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Exceptions and Data Abstraction 

0 Introduction 

A great deal has been written on the supposed difficulties of dealing with errors in 
abstract data types, e.g., [ 5 I ,  [ 9 I ,  [ 6 I and [ 17 I.  Some of the proposed solutions appear to 
be very complicated. In this paper we retain simplicity by taking the view that there are  no  
errors in an abstract data type. 

Two situations which are often cited as errors are failure of an implementation and 
production of an exceptional result. The first kind of error does not exist at all at the abstract 
level; it resides solely in the implementation and so the question of how to deal with it in the 
type definition never arises. Examples are attempting to represent the integers by fixed length 
bitstrings or unbounded stacks by bounded arrays. We do not consider such errors in this paper. 

Of course, there is no reason why a designer should not axiomatize a restricted range of 
integers or a stack with a maximum capacity if that is what he really wants. In doing so he may 
need to define functions which produce exceptional results in certain circumstances, but such 
results are certainly not 'errors'; on the contrary, they are exactly what is required. 

To illustrate this point, consider the well known (unbounded) stack of integers. Applica- 
tion of the interrogation function T o p  to such a Stack will usually yield an integer as the result. 
However, application of T o p  to the empty stack is exceptional in the sense that the result is 
not an integer. Whether or not applying Top to an empty stack constitutes an error depends 
entirely on what the routine using the stack abstraction does with the result of Top. If it 
attempts to add 7 to the result then an error has occurred; on the other hand, if it tests the 
result to see if the stack was empty then no error has occurred. Corresponding to the observa- 
tion that only the way a result is used determines whether it is an error, we believe that it is 
desirable to use the same  data type definition module in both of these situations. This implies 
that the same specification be valid in both situations too. 

This paper is divided into 6 sections. Section 1 describes the problem of specifying 
types with exceptions. Section 2 uses an example to illustrate our proposed specification 
technique and Section 3 describes the impact of this technique on programs, programming 
languages and language implementations. Section 4 explores a mathematical background 
consistent with these implementations. Section 5 is a brief survey of the history of exception 
handling. Section 6 is the conclusion. 

1 The Problem of Specifying Exceptions 

We make no apology for drawing on the stack of integers as an example; simple as this 
type is, a lot of the published specifications are either incomplete, overly complex or wrong. 

Most definitions of stack contain an axiom along the lines of 

Top(Empty) = EXCEPTION 

where for EXCEPTION read variously UNDERFLOW, UNDEFINED, ERROR and so on. What 
exactly does such an axiom mean? This is usually not at all clear. 

In Guttag's Thesis [ 7 I the functionality of Top was described by 

Top: Stack -> Int. 

This implies that EXCEPTION is an Int, which has some serious consequences. First, it is 
counterintuitive, because as we noted above the result of Top(Empty) is not  an Int - that is why 



Exceptions and Data Abstraction - 2 - 

it is an exception. Second, every time we create a new data type such as Queueofint or 
Stringo f i n t  we are forced to add new exceptional elements to Int: in general, adding any new 
type requires altering the definitions of all the types it uses, which is both impractical and 
intellectually unappealing. Third, in doing this consistency problems arise in our axiomatization; 
while there are several ways to resolve them much additional machinery is needed. 

Our last point, the problem of consistency, deserves some elaboration; we present a 
brief summary of the excellent exposition found in [6] Section 3.5. If EXCEPTION is an Int 
then axioms must be given which explain the action of Int operations on it. The usual philoso- 
phy is to assure that once an exception occurs it is propagated, that is, if any argument of an 
operation is EXCEPTION then so is its result.? If we attempt to implement this by simply 
adding new axioms we rapidly run into trouble. We must add rules like 

Sum(n, EXCEPTION) = EXCEPTION 
Product(EXCEPTION, n) = EXCEPTION. 

