
Reactive Objects

Johan Nordlander, Mark P. Jones, Magnus Carlsson, Richard B. Kieburtz, and Andrew Black∗

OGI School of Science & Engineering at OHSU, 20000 NW Walker Road, Beaverton, OR 97006.

Abstract

Object-oriented, concurrent, and event-based program-
ming models provide a natural framework in which to ex-
press the behavior of distributed and embedded software sys-
tems. However, contemporary programming languages still
base their I/O primitives on a model in which the environ-
ment is assumed to be centrally controlled and synchronous,
and interactions with the environment carried out through
blocking subroutine calls. The gap between this view and the
natural asynchrony of the real world has made event-based
programming a complex and error-prone activity, despite re-
cent focus on event-based frameworks and middleware.

In this paper we present a consistent model of event-based
concurrency, centered around the notion of reactive objects.
This model relieves the object-oriented paradigm from the
idea of transparent blocking, and naturally enforces reactiv-
ity and state consistency. We illustrate our point by a pro-
gram example that offers substantial improvements in size
and simplicity over a corresponding Java-based solution.

1 Background

In the traditional view of programming, the program is
assumed to be the master of its environment, and interaction
with the environment is accordingly expressed in terms of
the subroutine abstraction. This programming model dates
back to the early age of batch-oriented computing, when
programmers saw a need to abstract away from low-level
details of peripheral devices—such as card-readers and line-
printers—that were used at the time. The key idea here is that
blocking of execution is made transparent; that is, the pro-
grammer is supposed not to be interested in knowing whether
a subroutine obtains its result by some internal computation,
or by means of synchronization with an external device.

Despite many advances in language design, this sim-
ple, traditional view of I/O still prevails in contemporary
object-oriented languages. But modern software executes in
much more complex environments, with interactive point-
and-click graphics, ubiquitous networks, multiple threads of

∗email: {nordland,mpj,magnus,dick,black}@cse.ogi.edu

activity with inter-thread communication and sharing, and
so on. Embedded systems fit this description perhaps even
better, with their rich variety of asynchronous input sources,
and often clock-driven concurrent processes. In such envi-
ronments, the utility of the traditional, batch-oriented view
of interaction deteriorates rapidly.

The central problem is that, if external input is obtained as
the results of certain subroutine calls, a program must make
a choice as to what subroutine to call, and hence make a
premature commitment to which event it will accept next.
But the order of external events is seldom under program
control, so a naive adherence to the batch-oriented I/O model
quickly leads to programs in which events are either missed,
or else randomly reordered in time.

The common pattern of an event loop in sequential object-
oriented software is an attempt to reduce the rigidity of the
traditional I/O model. However, an event-loop solution re-
quires that all events of interest are already encoded exter-
nally and posted to a common queue, which may not always
be the case. For example, the Java Abstract Window Toolkit
(AWT) uses a common event queue for mouse-clicks, key-
presses, and other GUI-related events [6]. Network sockets,
on the other hand, are not handled by the AWT. So a program
that needs to simultaneously monitor GUI events as well as
network packets must still battle the limitations of the tra-
ditional I/O model: how to wait for multiple asynchronous
events – all modelled as the results of distinct method calls
to the environment – at the same time?

A standard approach in scenarios like this is to allocate a
unique thread of execution for each potentially blocking op-
eration, writing the code for each thread as if only one future
event mattered. On the surface, such a strategy might appear
to simplify the design task, because each thread now fits the
traditional, batch-oriented I/O model quite well. However, in
any non-trivial application, where the specified reactions are
not completely independent, the original problem of coordi-
nating inputs from multiple, asynchronous sources has now
moved to another part of the program: namely, the thread in
which the results of the simple blocking threads must be co-
ordinated. To solve this problem one must of course face all
the well-known problems of concurrent thread programming
— assuring thread safety and state consistency, while also



ensuring liveness and avoiding deadlocks.
Notice, though, that in the AWT-plus-sockets scenario

sketched above there is nothing that actually suggests con-
current execution; what the extra threads achieve is really
the ability to perform concurrent blocking. While concur-
rency is an important tool in real-time programming, being
forced to use it just to circumvent an inappropriate I/O model
is not satisfactory. Also note that an abstract object model of
the example would probably consist of just one simple ob-
ject, equipped with methods corresponding to the events it
is required to handle: mouse clicks, key presses, and packet
arrivals. A central argument of this paper is that the heavy
encodings needed to turn even simple event-driven models
into working code is most unfortunate, and is an important
factor behind the perceived complexity of concurrent object-
oriented programming.

