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Abstract

Conventional operating system code is written to deal with

all possible system stat es, and performs considerable inter-

pretation to determine the current system state before tak-

ing action. A consequence of this approach is that kernel

calls which perform little actual work take a long time to

execute. To address this problem, we use specialized oper-
ating system code that reduces interpretation for common

cases, but still behaves correctly in the fully general case.
We describe how specialized operating system code can be

generated and bound wtcrementally as the information on
which it depends becomes available. We extend our special-

ization techniques to include the notion of optimistic in c re-
mental specialization n: a techniquefor generating specialized

kernel code optimistically for system states that are likely

to occur, but not certain. The ideas outlined in this paper

allow the conventional kernel design tenet of “optimizing for

the common case” to be extended to the domain of adap-

tive operating systems. We also show that aggressive use of

specialization can produce in-kernel implementations of op-

erating system functionality with performance comparable

to user-level implementations.

We demonstrate that these ideas are applicable in real-

world operating systems by describing a re-implementation

of the HP-UX file system. Our specialized read system call

reduces the cost of a single byte read by a factor of 3, and

an 8 KB read by 26~o, while preserving the semantics of the

HP-UX read call. By relaxing the semantics of HP-UX read

we were able to cut the cost of a single byte read system

call by more than an order of magnitude.

1 Introduction

Much of the complexity in conventional operating system

code arises from the requirement to handle all possible sys-

tem states. A consequence of this requirement is that oper-

ating system code tends to be “generic”, performing exten-
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sive interpretation and checking of the current environment

before taking action. One of the lessons of the Synthesis

operating system [25] is that significant gains in efficiency
can be made by replacing this generic code with specialized

code. The specialized code performs correctly only in a re-

stricted environment, but it is chosen so that this restricted

environment is the common case.

By way of example, consider a simplified UNIX File Sys-

tem interface in which open takes a path name and returns

an “open file” object. The operations on that object include

read, write, close, and seek. The method code for read

and write can be specialized, at open time, to read and

write that particular file, because at that time the system

knows, among other things, which file is being read, which

process is doing the reading, the file type, the file system

block size, whether the inode is in memory, and if so, its

address, etc. Thus, a lot of the interpretation of file system

data structures that would otherwise have to go on at et+

ery read can be done once at open time. Performing this

interpretation at open time is a good idea if read is more

common than open, and in our experience with specializing

the UNIX file system, loses only if the file is opened for read

and then never read.

Extensive use of this kind of specialization in Synthe-

sis achieved improvement in kernel call performance rang-

ing from a factor of 3 to a factor of 56 [25] for a subset of

the UNIX system call interface. However, the performance

improvements due directly to code specialization were not

separated from the gains due to other factors, including the

design and implementation of a new kernel in assembly lan-

guage, and the extensive use of other new techniques such

as lock-free synchronization and software feedback.

Thk paper describes work done in the context of the Syn-

thetix project which is a follow-on from Synthesis. Synthetix

extends the Synthesis results in the following respects. First,

Synthetix defines a conceptual model of specialization. This

model defines the basic elements and phases of the special-

ization process. Not only is this model useful for deploying

specialization in other systems, it has also proved essential

in the development of tools to support the specialization

process.

Second, Synthetix introduces the idea of incremental and

optimtsttc specialization. Incremental specialization allows

specialized modules to be generated and bound as the in-

formation on which they depend becomes available. Op-

timistic specialization allows modules to be generated for

system states that are likely to occur, but not certain.

Finally, we show how optimistic, incremental specializa-
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tion can be applied to existing operating systems written

in conventional programming languages. In this approach,

performance improvements are achieved by customizing ex-

isting code without altering its semantics. In contrast, other

extensible operating systems allow arbitrary customizations

to be introduced at the risk of altering the system semantics.

The long term goal of Synthetix is to define a method-

ology for specializing existing system components and for

building new specialized components from scratch. To ex-

plore and verify thk methodology we are manually specializ-

ing some small, but representative, operating system compo-

nents. The experience gained in these experiments is being

used to develop tools towards automating the specialization

process. Hence, the goal of our experiments is to gain an un-

derstanding of the specialization concept rather than simply

to optimize the component in question.

This paper illustrates our approach applying specializa-

tion in the context of a commercial UNIX operating system

and the C programming language. Specifically, it focuses

on the specialization of the read system call, in HP-UX [12]

while ret aining standard HP-UX semantics. Since read is

representative of many other UNIX system calls and since

HP-UX is representative of many other UNIX systems, we

expect the results of our study to generalize well beyond

this specific implementation.

The remainder of the paper is organized as follows. Sec-

tion 2 elaborates on the notion of specialization, and de-

fines incremental and optimistic specialization. Section 3

describes the application of specialization to the HP-UX

read system call. Section 4 analyses the performance of

our implement at ion. Section 5 discusses the implications of

our results, as well as the key areas for future research. Re-

lated work is discussed in section 6. Section 7 concludes the

paper.

2 What is Specialization?

Program specialization, also called partial evaluation (PE),

is a program transformation process aimed at customizing

a program based on parts of its input [13, 30]. In essence,

this process consists of performing constant propagation and

folding, generalized to arbitrary computations.