(i) 
(ii) 

to the axiomatization of the integers. Of course, it still contains other rules describing the more 
conventional properties, such as 

Using the above four 

and 

rules some interesting results can be obtained: 

Product(EXCEPTION, 0 )  
EXCEPTION 

Sum(n, 0 )  
Sum(n, EXCEPTION) 
EXCEPTION 

(iii) 
(iv) 

(by iv) 
(by ii) 

(by iii) 
(by above) 

(by i) 

which show that all integers are equal to EXCEPTION. A similar problem arises within the 
stack datatype; we must add a new constant STACK EXCEPTION of type stack and a new 
axiom 

Push(s, EXCEPTION) = STACK EXCEPTION 

to ensure that errors propagate. In combination with the more usual axioms it is simple to show 
that all stacks are equal to STACK EXCEPTION. This instance of the problem is dealt with 
very fully in C 17 I. 

Of course, such problems can be resolved - various techniques are described in C 5 I, 
C61 and C171. Our aim is not to criticize these mechanisms (indeed the mathematical 
intricacies are such that we would find this difficult) but simply to observe that forcing the 
result of Top(stack) to be an integer gives rise to serious problems which we would rather avoid. 

More recently some authors (C 8 I and C 10 I) have changed the problem by specifying 
Top  as 

Top: (Stack) -> Int u {EXCEPTION} 

Here again it is necessary to ask exactly what this means. We assume that the minor syntactic 
change of placing the domain in parenthesis is meaningless; this notation, together with the use 
of commas to denote a cartesian product, makes the specification more like most programming 

t Another way of saying the same thing is to assert that all operations are strict in EXCEPTION . 
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languages. One possible interpretation for the right hand side, suggested when the word 
UNDEFINED is used in place of EXCEPTION, is that Top is a partial function, i.e. it is defined 
on some stacks only. In this case one might expect not to find any axiom giving the meaning of 
Top(Empty), but then one could never be sure whether this was due to intention or oversight. 
So an axiom Top(Empty) = UNDEFINED might reasonably be added to indicate that the 
designer of the type had deliberately left the result of this application unspecified. 

We will not pursue the use of partial functions any further, not because we doubt the 
ability of mathematicians to produce a consistent theory but because we are interested in using 
data types in programs. Being told that a program has an undefined result is not very useful; 
what tends to happen is that different implementations define the result in different ways and 
programmers become reliant on these local definitions. We should not forget that one of the 
functions of type specifications is to help avoid such implementation dependence. 

The interpretation that remains is the one that will be studied in this paper. 
{EXCEPTION} denotes the datatype Exception (which has EXCEPTION as its only value) and u 
denotes the union operation on datatypes. This interpretation also has its problems, but we feel 
that they have simpler solutions than those discussed above. We go on to outline our approach 
in more detail. 

2 Axiomatic Specification of Exceptions 

Figure 1 is our definition of Stackoflnt. We assume Bool to be a pre-defined type with 
values TRUE and FALSE, and Union to be a pre-defined type schema which denotes datatype 
union. We use the term type schema (after the usage of mathematical logic, e.g., C 141) to 
indicate that Union is a parameterized type definition, like Array or Set. (Indeed most frequently 
Stack would be a type schema too, but we do not want to become involved with that here.) The 
type Union[ta, tb] has operators Is[ta]: (Union[ta, tb]) -> Bool, From[ta]: (ta) -> Union[ta, tb] 
and To[ta]: (Union[ta, tb]) + ta (and similarly for tb) representing inspection, injection and 
projection respectively. The details of Union will be deferred to Section 4. This is because we 
first wish to motivate our definition by showing how we expect Union to be used. In particular 
we make no statement now about the result of To[ta] when applied to a union value that was 
not formed from type ta. 

T y p e  Stacko f Int  

Uses Underflow, Bool, Int 

Operators 
Empty: ( ) + Stacko f Int  
Push: (Stacko f Int, Int) + Stacko f Int 
Pop: (Stacko f Int) -+ Stacko f Int 
Top: (Stacko f in t )  -> Union[Int, Underflow] 
IsEmpty: (Stacko f in t )  -> Bool 

Pop(Empty) = Empty 
Pop( Push(s, i )  ) = s 
Top(Empty) = From[Underf low](UNDERFLO W )  
Top( Push(s, i )  ) = From[Int](i) 
IsEmpty(Empty) = TRUE 
IsEmpty( Push(s, i )  ) = FALSE 

Figure 1: Specification of Stacko fInt  
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In using the names Is [ ta] ,  From[ta] and To[ ta]  we are inviting ambiguity between the 
operators of the type Union[ta, tb]  and those of the type Union[ta, tv]. We assume that this can 
be resolved if necessary by qualifying the operator name with the type name, as in 
Union[ta, tb].From[ta]. We will not need to use this device in this paper because we will deal 
with a limited number of types, but it introduces no new semantic issues. 