The current practice of using threads to circumvent the
traditional I/O model is extremely fragile, in the sense that
an accidental call to a blocking operation in the middle of
an event-handler will immediately destroy the responsive-
ness of that thread. That is, transparent blocking makes re-
sponsiveness a delicate property that can only be upheld by
careful programming, requiring knowledge not only of the
complex APIs that encode events and threads, but also of
all operations which potentially might block, and which thus
must be avoided. As an illustration, consider the following
quote from the documentation for Java’s New I/O library [9]:

That a selection key indicates that its channel is
ready for some operation is a hint, but not a guar-
antee, that such an operation can be performed by
a thread without causing the thread to block. It
is imperative that code that performs multiplexed
I/O be written so as to ignore these hints when they
prove to be incorrect.

Clearly some special skill or rigorous discipline is required
to navigate safely through such dangerous waters. It is es-
pecially noteworthy that this comment concerns a new li-
brary with pretensions to make event-driven Java program-
ming significantly easier than before.

The idea of transparent blocking takes its most so-
phisticated form in the remote-procedure-call paradigm, or
remote-method-invocation (RMI) as it is called using Java
terminology. Again, hiding the intricacies of synchroniza-
tion with a remote machine under a familiar subroutine-like
interface seems attractive at first, because it makes the code
of distributed programs look quite similar to code written for
use in a strictly local context.

However, the similarity is deceptive. A defining aspect
of a distributed system is usually that it is subject to partial
failure; that is, programs are expected to continue running
even if a remote server is down, broken, or otherwise unac-
cessible. Contrast this to failures directly affecting the local

node: here the failure of one component is equivalent to the
whole node going down. So in order to hide distribution, the
RMI paradigm must also hide the possibility of partial fail-
ures. What this means is that failure of any remote machine
in an RMI setup is equivalent to a total system failure. In
practice, RMI-based programs can only regain some form of
robustness by protecting the remote invocations by timeouts
and exception handlers. However, this of course also makes
the RMI paradigm considerably less convenient (and distri-
bution less transparent) [8].

2 Reactive objects

The conclusion we have drawn from the problems asso-
ciated with transparent blocking and batch-oriented I/O is
that significantly more robust event-based software can be
obtained by abandoning indefinite blocking altogether, and
letting an event-driven design permeate the whole program-
ming model. Thread packages, design patterns, and various
middleware layers can only do so much to alleviate the pro-
grammer from a fundamentally computer-centric view, and
they cannot help at all with enforcing responsiveness as long
as every method call has a potential of blocking.

Our alternative programming model takes as its start-
ing point the intuition behind the classical object-oriented
paradigm: objects are autonomous, objects maintain a state,
objects have methods, methods execute in response to mes-
sages. The main step towards a reactive variant of this model
is to relieve the classical model from any ties to the tra-
ditional way of viewing I/O. In its place, a more orthodox
object-oriented scheme of interaction can be devised:

• input—the environment calls a method of a program
object

• output—the program calls a method of an environment
object

Method calls in these categories do not just carry data, they
can also be seen as representing the actual input and output
events themselves. Notice in particular the asymmetry be-
tween input and output that results from this scheme: output
is a concrete act of the program, while input is modelled as a
passive capability to react. In other words, objects have full
control over the output events, but leave the input events to
be scheduled by the environment.

The autonomy and integrity of objects is essential to this
view, though. Just as it is usually beneficial to view real-
world objects as having a certain level of atomicity of op-
eration, so is it essential to keep software objects from be-
coming invaded by multiple method invocations at the same
time.

On the other hand, the concurrent operation of distinct
objects is a natural aspect of the real world, and we wish our



reactive objects to support the same intuition. We therefore
take it as a semantic foundation of our model that

every object is an autonomous unit of execution
that is either executing the sequential code of ex-
actly one method, or passively maintaining its
state.