In principle, program specialization can be applied to any

program that exhibits interpretation. That is, any program

whose control flow is determined by the analysis of some

data. In fact, this characteristic is common in operating

system code. Consider the read example of Section 1. At

each invocation, read does extensive data structure analysis

to determine facts such as whether the file is local or re-

mote, the device on which it resides, and its block size. Yet,

these pieces of information are invariant, and can be deter-

mined when the file is opened. Hence, the data structure

analysis could be factorized by specializing the read code

at open time with respect to the available in varvants. Since

the specialized read code only needs to consist of operations

that rely on varying data, it can be more efficient than the

original version.

Operating systems exhibit a wide variety of invariants.

As a first approximation, these invariants can be divided into

two categories depending on whether they become available

before or during runtime. Examples of invariants available

before runtime include processor cache size, whether there is

an FPU, etc. These invariants can be exploited by existing

PE technology at the source level. Other specializations

depend on invariants that are not known until runtime, and

hence rely on a specialization process that can take place at

runtime. In the context of operating systems, it is useful for

specialization to take place both at compile time and at run

time.

Given a list of invariants, which may be available either

statically or dynamically, a combination of compile-time and

run-time PE should be capable of generating the required

specialized code. For example, the Synthesis kernel [28] per-

formed the (conceptual) PE step just once, at runtime dur-

ing open. It is in principle possible to apply the run-time

partial evaluator again at every point where new invariants

become known (i.e., some or all of the points at which more

information becomes available about the bindings that the

program contains). We call this repeated application of a

partial evaluator incremental specialization [15].

The discussion so far has considered generating special-

ized code only on the basis of known invariants, i.e., bind-

ings that are known to be constant. In an operating system,

there are many things that are likely to be constant for long

periods of time, but may occasionally vary. For example, it

is likely that files will not be shared concurrently, and that

reads to a particular file will be sequential. We call these

assumptions quasi- in variants. If specialized code is gener-
ated, and used, on the assumption that quasi-invariants hold

most of the time, then performance should improve. How-

ever, the system must correctly handle the cases where the

quasi-invariants do not hold.

Correctness can be preserved by guarding every place

where quasi-invariants may become false. For example, sup-

pose that specialized read code is generated based on the

quasi-invariant “no concurrent sharing”. A guard placed in

the open system call could be used to detect other attempts

to open the same file concurrently. If the guard is triggered,

the read routine must be “unspecialized”, either to the com-

pletely generic read routine or, more accurately, to another

specialized version that still capitalizes on the other invari-

ant and quasi-invariants that remain valid. We call the

process of replacing one version of a routine by another (in

a different stage of specialization) repluggmg. We refer to

the overall process of specializing based on quasi-invariants

optimistic specialization. Because it may become necessary

to replug dynamically, optimistic specialization requires in-

cremental specialization.

If the optimistic assumptions about a program’s behav-

ior are correct, the specialized code will function correctly.

If one or more of the assumptions become false, the spe-

cialized code will break, and it should be replugged. This

transformation will be a win if specialized code is executed

many times, i.e., if the savings that accrue from the opti-

mistic assumption being right, weight ed by the probability y

that it is right, exceed the additional costs of the replugging

step, weight ed by the probability y that it is necessary (see

Section 4 for details).

The discussion so far has described incremental and op-

timistic specialization as forms of runtime PE. However, in

the operating system context, the full cost of code genera-

tion must not be incurred at rontime. The cost of runtime

code generation can be avoided by generating code templates

statically and optimistically at compile time. At kernel call

invocation time, the templates are simply filled in and bound

appropriately [14].
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3 Specializing HP-UX read

To explore the real-world applicability of the techniques out-

lined above, we applied incremental and optimistic special-
ization to the HP-UX 9.o4 read system call. read was cho-

sen as a test case because it is representative of many other

UNIX system calls because it is a variation of the BSD file

system [24]. The HP-UX implementation of read is also
represent at ive of many other UNIX implementations. There-

fore, we expect our results to be applicable to other UNIX-

Iike systems. HP-UX read also poses a serious challenge

for our technology because, as a frequently used and well-

understood piece of commercial operating system code, it

has already been highly optimized. To ensure that our per-

formance results are applicable to current software, we were

careful to preserve the current interface and behavior of HP-

UX read in our specialized read implementations.

3.1 Overview of the HP-UX read Imple-

ment at ion

To understand the nature of the savings involved in our spe-
cialized read implementation it is first necessary to under-

stand the basic operations involved in a conventional UNIX
read implementation. Figure 1 shows the control flow for

read assuming that the read is from a normal file and that
its data is in the buffer cache. The basic steps are as follows:

1.

2.

3.

4,

5.

6.

7.

8.

9.

10.

System call startup: privilege promotion, switch to

kernel stack, and update user structure.

Identify the file and file system type: translate the file

descriptor number into a file descriptor, then into a
vnode number, and finally into an inode number.

Lock the inode.

Identify the block: translate the file offset value into a
logical (file) block number, and then translate the log-

ical block number into a physical (disk) block number.

Find the virtual address of the data: find the block in
the buffer cache containing the desired physical block

and calculate the virtual address of the data from the
file offset.