The definition of stack shown in Figure 1 uses only total functions and yet avoids the 
contradictions that troubled Majster [ 171. Pop( Push(S, Top(Empty))  ) is quite simply a 
domain error. The result of Top(Empty) is a Union[Int, Underflow], which is clearly not of the 
correct type to be used as the second parameter of Push, whose domain is Int. This is the kind 
of error we consider in this paper: note that it is not an error in the datatype but in the use of 
that type. Obtaining the result UNDERFLOW from Top is an error if and only if the program 
receiving that result was prepared to accept only integers. If it was prepared to find the stack 
empty then no error has occurred, although the situation is still an exception in the sense that 
the program will not perform the same operations on UNDERFLOW as it would have performed 
on an integer. 

3 Programming with Union Types 

The ease with which the abstraction of Figure 1 may be implemented and the degree of 
protection provided for the representation depend on the programming language used. Newer 
languages generally recognize the need to construct new types from old by the use of union and 
Cartesian product, to declare completely novel types by enumeration, to permit functions whose 
results are of arbitrary type, to encapsulate data representations by prohibiting access by 
functions other than the type operators, and so on. We intend to see how easy it is to define 
operators returning results of union types in various languages. As far as possible we will ignore 
the other facilities which aid or hinder the implementation of the rest of the type. 

For the purposes of example we will concentrate on the function Top.  Since it will be 
written only once, the ease of definition of Top is less important than its ease of use. There are 
two categories of use: one where the calling program is sure that the stack is not empty 
(because some other reliable module has just told it so) and one where being empty is accepta- 
ble, indeed sometimes expected. Throughout this section stack and i are Stackofint and Int 
variables respectivly. 

In the first case, if the stack does indeed turn out to be empty then a real error has 
occurred. Our reliable module is not as reliable as we thought! But this eventuality is not 
something for which we should need to explicitly test; the burden of having to do that is 
intolerable. We suggest that 

be the syntax used in this case, and that the To[Int]  operator have the following meaning. If the 
type of its parameter is a Union with an Int component, and if the current value of the Union has 
been injected from a value of type Int, then the result is that value. Otherwise, an error has 
occurred. Whether that error is detected at compile-time or run-time is largely irrelevent and 
depends on how much work the compiler does. Some errors one would obviously expect the 
compiler to detect, a trivial example being the application of To[Int]  to a Boo1 argument. On 
the other hand, where the actual type of a union depends on input data the error cannot be 
detected until run-time. We expect that in any reasonable implementation the run-time system 
will halt the program and produce a suitable error message, but we prefer to leave its choice to 
the implementor. The statement i : = To[Int](Top(stack)) should thus be interpreted as a 
message from the program writer to the program reader which says 'I know that stack is not 
empty so I am making i the top integer'. 
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The second case is illustrated by the following example. 

Printstack is 
variable e is boo1 
e : = IsEmpty(stack) 
i f  -e do  

PrintInt(To[Int](Top(stack))); 
stack : = Pop(stack); 
PrintStack 

i f  e do  
Printstring('--- bottom---) 

endi f 

Here an explicit test of the state of the stack is made. Note that with the specification of 
Figure 1 the function IsEmpty is redundant: the assignment e : = IsEmpty(stack) could be 
replaced by e : = Is[Underflow](Top(stack)) without changing the semantics. Of course, this is 
not true of a stack in which Top is a partial function: in that case IsEmpty is essential. Note 
further that both Top and To[Int] can have exactly the same semantics as in the previous case; 
we can be confident that no error will occur because of the way they have been used. 

In what follows we will see how these two cases must be handled in various program- 
ming languages. The same examples will be treated and the reader is invited to make compari- 
sons with the notation presented above. 

