abstract data types. The abstract syntax provides all of the
information needed to define the semantics of the language and is much more
flexible than the concrete syntax. This flexibility is especially useful during the
early development stages where the language is still evolving.

Figure 4 shows the abstract syntax for the configuration language.

data PipeTerm = InstantiateNoPos Var Var
| InstantiateWithPos Var Var (Int, Int)
| Connect Var Var Var Var
| Filter Var [Exp]
| Component Var Var [Method]
| Redefine Var String [Exp]

data Var = PortVar String
| ClassVar String
| InstanceVar String

data Exp = Const Int
| Add Exp Exp
| Sub Exp Exp
| Times Exp Exp
| Return Exp
| Assign String Exp
| Variable String

type Program = [PipeTerm]
type Method = (String, [Exp])

Figure 4: Abstract Syntax For Infopipes Configuration Language

The data type PipeTerm defines the basic operations on Infopipe components:
instantiation, connection, definition, and redefinition. The Var data type de-

7



scribes three kinds of variables: class, instance, and port. The compiler performs
static checks that require a distinction between these variable types. Exp con-
tains some standard arithmetic expressions as well as the commands for function
return and variable assignment. Program and Method are type synonyms which
provide more descriptive type signatures in the compiler.

PipeTerm is the most interesting data type in the DSL because it contains the
top level Infopipe constructs. The constructor functions InstantiateWithPos and
InstantiateNoPos represent instantiation with and without a specified display
position for the component. Connect expresses the connection of two Infopipe
instances. Filter and Component define new components. The first creates a
new filter component and defines the computation of the new filter. Component
is more general. It defines any kind of new component and allows for the
definition of multiple methods in the new component. Finally, the Redefine
constructor overrides the computation of an existing component with a specified
behavior.

3.2 Static Checking

A key feature of the compiler is that it performs static checks during the compi-
lation process. The instantiation and connection of components will only work
properly if certain properties hold. All of these properties can be verified stat-
ically, yet the Smalltalk Infopipes implementation can provide no such checks.
The embedded compiler adds these checks by utilizing the environments dis-
cussed in the next section (see section 3.3). The Maybe monad and an error
string in the state provide feedback to the compiler driver when errors are found.

The first opportunity for static checking presents itself in the instantiation
of components. Two common errors could occur in this situation. First, the
user could attempt to instantiate a component that is undefined. Second, the
user could give the instance a name that is already in scope.

Component connection has even more opportunities for errors to occur. Con-
nection involves two ports, each of which is associated with an instance. The
instances referenced could be undefined. The port name used may not be a
valid port of the instance. Both of these issues generate an error. In addition,
the first port must be an out port and the second port must be an in port. The
compiler returns an error if the user supplies an incorrect port type.

Component definition generates errors if a component with the same name
already exists or if the specified superclass does not exist. Redefinition causes
failure if the component being overridden is undefined.

3.3 Environments

The static checks in the compiler require three environments to maintain vari-
able information. Figure 5 shows the data types used in the implementation of
the environments.

8



data PortType = IN
| OUT

type PortEnv = [(String, (String, PortType))]
type ClassEnv = [String]
type ComponentEnv = [(String, String)]
type Env = (PortEnv, (ClassEnv, ComponentEnv))

Figure 5: Environment Data Types

The class environment (ClassEnv) stores the list of defined component classes.
The default class environment contains the entire Smalltalk component hierar-
chy. When new components are defined the class name becomes part of the
environment. The instance environment (ComponentEnv) stores the names
of instances that are in scope and the associated class. Instantiation com-
mands populate the initially empty instance environment. The port environ-
ment (PortEnv) contains the ports associated with each component. The type
of the port (input or output) is stored as well. Component definition adds ports
to the environment which initially contains all of the port information for the
classes in the component hierarchy.

As a convenience, the Env type combines the three environments into one.
The access and update functions for class, instance, and port environments are
defined in terms of this master environment. During compilation, the State
monad stores and maintains the master environment. As shown in the next
section, the compiler makes extensive use of the environments for storing and
checking information.