Data transfer: Copy necessary bytes from the buffer
cache block to the user’s buffer.

Process another block?: compare the total number of
bytes copied to the number of bytes requested; goto
step 4 if more bytes are needed.

Unlock the inode.

Update, the file offset: lock file table, update file offset,
and unlock the file table.

System call cleanup: update kernel profile information,
switch back to user stack, privilege demotion.

The above tasks can be categorized as either mter-preta-

tion, traversal, locking, or work. Interpretation is the process

of examining parameter values and system states and mak-

ing control flow decisions based on them. Hence, it involves

activities such as conditional and case statement execution,

and examining parameters and other system state variables

to derive a particular value. Traversal can be viewed as

I 1. System call startup I

2. Identify file & file system type,

translate into inode number

‘)

3. Lock the inode
I

d4. Translate file offset into

logical block number

t

5. Translate logical block number

into physical block number,

get the buffer cache block

containing the data

1r 1

6. Data transfer

I

Yes

No

I

\ 8. Unlock the inode I
t

9 Update file offset

i’

10. System call cleanup

Figure 1: HP-UX read Flow Graph

me~aration for interpretation since it is concerned with dis-. .
covering system state information that has been stored pre-

viously (i. e., in data structures). Traversal is basically a

matter of dereferencing and includes function calling and

data structure searching. Locking includes all synchronization-

related activities. Work is the fundamental task of the call.

In the case of the read, the only work is to copy the desired

data from the kernel btiers to the user’s buffer.

Ideally, all of the tasks performed by a particular invoca-

tion of a system call should be in the work category. If the
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necessary information is available early enough, code in all

other categories can be factored out prior to the call. Unfor-

tunately, in the case of read steps 1, 2, 4, 5, 7, and 10 consist

mostly of interpretation and traversal, and steps 3, 8, and

most of 9 are locking. Only step 6 and a small part of 9 can

be categorized as work.

Section 3.2 details the specializations applied to read to

reduce the non- work overhead. Section 3.3 outlines the code

necessary to guard the optimistic specializations. Section 3.4

describes the mechanism for switching between various spe-

cialized and generic versions of a system call implementa-

tion.

3.2 Invariants and Quasi-Invariants for Spe-

cializat ion

Figure 2 shows the specialized flow graph for our specialized

version of read (referred to here as is~ead). Steps 2, 3,

and 8 have been eliminated, steps 4 and 5 have been elim-

inated for small sequential reads, and the remaining steps

have been optimized via specialization. isxead is special-

ized accordkg to the invariants and quasi-invariants listed

in table 1. Only FS-CONSTANT is a true invariant; the re-

mainder are quasi-invariants.

The FS.CONSTANT invariant states that file system con-

stants such as the file type, file system type, and block size

do not change once the file has been opened. This invariant

is known to hold because of UNIX file system semantics.

Based on this invariant, is-read can avoid the traversal

costs involved in step 2 above. Our isxead implementa-

tion is specialized, at open time, for regular files residing

on a local file system with a block size of 8 KB. It is im-

portant to realize that the is_read code is enabled, at open

time, for the specific file being opened and is transparently

substituted in place of the standard read implement at ion.

Reading any other kind of file defaults to the standard HP-

UX read.

It is also important to note that the is-read path is spe-

cialized for the specific process performing the open, That

is, we assume that the only process executing the is ~ead

code will be the one that performed the open that gener-

ated it. The major advantage of this approach is that a

private per-process per-file read call has well-defied access

semantics: reads are sequential by default.

Specializations based on the quasi-invariant SEQUEN-

TIAL_ACCESS can have huge performance gains. Consider

a sequence of small (say 1 byte) reads by the same process

to the same file. The first read performs the interpretation,

traversal and locklng necessary to locate the kernel virtual

address of the data it needs to copy. At thk stage it can

specialize the next read to simply continue copying from

the next virtual address, avoiding the need for any of the

steps 2, 3, 4, 5, 7, 8, and 9, as shown in Figure 2. This spe-

cialization is predicated not only on the SEQUENTIAL-ACCESS

and NO~P.SHARE quasi-invariants, but also on other quasi-

invariants such as the assumption that the next read won’t

cross a buffer boundary, and the btier cache replacement

code won’t have changed the data that resides at that vir-

tual memory address. The next section shows how these

assumptions can be guarded.

The NO_HOLES quasi-invariant is also related to the spe-

cializations described above. Contiguous sequential reading

can be specialized down to contiguous byte-copying only for

files that don’t contain holes, since hole traversal requires

1. System call startup I

Yes

No

5. Translate logical block number

into physical block number,

get the buffer cache block

containing the data

It 1
6. Data transfer

Yes

I 1

46a. Data transfer I

E=e-
10. System call cleanup

Figure 2: isxead Flow Graph

the interpretation of empty block pointers in the inode.

The NO_INODE.SHARE and N03P_SHARE quasi-invariants

allow exclusive access to the file to be assumed. This as-

sumption allows the specialized read code to avoid locking

the inode and file table in steps 3, 8, and 9. They also al-

low the caching (in data structures associated with the spe-

cialized code) of information such as the file pointer. This

caching is what allows all of the interpretation, traversal and

locking in steps 2, 3, 4, 5, 8 and 9 to be avoided.