Algol 68 provides a built-in type schema union which has some of the properties of our 
Union. We may easily name a type (called a 'mode'), as in 

mode IntOr Underf low = union(int, Underflow); 

such a type can be used in exactly the same way as a primitive type. Note, however, that this 
does not create a new type; it names an already existing one. There is no way to create new 
types in Algol 68; in particular there is no way to create the enumeration type Underflow. In 
practice we can be fairly confident that Underflow is distinct from other types by making it 
name a record ('structure') with only one field which is selected by the name Underflow. Such a 
structure is distinct from other structures with a different number of fields or a different 
selector. The mode of the field cannot be void (which would be nice, as no storage would then 
be allocated for it) so let us assume it is boo1 (which should waste the minimal amount). 

mode Underflow = struct(boo1 Underflow) 

In this particular example we could avoid the use of a distinct type Underflow altogether by 
declaring 

mode Underflow = void 

but this would not be useful if more than one exception could occur. This is a consequence of 
the rules for mode equivalencing. In the context of the declarations 

mode Overflow = void; 
mode Underflow = void; 
mode StackResult = union(int, Underflow, Overflow) 

the mode StackResult is indistinguishable from union(int, void, void) and from 
union(int, void). Thus such declarations would not enable one to distinguish between underflow 
and overflow. 
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Very often there is useful additional information which an operation would like to 
return when an exception occurs. In these cases declaring the exception types to be structures 
does not waste storage but uses it. For example, a procedure which reads a string of digits from 
an input stream might normally return an integer, but if a character other than a digit is found 
the result might be a string. The mode union(int ,  BadFormat )  would be suitable for the result 
of such an operator, where mode  BadFormat  = struct(string BadFormat). 

In Algol 68, injection (i.e. the formation of a union value from a component value), 
which we have indicated by using the From[ ] operators, is available as an implicit coercion. In 
the right context, such as the result clause of a procedure delivering a union, a value of one of 
the component types will be automatically 'united' to the required type. This provides the 
briefest possible syntax with minimal loss of information or readability, because the type 
required is always obvious from the context. In places where the context is not obvious it can 
be made so by enclosing the expression in a 'cast', such as In tOrUnder f  low(Top(stack)). Thus it 
is easy to write the Top operation in Algol 68. Unfortunately it is difficult to use it, because our 
Is[ta]  and To[ta] operations do not have simple counterparts. Instead there is a construction 
called the 'conformity clause' which must be used even if the programmer knows the current 
type of the union. Thus to perform the simple assignment appropriate to our first case we 
would have to write 

i : = case Top(stack) 
in  ( in t  result) : result 
, ( U n d e r f l o w )  : ( print ( Underflow found where Int expected1); 

stop 
1 

esac. 

This certainly makes clear what error action will be taken in the event that the type is not in t ,  
but we deem the need to specify this a disadvantage because we are looking for a construct to 
use when the type is known to be right. The above is so verbose that one cannot really expect it 
to be used every time the top integer of a stack is examined. The conformity clause is suitable 
for use in the second case, when either an in t  or U n d e r f l o w  is expected. The Printstack 
example can be coded as 

proc  Printstack = vo id  : 
case Top(stack) 
i n  ( i n t  result) : ( print(resu1t); 

stack : = Pop(stack); 
Printstack 

) 
, ( U n d e r f l o w )  : print(11 ---bottom---)  
esac. 

It is possible to write operators equivalent to To[Int] and Is[Int] which simplify the first 
example. 

proc  ToInt = ( In tOrUnder f  low iou) in t  : 
case iou 
i n  ( in t  i )  : i 
, ( U n d e r f l o w )  : ( print (I  Underflow found where Int expected1); 

stop 
) 

esac; 
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proc  IsInt = ( In tOrUnder f  low iou) boo1 : 
case iou 
i n  ( in t )  : t rue  
, ( U n d e r f l o w )  : f a l s e  
esac. 

The problem is that similar procedures must be written for every component of every union, 
and there is no 'procedure schema' mechanism in Algol 68 to help us produce them. 

A similar, somewhat unsatisfactory, situation exists in Pascal. The problem is com- 
pounded by the need for Top to return a pointer to its result (functions may not return records) 
and because the basically orthogonal mathematical concepts of union and Cartesian product 
have been combined in a single linguistic construction, that is, the variant record. 