The combination of inter-object concurrency with internal
sequential execution effectively makes a reactive object a
union of the well-known concepts of an encapsulated state
and a critical region.

Because objects are autonomous execution units, it makes
sense to distinguish between asynchronous and synchronous
method invocations. In the former case, the sender of a mes-
sage continues execution in parallel with the receiving ob-
ject, whereas in the latter case, the sender and receiver per-
form a rendezvous. Of course, only synchronous methods
provide an opportunity to directly return a result from the
receiver to the sender of a message.

At a first glance, synchronous methods seem to provide
a way of reintroducing traditional input methods like getc
in the model. We do however make an important restriction
that will prohibit such use:

no methods—in environments or in programs—
must block execution indefinitely.

This restriction rules out language constructs like selective
method filtering, as well as environments that provide naive
interfaces to blocking system calls. All that a synchronous
method call can do is to compute a reply based on the current
state of the receiver, possibly after performing some side-
effects. The serialization of all method executions of the re-
ceiving object does not change the fact that a synchronous
method is essentially an ordinary subroutine, since, by an
argument of transitivity, if the receiver is not ready to imme-
diately execute a synchronous call, it must be busy servicing
one of the non-blocking calls that stand in the way.

Reactive objects thus alternate between phases of passive
inactivity and temporary outbursts of method execution. In
contrast to so called active objects, a reactive object does
not have a continuous thread of execution; all executable
code of an object is defined in terms of its methods. A
method of a reactive object is furthermore guaranteed to ter-
minate, provided that it does not deadlock or enter an infinite
loop. However, due to the absence of blocking constructs in
this model, the only source of deadlock is the synchronous
method call, and a cyclic chain of such calls is easily de-
tectable at run-time.

The reactive object model has been realized in the lan-
guage Timber that we will survey in the next section. The
model is general enough, though, that we would like to sum-
marize a few informal claims about its properties before we
go into language details.

• Reactive objects is a simple and natural model of event-
driven systems on various level of detail, from hardware
devices to full distributed applications.

• It is a straightforward integration of concurrency and
object-oriented programming, with the added bonus of
automatic protection of state consistency.

• A single reactive object can easily handle input from
multiple asynchronous sources.

• Under assumptions of freedom from non-termination
and a very simple form of detectable deadlock, a re-
active object is also guaranteed to be responsive in all
states.

3 Reactive objects in Timber

We will now give the model of reactive objects a more
concrete form, by showing how it is realized in the pro-
gramming language Timber [4]. Timber is a strongly typed,
object-oriented language with constructs specifically aimed
at real-time programming; however, its foundation in the re-
active object model makes it suitable as a general purpose
language as well. We will introduce Timber by a small pro-
gramming example, after pointing out some distinguishing
details.

• In the syntax of Timber, = denotes a definition, let intro-
duces local definitions, f x y is a function f applied
to two arguments, and := is assignment to a state vari-
able.

• Methods have first-class status: they can be passed as
parameters and stored in data structures.

• Commands and declarations are grouped using layout.

Our example is a variant of the program Ping.java from
the New I/O API in Java 1.4. This program demonstrates
how to concurrently measure the time it takes to connect to a
particular TCP port on a number of remote hosts. The Tim-
ber source is shown in Figure 1, and the output of a typical
run looks as follows:

dogbert: 20.018 ms
ratbert: 41.432 ms
ratburg: NetError "lookup failure"
theboss: no response

Ping is implemented as an object template (i.e., a class).
It is parameterized over a list of hosts and a port number,
and a record env that contains methods for interacting with
the environment. Templates define a number of state vari-
ables as well as an interface, which is typically a record of
methods that the environment can invoke. All methods in



ping hosts port env =
template

outstanding := hosts
in let

client host start peer =
record

connect = action
env.putStrLn(host++": "++show(baseline-start))
outstanding := remove host outstanding
peer.close

neterror err = action
env.putStrLn(host++": "++show err)
outstanding := remove host outstanding

deliver pkt = action done
close = action done

cleanup = action
forall h <- outstanding do

env.putStrLn(h++": no response")
env.quit

in record
main = action

forall h <- hosts do
env.inet.tcp.open h port (client h baseline)

after (2*seconds) cleanup

Figure 1. Ping in Timber

this example are asynchronous (as determined by the action
keyword).