In our current implementation, all invariants are vali-
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(Quasi-) Invariant Description Savings

FS.CONSTANT Invariant file system parameters. Avoids step 2,

NO_FP.SHARE No file pointer sharing. Avoids most of step 9 and allows caching of

file offset in file descriptor.

NO-HOLES No holes in file. Avoids checking for empty block pointers in

inode structure.

NOJNODE.SHARE No inode sharing. Avoids steps 3 and 8.

NO-USER~OCKS No user-level locks. Avoids having to check for user-level locks.

READ-ONLY No writers. Allows optimized end of file check.

SEQUENTIAL.ACCESS Calls to is-read inherit file offset For small reads, avoids steps 2, 3, 4, 5, 7, 8,

from previous is-read calls 9.

Table 1: Invariants for Specialization

I Quasi-Invariant I HP-UX system calls that may

invalidate invariants

~

SEQUENTIAL_ACCESS l~eek, readv, is-read itself,
and buffer cache block
redacement

Table 2: Quasi-Invariants and Their Guards

dated in open, when specialization happens. A specialized

read routine is not generated unless ail of the invariant

hold.

3.3 Guards

Since specializations based on quasi-invariants are opti-

mistic, they must be adequately guarded. Guards detect

the impending invalidation of a quasi-invariant and invoke

the replugging routine (section 3.4) to unspecialized the read

code. Table 2 lists the quasi-invariants used in our imple-

mentation and the HP-UX system calls that contain the

associated guards.

Quasi-invariants such as READ_• NLY and NOXOLES can

be guarded in open since they can only be violated if the

same file is opened for writing. The other quasi-invariants

can be invalidated during other system calls which either ac-

cess the file using a file descriptor from within the same or a

child process, or access it from other processes using system

calls that name the file using a pathname. For example,

NO_FP-SHARE will be invalidated if multiple file descriptors

are allowed to share the same file pointer. This situation can

arise if the file descriptor is duplicated locally using dup, if

the entire file descriptor table is duplicated using fork, or if
a file descriptor is passed though a UNIX domain socket us-

ing sendmsg. Similarly, SEQUENTIAL-ACCESS will be violated

if the process calls 1 seek or re adv.

The guards in system calls that use file descriptors are

relatively simple. The file descriptor parameter is used as an

index into a per-process table; if a specialized file descriptor

is already present then the quasi-invariant will become in-

valid, triggering the guard and invoking the replugger. For

example, the guard in dup only responds when attempting

to duplicate a file descriptor used by is_read. Similarly,

fork checks all open file descriptors and triggers replugging

of any specialized read code.

Guards in calls that take pathnames must detect colli-

sions with specialized code by examining the file’s inode. We

use a special flag in the inode to detect whether a specialized

code path is associated with a particular inodel.

The guards for the SEQUENTIAL_ACCESS quasi-invariant

are somewhat unusual. is-read avoids step 5 (buffer cache

lookup) by checking to see whether the read request will

be satisfied by the buffer cache block used to satisfy the

preceding read request. The kernel’s buffer cache block re-

placement mechanism also guards this specialization to en-

sure that the preceding buffer cache block is still in memory.

With the exception of lseek, triggering any of the guards

discussed above causes the read code to be replugged back

to the general purpose implementation. lseek is the only in-

stance of respecialization in our implementation; when trig-

gered, it simply updates the file offset in the specialized read

code.

To guarantee that all invariants and quasi-invariants

hold, open checks that the vnode meets all the FS_CONSTANT

and NO-HOLES invariants and that the requested access is

only for read. Then the inode is checked for sharing. If

all invariants hold during open then the inode and file de-

script or are marked as specialized and an isxe ad path is

set up for use by the calling process on that file. Setting

up the is-read path amounts to allocating a private per-

file-descriptor data structure for use by the is-read code

which is sharable. The inode and file descriptor markings

activate all of the guards atomically since the guard code is

permanently present.

3.4 The Rep lugging Algorithm

Replugging components of an actively running kernel is a

non-trivial problem that requires a paper of its own, and
is the topic of ongoing research. The problem is simplified
here for two reasons. First, our main objective is to test the
feasibility y and benefits of specialization. Second, specializa-
tion has been applied to the replugging algorithm itself. For
kernel calls, the replugging algorithm should be specialized,

simple, and efficient.
The first problem to be handled during replugging is

synchronization. If a replugger were executing in a single-

1The in-memory version of HP-UX’S inodes IS substantially larger
than the on-disk version. The specialized flag only needs to be added
to the m-memory version.
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threaded kernel with no system call blocking in the kernel,

then no synchronization would be needed. Our environ-

ment is a multiprocessor, where kernel calls may be sus-

pended. Therefore, the replugging algorithm must handle

twosources of concurrency: (1) interactions between there-

plugger and the process whose code is being replugged and

(2) interactions among other kernel threads that triggered

a guard and invoked the replugging algorithm at the same

time. Note that the algorithm presented here assumes that

a coherent read from memory is faster than a concurrency

lock: if specialized hardware makes locks fast, then thespe-

cialized synchronization mechanism presented here can be

replaced with locks.