The Pascal variant record is a structure containing an optional fixed part and a 
variant part, which consists of a tag field of some enumerated type and several alternative 
variants, one for each tag value. The intention is that only one of the variants should be current 
and that its identity be given by the tag. An example is 

t y p e  symbol = record xloc, yloc : real; 
area : real; 
case s : shape o f  
triangle : (side : real; 

inclination, anglel, angle2 : real ); 
rectangle : (sidel, side2, inclination : real); 
circle : (diameter : real) 

end 

As it stands this construction is not type-safe, for several reasons. The tag field is optional and 
can in any case be assigned to independently of the rest of the record, indeed there is no way of 
constructing a record without doing so. Thus, as Berry and Schwartz observe in C 1 I ,  the 
attitude of Pascal in this area is strictly caveat programmor (programmer beware). It is 
possible to construct some functions which, if used as the only method of accessing variant 
records, will prevent representation dependent results in the absence of parallelism. Figure 2 
contains some samples. A significant improvement over Algol 68 occurs in the disassembly of 
the variant record, where there is no need to introduce a case statement unless case analysis is 
really required. Note that the ToInt function does not assign to IsInt if iou+.IsInt = false. This 
is illegal, and one would expect the run-time system to produce an error. But it does not really 
matter what happens: ToInt is only applied when we have already made certain that its 
argument is an integer. We will not deal more fully with Pascal because so many semantic 
details are left unspecified by the Report [21 I that it is impossible to do so. Instead we will 
take a look at Ada [ 12 I ,  [ 13 I ,  which specifies its intentions more completely. 

The Pascal-like confusion of product and union is still present in Ada. Type safety is 
improved by making the tag-field (called a discriminant) a constant: it can be changed only by 
updating the whole record. Components of the variant part are accessed by the dot notation; if 
a component which does not exist is referenced the exception DISCRIMINANT-ERROR is 
raised. Unfortunately it is possible to suppress this exception, thus breaching what would 
otherwise be a strong typing system. 

Ada does not have a facility powerful enough to permit the declaration of the Union 
type schema as we have envisioned it. The possibility of 'generic' types is allowed, but only the 
functionalities of the operators may be parameterized: we would like to parameterize the 
names of the operators as well. In Ada we could indeed write an instantiation 

package  IntOrUnder f low is new Union(Integer, Underflow) 
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t y p e  Underflow = (UNDERFLOW); 
IntOr Underf low = 4 Intor Under f 1owRecord; 
IntOrUnderf lowRecord = record case IsInt : Boolean o f  

true : (Int : integer); 
false : () 

end;  

f u n c t i o n  FromUnderf low ( u  : Underflow) : IntOrUnderf low; 
war result : IntOrUnderf low; 
beg in  new(resu1t); 

result4.IsInt : = false; 
FromUnderf low : = result 

end;  

f u n c t i o n  FromInt ( i  : integer) : IntOrUnderf low; 
war result : Intorunder f low; 
beg in  new(resu1t); 

result4.IsInt : = true; 
result\.Int : = i; 
FromInt : = result 

end;  

f u n c t i o n  IsInt (iou : IntOrUnderf low) : Boolean; 
beg in  IsInt : = iou4.IsInt 
end;  

f u n c t i o n  ToInt (iou : IntOrUnderf low) : integer; 
beg in  i f  iou4.IsInt 

t h e n  ToInt : = iou4.1nt 
else writeln( ' Underflow found where Int expected ' ) 

end;  

Figure 2: Pascal routines to encourage use of unions 

but the operators would have to be called things like IsTypel and ToType2, which is hardly 
satisfactory. 

The Ada version of the type definition is shown below. 

t y p e  IntOrUnderf low is 
record 

IsInt : constant  Boolean; 
case IsInt o f  

w h e n  true => Int : integer; 
w h e n  false => nul l ;  

end  case; 
end record: 

Values of this type are constructed explicitly using record aggregates such as 
(IsInt +. true, Int +. 17) and (IsInt +. false) (using the named selector notation). Since the 
type of such aggregates is not obvious we may chose to define conversion operators FromInt and 
FromUnderf low; samples are given in Figure 3. 