3.4 Compiling Programs

Each data type in the abstract syntax (except Var) has an associated compile
method. The compile method transforms the abstract syntax into Squeak input
and performs the static checking. A type class called Compilable links the
compile methods together. The type class makes the langauge easily extensible.
If the compiler writer adds a new expression type to the abstract syntax, the
expression is automatically linked into the compiler by adding a compile method
for the expression type. This section explains the details of the compile method
for the top level PipeTerms.

9



The first kind of pipe term is instantiation. Figure 6 shows the code for
compiling instantiation terms.

InstantiateNoPos (ClassVar c) (InstanceVar i) ->
do (s, env, _) <- get

case (lookupCE env c) of
False ->

do () <- set (s, env, (eInst c) ++ (cUDef c))
return Nothing

True -> case (lookupCompE env i) of
Nothing ->
let s’ = s ++ "newPart " ++ c ++ " "

++ i ++ " 0@0\n"
in do s’’ <- set (s’, addCompE env i c, "")

return (Just s’)
_ -> do () <- set (s, env, (eInst c) ++ (iDef i))

return Nothing
InstantiateWithPos (ClassVar c) (InstanceVar i) (x, y) ->

do (s, env, _) <- get
case (lookupCE env c) of

False ->
do () <- set (s, env, (eInst c) ++ (cUDef c))

return Nothing
True -> case (lookupCompE env i) of

Nothing ->
let s’ = s ++ "newPart " ++ c ++ " " ++ i ++ " "

++ show x ++ "@" ++ show y ++ "\n"
in do s’’ <- set (s’, addCompE env i c, "")

return (Just s’)
_ -> do () <- set (s, env, (eInst c) ++ (iDef i))

return Nothing

Figure 6: Compiling Instantiation Terms

There are two kinds of instantiation term: InstantiateNoPos and Instantiate-
WithPos. They operate in exactly the same manner except that the latter takes
the (x, y) position on the screen where the instance will be displayed by the
graphical simulator. The function obtains the output string and environment
from the state. If the component being instantiated does not exist in the class
environment, the function returns an error. Next, the compile function checks
if the instance name is already in use in the current scope. If the instantia-
tion term passes both of these checks the function updates the state with the
Squeak input for instantiation appended to the output string. Instantiation
terms also cause updates to the instance environment to reflect the addition of
a new instance to the current scope.

10



Figure 7 shows the compile function for connection terms.

Connect (InstanceVar i1) (PortVar p1) (InstanceVar i2) (PortVar
p2) -> do (s, env, _) <- get

case (lookupCompE env i1) of
Nothing -> do () <- set (s, env, eConn ++ (iUDef i1))

return Nothing
Just c1 -> case (lookupPE env c1 p1) of

Nothing ->
do () <- set (s, env, eConn ++ (pUDef c1 i1 p1))

return Nothing
Just IN ->
do () <- set (s, env, eConn ++ (pType1 i1 p1))

return Nothing
Just OUT ->
case (lookupCompE env i2) of

Nothing ->
do () <- set (s, env, eConn ++ (iUDef i2))

return Nothing
Just c2 ->
case (lookupPE env c2 p2) of

Nothing ->
do () <- set (s, env, eConn

++ (pUDef c2 i2 p2))
return Nothing

Just OUT ->
do () <- set (s, env, eConn

++ (pType2 i2 p2))
return Nothing

Just IN ->
let s’ = s ++ "connect " ++ i1

++ " " ++ p1 ++ " "
++ i2 ++ " " ++ p2
++ "\n"

in do () <- set (s’, env,"")
return (Just s’)

Figure 7: Compiling Connection Terms

The compiler performs three static checks on each of the two ports in the con-
nection term. It checks if the instance being referenced is in scope, if the port
is a valid port for the instance, and if the port is the correct type (input or
output). Most of the code for compiling connection terms relates to these static
checks.