To simplify the replugging algorithm, we make two as-

sumptions that are true in many UNIX systems: (Al) kernel

calls cannot abortz, so we do not have to check for an in-

complete kernel call to is-read, and (A2) there is only one

thread per process, so multiple kernel calls cannot concur-

rently access process level data structures.

The second problem that a replugging algorithm must

solve is the handling of executing threads inside the code

being replugged. We assume (A3) that there can be at most

one thread executing inside specialized code. This is the

most important case, since in all cases so far we have spe-

cialized for a single thread of control. This assumption is

consistent with most current UNIX environments. To sep-

arate the simple case (when no thread is executing inside

code to be replugged) from the complicated case (when one

thread is inside), we use an “inside-flag”. The first instruc-

tion of the specialized read code sets the inside-flag to in-

dicate that a thread is inside. The last instruction in the

specialized read code clears the inside-flag.

To simplify the synchronization of threads during replug-

ging, thereplugging algorithm uses a queue, called the hoki-

ing tank, to stop the thread that happens to invoke the spe-

cialized kernel call while replugging is taking place. Upon

completion of replugging, the algorithm activates the thread

waiting in the holding tank. The thread then resumes the

invocation through the unspecialized code.

For simplicity, we describe the replugging algorithm as if

there were only two cases: specialized and non-specialized.

The paths take the following steps:

1. Check the file descriptor to see if this file is specialized.

If not, branch out of the fast path.

2. Set inside-flag.

3. Branch indirect. This branch leads to either the hold-

ing tank or the read path. It is changed by the replug-

ger.

Read Path:

1. Do the read work.

2. Clear inside-flag.

Holding Tank:

1. Clear inside-flag.

2. Sleep on the per-file lock to await replugger comple-
tion,

3. Jump to standard read path.

Replugging Algorithm:

‘Take an unexpected path out of the kernel on failure.

1.

2.

3.

4.

5.

6.

7.

8.

Acquire per-process lock to block concurrent replug-
gers. It may be that some guard was triggered con-
currently for the same file descriptor, in which case we
are done.

Acquire per-file lock to block exit from holding tank.

Change the per-file indirect pointer to send readers to
the holding tank (changes action of the reading thread
at step 3 so no new threads can enter the specialized
code).

Spinwait for the per-file inside-flag to be cleared. Now
no threads are executing the specialized code.

Perform incremental specialization according to which
invariant was invalidated.

Set file descriptor appropriately, including indicating
that the file is no longer speciahzed.

Release per-file lock to unblock thread in holding tank.

Release per-process lock to allow other repluggers to
continue.

The way the replugger synchronizes with the reader
thread is through the inside-flag in combhation with the

indirection pointer. If the reader sets the inside-flag before
a replugger sets the indirection pointer then the replugger
waits for the reader to finish, If the reader takes the indi-

rect call into the holdlng tank, it will clear the inside-flag
which will tell the replugger that no thread is executing the
specifllzed code. Once the replugging is complete the al-
gorithm unblocks any thread in the holding tank and they

resume through the new unspecialized code.

In most cases of unspecialization, the general case, read,

is used instead of the specialized is_read. In this case, the

file descriptor is marked as unspecialized and the memory
is~ead occupies is marked for garbage collection at file

close time.

4 Performance Results

The experimental environment for the benchmarks was

a Hewlett-Packard 9000 series 800 G70 (9000/887) dual-

processor server [1] running in single-user mode. This server

is configured with 128 MB of RAM. The two PA71oo [16]

processors run at 96 MHz and each contains one MB of in-

struction cache and one MB of data cache.

Section 4.1 presents an experiment to show how incre-

mental specialization can reduce the overhead of the read

system call. Sections 4.2 through 4.4 describe the over-

head costs of specialization. Section 4.5 describes the basic

cost/benefit analysis of when specialization is appropriate.

4.1 Specialization to Reduce read Over-

head

The first microbenchmark is designed to illustrate the re-
duction in overhead costs associated with the read system
call. Thus the experiment has been designed to reduce all
other costs, to wit:

c all experiments were run with a warm file system buffer

cache 3

3The use of specialization to optimize the device 1/0 path and

make better use of the file system buffer cache is the subject of a

separate study currently underway in our group.
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8000+7039
1 Byte 8 KB 64 KB

read 3540 7039 39733

is-read 979 5220 35043

Savings 2561 1819 4690

%Im~rovement 72% 26% \ 12%

SpeeduD x3.61 X1.35 I X1.13

Copyout 1701 34001 NA4 I

Table3: Overhead Reduction: HP-UX read versus is.read

costs in CPU cycles

6000

4000

2000

0
read is-read Copyout

Figure 4: Overhead Reduction: 8 KB HP-UX read versus
is-read costs in CPU cycles

3000
2000
1000

0
read is-read Copy out

Figure 3: Overhead Reduction: 1 Byte HP-UX read versus Figure 5: Overhead Reduction: 64 KB HP-UX read versus
is-read costs in CPU cycles is_read costs in Thousands of CPU cycles

c the same block was repeatedly read to achieve all-hot

CPU data caches

● the target of the read is selected to be a page-aligned
user buffer to optimize cop yout performance

The program consists of a tight loop that opens the file,

gets a timestamp, reads N bytes, gets a timestamp, and

closes the file. Timestamps are obtained by reading the PA-

RISC’S interval timer, a processor control register that is

incremented every processor cycle [20].