Assignment of a union to an integer variable is accomplished by component selection. 
However, the syntax does not permit the direct application of selection to the result of a 
function: it is necessary to use an intermediate variable of type IntOrUnderf low. Assuming iou to 
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function Fromint ( i  : integer) return IntOrUnderf low is 
begin return (IsInt +. true, Int +. i )  
end; 

function FromUnder f low ( u  : Underflow) return IntOrUnderf low is 
begin return (IsInt +. false) 
end; 

Figure 3: Ada routines for constructing union values 

be such a variable one may write 

iou : = Top(stack); 
i : = iou.Int - May raise DISCRIMINANT-ERROR 

There is no obvious reason for the proscription of the more direct Top(stack).Int. It is certainly 
a breach in orthogonality and probably arises through oversight. Nevertheless, the inconven- 
ience of having to introduce a temporary name (which must be declared at the top of a 'unit', 
not where it is needed) is such that one will probably want to define a ToInt operator. 

An interesting question now arises as to whether such an operator can be considered an 
Ada function. It is not a mathematical function because it does not always return a value: if its 
argument is not formed from an integer it raises an exception instead. Additionally, such 
operators do not preserve commutativity as required by C 13 I Section 7.4. However, the raising 
of an exception is not one of the things disallowed in a function body. Indeed, the language 
definition C 12 1 states that if an invocation of a function does not cause a return statement to 
be executed then the exception NO-VALUE-ERROR is raised. It also gives an example of a 
function containing an assert statement, which raises an exception if the assertion is false. The 
basic problem is that handling exceptions by jumping is an operational concept and does not 
have a place in functional programming. For the purposes of our example we will follow the 
letter rather than the spirit of the Ada definition and write 

function ToInt (iou : IntOrUnderf low) return integer is 
begin return iou.Int -- May raise DISCRIMINANT-ERROR 
end. 

Of the languages discussed so far, Ada is the only one which provides facilities for 
encapsulating the definition of a data type. By this we mean that it provides a linguistic 
construction behind which the representation of a type may be concealed whilst other opera- 
tions on it are exposed. Thus Ada supports data abstraction more specifically than does Algol 68 
or Pascal. 

There are a whole host of data abstraction languages which pre-date Ada. We will look 
at only one, the programming language CLU C 16 I ,  C 15 I .  We will not study the data abstrac- 
tion facilities because that is not the main subject of this paper. We will examine the way 
unions are treated. 

CLU has a basic type schema called the oneof which creates an object which is one of a 
set of alternatives. It was not designed as an exception handling mechanism; there are extensive 
(separate) features for exception handling. A one0 f type has the form 

oneof [11 : T l ,  12: T y  ... , l n :  T ]  

where the li are labels ('tags') and the Ti  are types. All the li must be distinct, but this is not 
required of the Ti. This overcomes the problem of creating unique types present in Algol 68; 
one0 f [Integer : int, Underflow : null, Overflow : null1 is useful because it is possible to tell 
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whether a value nil (of type null) indicates Underflow or Overflow. This type is also distinct 
from another oneof with fields of the same types but with different labels. A oneof is not a 
true union because oneo f C i: int, b: one0 f C i :  int, b: boo11 I cannot be simplified; it is not, for 
example, the same as one0 f [ i: int, b: boo11 . 

Oneof objects must be created explicitly: for each tag li there is a constructor 
make_l.( ) which takes an argument of type Ti.  Taking a oneof apart is more difficult. It is 
necessary to use a tagcase statement; this is similar to the Algol 68 conformity clause except 
that the choice is made according to the tag rather than the type. Thus, although CLU makes it 
easy to create the types which are needed to handle exceptions through unions, it does not offer 
appropriate constructions and syntaxes to use them for this purpose. 

We conclude this section on programming by summarizing the properties a language 
should have in order to facilitate the use of unions to handle exceptions. It should be easy to 
create new types which cannot be confused with existing types. It should be easy to construct 
types which are unions of other types; the operations of creating values of the union and 
projecting such values back into the appropriate type must be possible without syntactic 
verbosity. The language should not insist on the use of case analysis unless there are cases to 
analyse. If there is no built in union type schema with these properties then there should be a 
type parameterization mechanism sufficiently powerful to create one. None of these require- 
ments need compromise efficiency or type safety. 