11



The compiler stores appropriate error strings in the state when the static
checks fail. If the term passes all of the checks the function generates the Squeak
input for connection terms and stores it in the state.

The code in figures 8 and 9 describes the compilation function for component
definition terms. The terms Filter and Component both describe the definition

Filter (ClassVar c) fun -> do (s, env, err) <- get
let env1 = addCE env c

env2 = addPE env1 c "input1" IN
env3 = addPE env2 c "output1" OUT
s1 = s ++ "\ndefineClass\n" ++ "Filter" ++ " subclass: #"
++ c ++ "\n\tinstanceVariableNames: \’\’"

++ "\n\tclassVariableNames: \’\’"
++ "\n\tpoolDictionaries: \’\’"
++ "\n\tcategory: \’RBK\’!\n"

++ "\ndefineMethod\n" ++ c
++ " methodsFor: \’initialization\’!\n"
++ "defaultFunction\n"

in do () <- set (s1, env3,err)
s2 <- compile fun
case s2 of
Nothing -> return Nothing
Just s’ -> do () <- set (s’ ++ " ! !\n\n", env3, err)

return (Just (s’ ++ " ! !\n\n"))

Figure 8: Compiling Filter Definition Terms

of new components. Filter is a common special case of Component where the
user wishes to define a new filter component that inherits everything except
the computational behavior of the existing component. The only arguments to
Filter are the name for the new class and the computation the new component
will perform. Component defines a new component that inherits from a specified
existing component. A variable number of methods may be added/overriden.

The Component case checks if the specified superclass exists before per-
forming compilation. Both definition methods add the new component and its
associated ports to the environment. The compile function adds the file in for-
mat representation of a new class to the output string and recursively compiles
the functions of the class.

12



Component (ClassVar c) (ClassVar sup) funs -> do (s, env, _) <-
get

if (lookupCE env s) then
do () <- set (s, env, eComp ++ (cDef c))

return Nothing
else

let env1 = addCE env c
env2 = addPE env1 c "input1" IN
env3 = addPE env2 c "output1" OUT
s1 = s ++ "\ndefineClass\n" ++ sup ++ " subclass: #" ++ c

++ "\n\tinstanceVariableNames: \’\’"
++ "\n\tclassVariableNames: \’\’"
++ "\n\tpoolDictionaries: \’\’"
++ "\n\tcategory: \’RBK\’!\n"

in do () <- set (s1, env3,"")
s2 <- compile (funs, c)
return s2

Figure 9: Compiling Component Definition Terms

Figure 10 contains the code for redefining the computational aspect of an
existing filter component.

Redefine (ClassVar c) varName fun -> do (s, env, _) <- get
if (lookupCE env s) then

do s’ <- compile fun
case s’ of
Nothing -> return Nothing
Just s’’ -> let s1 = s ++ "[ : " ++ varName ++ " | "

++ s’’ ++ " ] !"
in do () <- set (s1, env, "")

return (Just s1)
else do () <- set (s, env, eComp ++ (cUDef c))

return Nothing

Figure 10: Compiling Redefinition Terms

Redefine specifies a new computation for a filter at the instance level rather than
at the class level. The arguments are the class whose computation should be
modified, a local variable name, and the contents of the replacement function.
If the class being redefined does not exist an error is returned. Otherwise the
function recursively compiles the new computation and wraps the result in a
Smalltalk block.

13



There are additional compile functions for the data types Exp, [Exp], (String,
Method), and [(String, Method)]. These are called from the top level PipeTerm
compile method. Their purpose is to compile the methods used in component
definition and redefinition.

The compiler supplies a run function to invoke the compile function on a
program. This function extracts the result of compilation from the State monad.
If an error occurs during compilation, run prints the error at the command line.
A successful compilation creates a file that can be input directly into Squeak.

4 Remaining Issues

Challenges remain in both the development of the Infopipes language and its
implementation. This section describes the challenges that have been identified
at this point in the design process.