Table 3 numerically compares the performance of HP-

UX read with is-read for reads of one byte, 8 KB, and

64 KB, and Figures 3 through 5 graphically represents the

same data. The table and figures also include the costs for

copyout to provide a lower bound on read performance. In

all cases, is..read performance is better than HP-UX read.

For single byte reads, is~ead is more than three times as

fast as HP-UX read, reflecting the fact that specialization

has removed most of the overhead of the read system call.

Reads that cross block boundaries lose the specialization

of simply continuing to copy data from the previous position

in the current buffer cache block (the SEQUENTIAL.ACCESS

quasi-invariant ), and thus suffer performance loss. 8 KB

reads necessarily cross block boundaries, and so the spe-
cialization performance improvement for the 8 KB is_read

has a smaller performance gain than the 1 Byte is-read.
For larger reads, the performance gain is not so large be-
cause the overall time is dominated by data copying costs
rather than overhead. However, there are performance ben-
efits from specialization that occur on a per-block basis, and
so even 64 KB reads improve by about 12~o.

4.2 The Cost of the Initial Specialization

The performance improvements in the read fast path come

at the expense of overhead in other parts of the system.

4Large reads break down into multiple block-sized calls to copyout.

‘copy out performs a safe copy from kernel to user space while cor-

rectly handling page faults and segmentation violations

The most significant impact occurs in the open system call,

which is the point at which the ismead path is generated.

open has to check 8 invariant and quasi-invariant values,

for a total of about 90 instructions and a lock/unlock pair.

If specialization can occur it needs to allocate some kernel

memory and fill it in. close needs to check if the file descrip-

tor is or was specialized and if so, free the kernel memory.

A kernel memory allot takes 119 cycles and free takes 138

cycles.

The impact of this work is that the new specialized open

call takes 5582 cycles compared to 5227 cycles for the stan-

dard HP-UX open system call. In both cases, no inode

traversal is involved. As expected, the cost of the new open

call is higher than the original. However, notice that the

increase in cost is small enough that a program that opens

a file and reads it once can still benefit from specialization.

4.3 The Cost of Nontriggered Guards

The cost of guards can be broken down into two cases: the

cost of executing them when they are not triggered, and

the cost of triggering them and performing the necessary

replugging. This sub-section is concerned with the first case.

Guards are associated with each of the system calls

shown in Table 2. As noted elsewhere, there are two sorts

of guards. One checks for specialized file descriptors and is

very cheap, the other for specialized inodes. Since inodes

can be shared they must be locked to check them. The

lock expense is only incurred if the file passes all the other

tests first. A lock/unlock paii- takes 145 cycles. A guard

requires 2 temporary registers, 2 loads, an add, and a com-

pare, 1 I cycles, and then a function call if it is triggered. It

is important to note that these guards do not occur in the

data transfer system calls, except for readv which is not

frequently used.

In the current implementation, guards are fixed in place

(and always perform checks) but they are triggered only

when specialized code exists. Alternatively, guards could be
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inserted in-place when associated specialized code is gener-

ated. Learning which alternative performs better requires

further research on the costs and benefits of specialization

mechanisms.

4.4 The Cost of Replugging

There are two costs associated with replugging. One is the

overhead added to the fast path in is-read for checking if

it is specialized and calling read if not, and for writing the

inside-flag bit twice, and the indh-ect function call with zero

arguments otherwise. A timed microbenchmark shows this

cost to be 35 cycles.

The second cost of replugging is incurred when the re-

plugging algorithm is invoked. This cost depends on whether

there is a thread already present in the code path to be re-

plugged. If so, the elapsed time taken to replug can be

dominated by the time taken by the thread to exit the spe-

cialized path. The worst case for the read call occurs when

the thread present in the specialized path is blocked on 1/0.

We are working on a solution to thk problem which would

allow threads to “leave” the specialized code path when ini-

tiating 1/0 and rejoin a replugged path when 1/0 completes,

but this solution is not yet implemented.

In the case where no thread is present in the code path

to be replugged, the cost of replugging is determined by

the cost of acquiring two locks, one spinlock, checking one

memory location and storing to another (to get exclusive

access to the specialized code). To fall back to the generic

read takes 4 stores plus address generation, plus storing

the specialized file offset into the system file table which

requires obtaining the File Table Lock and releasing it. After

incremental s~ecialization two locks have to be released. An.-
inspection of the generated code shows the cost to be about
535 cycles assuming no lock contention. The cost of the
holding tank is not measured since that is the rarest subcase
and it would be dominated by spinning for a lock in any
event.

Adding up the individual component costs, and multi-

plying them by the frequency, we can estimate the guarding

and replugging overhead attributed to each is-read. If we

assume that 100 is_read happen for each of the guarded
kernel calls (fork, crest, truncate, open, close and re-

plugging), then less than 10 cycles are added as guarding

overhead to each invocation of is~ead.