4 A Mathematical Basis for Union 

In order to have made any advance on previous work we must state exactly what is 
meant by our type definitions using Union, which means giving a semantics for Union. Figure 4 is 
an attempt to provide an axiomatic specification of Union. 

t ype  Union[ta : Type,  tb : Type]  

uses Bool 

Operators 
Is[ta] : (Union[ta, tb])  ->- Bool 
Is[tb] : (Union[ta, tb])  ->- Bool 
From[ta] : ( ta)  -> Union[ta, tb] 
From[ta] : (tb) -> Unionha, tb] 
To[ta] : (Union[ta, tb])  -> ta ... 
To[tb] : (Union[ta, tb])  -> tb ... 

Is[ta]( From[ta](a) ) = true 
Is[ta]( From[tb](b) ) = false 
Is[tb]( From[ta](a) ) = false 
Is[tb]( From[tb](b) ) = true 
To[ta]( From[ta](a) ) = a 
To[ta]( From[tb](b) ) = ... 
To[tb]( From[ta](a) ) = ... 
To[tb]( From[tb](b) ) = b 

Figure 4: Partial Specification of Union 

As the ellipses indicate, this specification is incomplete. An application 
To[tb]( From[ta](a) ) is clearly a type error and we would expect a program containing it to halt 
and say so. The usual way of accommodating this in a functional semantics is to define the 
result of such a misapplication to be (bottom), the totally undefined value, and to ensure that 
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all operations in the language are strict in L,  i.e. f(- lJ = L for all operations f .  Now it is 
indeed correct for a program to halt when it encounters To[ tb] (  From[ta](a) ). Since this 
expression evaluates to i, the whole computation must evaluate to i. It is unnecessary to 
perform any further applications: one can simply stop and say that the answer is L .  

The requirement that every operation be strict in i means that L must be in the 
domain and range of every operation. This can be ensured by implicitly adding 'U  i' to both 
sides of all the functionalities in our specifications. To the axioms we implicitly add f ( L )  = L 

for all operators f .  Note that we cannot use Union to extend the functionalities because making 
1 into a type, say Bottom, would mean that Is[Bottom]( From[Bo t tom] (~ )  ) = true where 
strictness requires that it should be i. In accordance with this convention we can complete the 
above specification by deleting the ellipses after To[ ta]  and To[tb]  in the list of functionalities 
and replacing them by i in the axioms. 

It may be argued with some justification that using i to represent the result of an 
erroneous application is not very satisfactory. One would be even more justified in complaining 
about its use to denote a non-terminating computation. To rectify these faults requires a slightly 
more complicated set of domains in our semantic theory. But in a real language To[ ] will not 
be the only operator requiring such embellishments for its complete formal definition. It seems 
reasonable to define To[  1 with the same degree of rigour as the rest of the language. We do 
not intend to dictate here what this should be. What is important is that the ordinary program- 
mer should know exactly what the operators of Union will do. 

It may seem that in leaving open exactly how to specify the exceptional cases of the 
To[  ] operators we have left the original problem unsolved. This is not so. We started with the 
problem of finding a simple way of dealing with exceptions in user defined data types. This 
problem has been reduced to that of dealing with exceptions in one type, and one which is built 
into the programming or specification language. And that problem is not new; it has been with 
us ever since we began to attempt the rigorous definition of languages. 

The conventional interpretation of a data type is that it defines a set of values, i.e. each 
value belongs to exactly one type. It is clear that we must be very careful to avoid the paradox- 
es of set theory if we wish to treat types as values, which is the natural way of dealing with type 
parameters [ 191. That is why we have preferred to speak of Union as a type schema rather 
than as a function t ype  x t ype  ->Â type;  the usual interpretation of a schema is by syntactic 
substitution. 

Recently there has been some interesting work on types as sets of operations [ 3 1, [2  1. 
The underlying value space is considered to be untyped and there is no fundamental problem in 
dealing with types as values: the paradoxes mentioned above are avoided. Another advantage of 
this approach is that it is closely related to the way in which values are dealt with in real 
implementations. In a computer a value is an untyped string of bits whose in terpretat ion 
depends on the type of the operators used to examine it. Although this formalization is still a 
research topic it offers hope of providing a rigorous semantics for languages with type definition 
facilities. 