4.1 Design Decisions

Language development is inherently an iterative process. Section 2 establishes
the key feature set of the language, though this set is insufficient to describe
the full range of systems that the Infopipes architecture could be applied to.
This section enumerates potentially useful constructs that the current langauge
description does not contain. Decisions regarding these features should be made
after there is more experience using the language.

An accompanying library containing the basic data types and operations is
essential to the usefulness of the Infopipes language. While the need for a library
is evident, the contents of the proposed library are more nebulous. The needs
of the system developer are the principle consideration in writing the library.
A related issue involves the definition of data types. The system developer will
inevitably need data types that the library does not provide. Currently there is
no syntax for data type definition.

The Infopipes literature describes two key features that the current version
of the language does not address. These features are composite components
and the declaration of quality of service and environment requirements. Unlike
some of the constructs proposed in this section, there is no question about the
need for these features.

The nature of inheritance in the Infopipes language is incomplete. Currently
the language assumes a standard object-oriented inheritance mechanism. There
is potential for domain specific improvements to this approach. One potential
improvement involves overriding methods from a supercomponent. In the cur-
rent approach the user must completely redefine methods if they wish to add
behavior. A pattern emerges where the user wants to extend the behavior of
the supercomponent rather than completely redefining it. The langauge should
take advantage of this pattern by providing a mechanism for method exten-
sion. This mechanism could be similar to the notion of backwards inheritance
in Beta. Another pattern that emerges involves port declaration in constructor

14



functions. If a subcomponent adds initialization behavior, it must also redefine
its ports. It is rare that these port declarations vary from the supercomponent
due to the limitations on overriding the data transmission characteristics of the
supercomponent (see section 2.2). For this reason it may be useful to eliminate
the port redefinition requirement.

Two issues arise in regards to the interaction of the new language with the
existing Smalltalk implementation. The Smalltalk implementation includes a
graphical simulator. There is disagreement about whether the graphical com-
ponents used in the simulator should be wrappers for the underlying component
implementation or whether the graphical components are in fact the implemen-
tation. A second issue is if it should be possible to declare new top level compo-
nents. The Smalltalk component hierarchy contains a variety of shapes which
may represent the full range of useful components. Only experience using the
language will tell if the user needs to define top level components. If the set of
top level components is fixed then some complexity in the component definition
syntax can be removed.

4.2 Implementation Issues

The conversion of the configuration language into a complete implementation is
not entirely straight forward. While a good framework exists, several problems
remain unsolved.

There are two issues with the notion of transfer functions as defined in section
2.1.3, particularly in regards to the integration of the new language with the
Smalltalk implementation. Only Filter components have transfer functions in
the Smalltalk implementation. This contradicts the idea that all components
use a transfer function to describe their computation. If the new language is to
work with the Smalltalk implementation, the Smalltalk components should be
refactored so that their mechanism for performing computation is consistent.
The language definition also assumes that transfer functions interact directly
with ports. In the Smalltalk implementation, the push and pull methods call
the transfer function. Only the push and pull methods have access to ports.
A decision must be made between the theory of transfer functions presented in
this paper and the one that exists in the current Infopipes implementation.

Data and thread management present additional obstacles to implementing
the Infopipes language. Ports require a mechanism for maintaining the order in
which they receive data items. Access to control variables must be synchronized
because components in different threads of control modify them. A decision
needs to be made about who performs garbage collection when functions in
other languages are called. Another issue is what thread of control the outside
function operates in. Efficiency and the ability to reason about the system are
the principal concerns in choosing data and thread management strategies.

15



5 Conclusions

This paper presents several aspects of the domain specific language for Infopipes.
There is a limited implementation and a proposal for the constructs the new
language should contain. The paper also outlines the desired capabilities of
the DSL. Future directions for expansion of the language have been identified,
along with the issues that surround the implementation of these features. Work
remains to obtain a full featured implementation, but this paper provides a basis
and direction for this future work.

16