4.5 Cost/Benefit Analysis

Specialization reduces the execution costs of the fast path,
but it also requires additional mechanisms, such as guards

and replugging algorithms, to maintain system correctness.
By design, guards are located in low frequency execution
paths and in the rare case of quasi-invariant invalidation,
replugging is performed. We have also added code to open
to check if specialization is possible, and to close to garbage

collect the specialized code after replugging. An informal

performance analysis of these costs and a comparison with

the gains is shown in Figure 6.
In Equation 1, Overhead includes the cost of guards,

the replugging algorithm, and the increase due to initial in-

variant validation, specialization and garbage collecting for
all file opens and closes. Each Guard’ (in different kernel

calls) is invoked ~~v~C.ll times. Similarly, Replug is invoked
~R,Ptti9 times. A small part of the cost of synchronization

with the replugger is born by ie_read (the setting and reset-

ting of inside-flag), but overall is.read is much faster than

read (Section 4). In Equation 2, f,~ is the number of times

specialized iszead is invoked and ~~otal~,~~ is the total

number of invocations to read the file. Specialization wins

if the inequality in Equation 2 is true.

The following sections outline a series of microbench-

marks to measure the performance of the incrementally and

optimistically specialized read fast path, as well as the over-

head associated with guards and replugging.

5 Discussion

The experimental results described in Section 4 show the

performance of our current L%read implementation. At the

time of writing this implementation was not fully special-

ized: some invariants were not used and, as a result, the

measured is-read path contains more interpretation and

traversal code than is absolutely necessary. Therefore, the

performance results presented above are conservative. Even

so, the results show that optimist ic specialization can im-

prove the performance of both small and large reads.

At one end of the spectrum, assuming a warm buffer

cache, the performance of small reads is dominated by con-
trol flow costs. Through specialization we are able to re-

move, from the fast path, a large amount of code, concerned
with interpretation, data structure traversal and synchro-

nization. Hence, it is not surprising that the cost of small
reads is reduced significantly.

At the other end of spectrum, again assuming a warm
buffer cache, the performance of large reads is dominated by

data movement costs. In effect, the control-flow overhead,
still present in large reads, is amortized over a large amount

of byte copying. Specializations to reduce the cost of byte
copying will be the subject of a future study.

Specialization removes overhead from the fast path by
adding overhead to other parts of the system: specifically,

the places at which the specialization, replugging and guard-
ing of optimistic specializations occur. Our experience has

shown that generating specialized implementations is easy.
The real difficulty arises in correctly placing guards and

making policy decisions about what and when to special-
ize and replug. Guards are difficult to place because an

operating system kernel is a large program, and invariants
often correspond to global state components which are ma-
nipulated at numerous sites. Therefore, manually tracking

the places where invariants are invalidated is a tedious pro-

cess. However, our experience with the HP-UX file system
has brought us an understanding of this process which we

are now using to design a program analysis capable of de-
termining a conservative approximation of the places where

guards should be placed.

Similarly, the choice of what to specialize, when to spe-

cialize, and whether to specialize optimistically are all non-

trivial policy decisions. In our current implementation we

made these decisions in an ad hoc manner, based on our
expert knowledge of the system implementation, semantics

and common usage patterns. Thk experiment has prompted
us to explore tools based on static and dynamic analyses
of kernel code, aimed at helping the programmer decide

when the performance improvement gained by specializa-
tion is likely to exceed the cost of the specialization process,
guarding, and replugging.
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Overhead = ~f:vsc.ll * Guard’ + Open -t Close -t fRepl.g * Ikwlug

Overhead + ft. * is~ead < (fT.tal Read — f,. ) * read

Figure 6: Cost/Benefit Analysis: When is it Beneficial to Specialize?

5.1 Interface Design and Kernel Structure

From early in the project, our intuition told us that, in the

most specialized case, it should be possible to reduce the cost

of a read system call that hits in the buffer cache. It should

be little more than the basic cost of data movement from

the kernel to the application’s address space, i.e., the cost of

copying the bytes from the buffer cache to the user’s buffer.

In practice, however, our specialized read implementation

costs considerably more than copying one byte. The cost of

our specialized read implementation is 979 cycles, compared

to approximately 235 cycles for entering the kernel, fielding

the minimum number of parameters, and safely copying a

single byte out to the application’s address space.
cTpon closer examination, we discovered that the remain-

ing 744 cycles were due to a long list of inexpensive actions

including stack swit thing, maskkg floating point exceptions,

recording kernel statist ics, supporting pt rac e, initializing

kernel interrupt handling, etc. The sum of these actions

dominates the cost of small byte reads.

These actions are due in part to constraints that were

placed upon our design by an over-specification of the UNIX

read implement ation. For example, the need to always sup-

port statistics-gathering facilities such as times requires ev-

ery read call to record the time it spends in the kernel. For

one byte reads, changing the interface to one that returns a

single byte in a register instead of copying data to the user’s

address space, and changing the semantics of the system call

to not support statistics and profiling eliminates the need for

many of these actions.