5 A Historical Perspective 

The problem of handling exceptions is not a new one to programming, nor is it confined 
to operators implementing data abstractions. An example as old as Fortran is a routine which 
searches an array A for a number x and if it is found returns an index i  such that A [ i ]  = x. The 
exceptional case of x not being found was traditionally indicated by the return of 0 or some 
other value not valid as an index into A. 
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This is indeed a reasonable solution in a language like Algol 60 or Fortran in which it is 
not possible to indicate the range of the search function beyond saying that that the result will 
be an integer. In Pascal it is possible to specify that the range is exactly the same as the 
subscript domain of A, and it is advantageous to do so because it makes the intention of the 
program clearer to both human readers and the compiler. The latter may then use a more 
compact representation for the result and avoid inserting the run-time checks that would 
otherwise be necessary when the result is used to index an array. These advantages are lost if 
the range of the function is extended to include even one value which is not a valid index, and 
that is exactly what we are doing if we add 0. What is needed is some mechanism for indicating 
explicitly that 0 is a an exceptional value not intended as an index and that only values in 1..n 
will be used in this way. What the proposal of Section 3 amounts to is just such a mechanism: 
instead of writing the result type as O..n we advocate writing Union[NotFound, l . . n ] .  It is 
reasonable to expect the compiler to notice that only the l . . n  component is used as an index and 
to elide tests accordingly. Thus the proposal of this paper represents nothing new: it is merely 
the translation of a well known technique into a notation compatible with specific typing. 

Another historically significant method of dealing with exceptions was common in the 
days of assembly code. When a routine detected an exceptional condition it did not return 
normally at all; it either stopped with an error message or made an abnormal return. For 
example, the standard return point for a subroutine call might be to a place two instructions 
after the call; a return to the instruction immediately following the call would indicate an 
exception. A different way of achieving a similar effect is to pass as a parameter an address to 
which the exceptional return should be made. This can be programmed in Algol 60 where 
non-local labels may be passed as parameters. Use of these techniques has declined as the 
dangers of non-local and dynamic jumps and routines with multiple exits became widely 
appreciated and languages which restricted such facilities were developed. There has been a 
recent reversal of this trend with the appearance of languages like CLU, Mesa C 4 I C 18 I and 
Ada which attempt to promote such jumps to the status of a high level feature. The exception 
handling in CLU is by far the simplest of the three; it nevertheless gives rise to what is by far 
the most involved part of the semantics C 20 I .  Experience with Mesa, which has a much more 
complicated exception mechanism, has shown that it confounds readability and reliability C 11 1. 
It is still too early to evaluate exception handling in Ada as a formal definition has yet to be 
published and there is no experience with its use. However, examination of the manual C 12 I 
gives one cause for concern. The global nature of exceptions violates the principle of locality 
that has been maintained in the rest of the language. The way an exception will be handled in 
the multi-tasking environment does not even seem to be deterministic. One can only hope that 
things will turn out to be better than they appear. 

6 Conclusion 

The method of dealing with exceptions proposed in this paper avoids all the difficulties 
mentioned above. It does this by achieving a separation of concerns. All exceptions are 
confined to the Union type schema, leaving the programmer free to create libraries of data types 
and operators whose semantics can be stated by simple axioms. 

The ease of use of this technique depends to some extent on how willing one is to allow 
implicit conversions. In the example i : = To[Int](Top(stack) it might be reasonable for the 
To[Int]  to be syntactically omissible. The context here is such that a compiler could quite easily 
insert it. Although such abbreviations can be attractive they can also give rise to misunderstand- 
ing. Whether they should be allowed, and if so in which contexts, could be the subject of 
another paper. The considerations are human rather than mathematical; it may turn out that 
the place to insert the coercions is not in the compiler but in the editor used to construct the 
program text. This paper aims to provide a semantic base on which such syntactic shorthands 
can be built. 
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Our method involves certain changes in style which some programmers may be 
reluctant to make. At first our way of handling exceptions may seem strange. We have used it 
to program the example given in [ 151 Section 12.3, in which many exceptions occur at 
different levels. With suitable defaults we find the use of unions produces more readable code 
than exception handlers. The reader is invited to try some examples himself. As a bonus there 
is no exception handling scheme to understand, and data types defined using unions can be 
specified with the simplest axiomatic technique. 
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