The Ping program is started by creating an instance of the
template, and then invoking its main method. Internally,
Ping objects maintain the state variable outstanding, a
list of hosts from which a response has not been seen. The
main method calls inet.tcp.open of the environment in
order to initiate a TCP connection to the designated port on
every given host (forall expresses a loop construct, with h as
a loop variable). These calls do not wait for the connection to
complete, though; instead, the local method connect is set
up to be invoked when the connection has been established.
The record client used for this purpose is parameterized
over the host we are trying to connect to, the start time of
the program, and an environment-provided record contain-
ing methods for communicating with the peer host. For tim-
ing purposes, actions can refer to the pre-defined variable
baseline, which is set to the arrival time of the event that
triggered the action.

After all connections have been initiated, the asyn-
chronous method cleanup is scheduled to be called two
seconds after the baseline of main. Note that nowhere does
the execution of main block, it just sets up other actions to
react to future events.

All methods of an object can safely manipulate its state
variables in a single-threaded fashion. E.g., it is irrele-
vant here that some methods are defined within the record
client, and others elsewhere. This flexibility allows us
to express a straightforward solution using only one object,
with a single state variable. In contrast, the Java program is
287 lines of code, has ten class variables, and needs three
threads: one for the demultiplexing of connection events,
one for single-threaded printing, and one for timeout.

4 Related work

The reactive object model described in this paper was
first developed for the programming language O’Haskell [7].
The current work is, however, our first attempt to distill
the programming model as a contribution in its own right.
Our language Timber inherits much of its basic design from
O’Haskell, but adds several important features, of which the
notion of a time-constrained reaction is the most relevant to
this paper.

Current work on reactive languages is mostly concerned
with the synchronous approach to reactivity [3, 5]. The main
hypotheses made in this model are that computations take
zero time and event delivery is instantaneous. From these as-
sumptions it follows that events received or generated some-
where between two clock ticks are actually occurring simul-
taneously, and hence, for example, multiple invocations of
a particular method during an instant must be indistinguish-
able from just a single invocation.

The unification of the object and process concepts is an
idea that stems from the Actor model [1, 2]. However, the
state of an actor is identified with its current mapping from
names to method bodies, and messages to undefined meth-
ods are simply queued. Hence actors do not possess the re-
sponsiveness property we are emphasizing with our model.
Moreover, the Actor model lacks anything similar to our syn-
chronous methods, and asynchronous message delivery is
not order-preserving.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, 1986.

[2] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foun-
dation for actor computation. Journal of Functional Program-
ming, 7:1–72, 1997.

[3] A. Benveniste and G. Berry. The Synchronous Approach
to Reactive and Real-time Systems. Technical Report 1445,
INRIA-Rennes, 1991.

[4] A. P. Black, M. Carlsson, M. P. Jones, R. Kieburtz, and J. Nord-
lander. Timber: A programming language for real-time em-
bedded systems. Technical Report, http://www.cse.ogi.edu/
PacSoft/projects/Timber/, April 2002.

[5] F. Boussinot, G. Doumenc, and J. Stefani. Reactive Objects.
Annals of Telecommunications, 51(9-10):459–473, 1996.

[6] P. Chan and R. Lee. The Java Class Libraries, Second Edition,
Volume 2. Addison-Wesley, 1997.

[7] J. Nordlander. Reactive Objects and Functional Programming.
PhD thesis, Department of Computer Science, Chalmers Uni-
versity of Technology, Göteborg, Sweden, May 1999.

[8] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A Note
on Distributed Computing. Technical Report SMLI TR-94-29,
Sun Microsystems Laboratories, Inc., Nov. 1994.

[9] J. Zukowski. New I/O Functionality for Java 2 Stan-
dard Edition 1.4. http://developer.java.sun.com/developer/
technicalArticles/releases/nio/, October 2001.