To push the limits of a kernel-based read implementa-

tion, we implemented a special one-byte read system call,

called readc, which returns a single byte in a register, just

like the get c library call. In addition to the optimizations

used in our specialized isread call, readc avoids switch-

ing stacks, omits pt race support, and skips updating pro-

file information. The performance of the resulting readc

implementation is 65 cycles. Notice that aggressive use of

specialization can lead to a readc system call that performs

within a factor of two of a pure user-level get c which costs

38 cycles in HP-UX’S stdio library. This result is encour-

aging because it shows the feasibility of implementing oper-

ating system functionality at kernel level with performance

similar to user-level libraries. Aggressive specialization may

render unnecessary the popular trend of duplicating operat-

ing system functional y at user level [2, 19] for performance

reasons.

Another commonly cited reason for moving operating

system functionality to user level is to give applications

more control over policy decisions and operating system im-

plementations. We believe that these benefits can also be

gained without duplicating operating system functionality

at user level. Following an open-implementation (01) phi-

losophy [22], operating system functionality can remain in

the kernel, with customization of the implementation sup-

ported in a controlled manner via meta-interface calls [23].

(1)

(2)

A strong lesson from our work and from other work in the

01 community [22] is that abstractly specified interfaces,

i.e., those that do not constrain implementation choices un-

necessarily, are the key to gaining the most benefit from

techniques such as specialization.

6 Related Work

Our work on optimistic incremental specialization can be

viewed as part of a widespread research trend towards

adaptive operating systems. Micro-kernel operating sys-

tems [5, 6, 11, 9, 21, 27, 29] were an early example of this

trend, and improve adaptiveness by allowing operating sys-

tem functionality to be implemented in user-level servers

that can be customized and configured to produce special-

purpose operating systems. While micro-kernel-based archi-

tectures improve adaptiveness over monolithic kernels, sup-

port for user-level servers incurs a high performance penalty.

To address this performance problem Chorus [29] allows

modules, known as supervisor actors, to be loaded into the

kernel address space. A specialized IPC mechanism is used

for communication between actors within the kernel address

space. Similarly, Flex [8] allows dynamic loading of oper-

ating system modules into the Mach kernel, and uses a mi-

grating threads model to reduce IPC overhead.

One problem with allowing applications to load modules

into the kernel is loss of protection. The SPIN kernel [4]

allows applications to load executable modules, called spin-

dles, dynamically into the kernel. These spindles are written

in a type-safe programming language to ensure that they do

not adversely affect kernel operations.

Object-oriented operating systems allow customization

through the use of inheritance, invocation redirection, and

meta-int erfaces. Choices [7] provides generalized compo-

nents, called frameworks, which can be replaced with spe-

cialized versions using inherit ante and dynamic linking. The

Spring kernel uses an extensible RPC framework [18] to redi-

rect object invocations to appropriate handlers based on the

type of object. The Substrate Object Model [3] supports ex-

tensibility in the AIX kernel by providing additional inter-

faces for passing usage hints and customizing in-kernel im-

plementations. Similarly, the Apertos operating system [31]

supports dynamic reconfiguration by modifying an ob j ect’s

behavior through operations on its meta-interface.

Other systems, such as the Cache kernel [10] and the

Exe-kernel [17] address the performance problem by moving

even more functionality out of the operating system kernel

and placing it closer to the application. In this “minimal-

kernel” approach extensibility is the norm rather than the

exception.

Synthetix differs from the other extensible operating sys-

tems described above in a number of ways. First, Synthetix

infers the specializations needed even for applications that

have never considered the need for specialization. Other ex-
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tensible systems require applications to know which special-

izations will be beneficial and then select or provide them.

Second, Synthetix supports optimistic specializations

and uses guards to ensure the validity of a specialization

and automatically replug it when it is no longer valid. In

cent rast, other extensible syst ems do not support automatic

replugging and support damage control only through hard-
ware or software protection boundaries.

Third, the explicit use of invariants and guards in Syn-
thetix also supports the composability of specializations:
guards determine whether two specializations are compos-

able. Other extensible operating systems do not provide

support to determine whether separate extensions are com-
posable.

Like Synthetix, Scout [26] has focused on the special-

ization of existing systems code. Scout has concentrate ed

on networking code and has focused on specializations that
minimize code and data caching effects. In contrast, we have

focused on parametric specialization to reduce the length of
various fast paths in the kernel. We believe that many of

the techniques used in Scout are also useful in Synthetix,

and vice versa.

7 Conclusions

This paper has introduced a model for specialization based

on invariants, guards, and replugging. We have shown how

this model supports the concepts of incremental and opti-

mistic specialization. These concepts refine previous work

on kernel optimization using dynamic code generation in

Synthesis [28, 25]. We have demonstrated the feasibility

and usefulness of incremental, optimistic specialization by

applying it to file system code in a commercial operating

system (HP-UX). The experimental results show that signif-

icant performance improvements are possible even when the

base system is (a) not designed specifically to be amenable to

specialization, and (b) is already highly optimized. Further-

more, these improvements can be achieved without altering

the semantics or restructuring the program.

Our experience with performing incremental and opti-

mistic specialization manually has shown that the approach

is worth pursuing. Based on this experience, we are devel-

oping a program specialize for C and a collection of tools

for assisting the programmer in identifying opportunities for

specialization and ensuring consistency.
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