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I. Introduction 

The concept of a monitor as a method for ensuring mutual 
exclusion was introduced by Brinch-Hansen [2]. Hoare [5] 
developed the idea and introduced condition variables as a 
method of releasing the mutual exclusion while a process was 
waiting for a resource. A monitor may contain several condition 
variables, each associated with a different resource. The 
operation ~ is invoked when a process requiring the 
resource associated with the condition variable ~ond finds that 
it is not available. When another process releases or produces 
some of the resource it performs the ~ operation. 
Hoare described the operation of wait and signal by associating 
with each condition a queue of processes currently waiting for 
it. He then derived proof rules to formalize the semantics. 

Howard [6] noted an inadequacy in Hoare's proof rules and 
proposed extended rules. He demonstrated a monitor which 
simulated a counting semaphore with a constant of zero. This 
monitor, which also appears in Turski [7], is given below: 

monitor ~ ;  
var 

procedure £; 
begin 

11a := 8+1; 
if na > nv then ~.~.W.~.~; 

n4~ := a~ +I 
end £; 

procedure 
begin 

nv : = nv+l ; 
if Ika > II~ then ~ ;  

end ~; 

begin (initialization) 
:= O: 

n4~ := O; 
nv := 0 

end 

Neither Howard's nor Hoare's rules can be used to prove that 
this monitor does in fact satisfy the semaphore invariant of 
Habermann [4] , which is accepted as defining the semantics of 
the semaphore. Howard 9ustified his proof by specific 
assumptions, but did not generalize beyond this one example. 
This paper examines the inadequacy of the existing rules and 
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proposes new rules which can be used to prove the monitor 
semaphore. 

2. Proof Rules 

The proof rules given by Hoare [5] with a slightly alterated 
notation are: 

( ~ ) ~ ( ~ & ~ } and ( ~ & ~ ) cond.sianal ( ~ } 

where ~ is the monitor invariant and ~ is an assertion which 
describes the condition under which a process waiting on 
should be resumed. 

The extended rules given by Howard [6] are: 

( d & K ) .~.D.~u_W.aA_K ( ~ & ~ ) and ( ~ & H ) ~i~s.~Li ( ~ & ~ ) 

where ~ is an additional assertion which ensures that no ~ is 
satisfied unless the corresponding queue is empty. 

In Howard's monitor D~, .D,.~, and ~ count attempted ~ operations, 
successfull ~ operations, and ~ operations respectively. The 
monitor should satisfy Habermann's invariant for semaphores, 
which in this case reduces to: 

We will call this expression ~. A proQf that ~ is an invariant 
of the monitor involves proving that ~ is true after the 
initialization and that it is restored by the action of the 
monitor procedures. Howard's flawed proof is essentially as 
follows: 

monitor ~/LQ/L~ ; 
var 

I k ~ , . n . 1 2 , n v  : .i.IL~.eLg_~.Zl; 

procedure ~; 
begin 

( n42 = ~L~(~,nv) } 
D~ := ~+I; 
( ~ = ~Li/l(~-l,nv} } 
if ~i~ > nv then { D4~ = ~-~ 

( D42 < ~ 
( ~ = ~.Ltz(~.a,~)-I } 
a~ := ~+I 

& ~42 < ~a } 

& ~42 = Ii.~-I ); 
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end ~; 

procedure ~; 
begin 

( ~4~ = ~Li/l(~,nv) ) 
:= nv+l; 

( D4~ = ~Li/l(~,nv-l) } 
if /I~ > li~ then ( li~ > D42 & ~ = nv-I ) 

( ~ = KLi/1(11~,nv) } 
end ~; 

begin (initialization} 
Eu~ := O; 

n4~ := O; 
nv := 0 

( D4~ = ~Li/l(~L~,nv) ) 
end 

Both the original and extended proof rules have ~ & ~ as the 
precondition for ~/~_L/~L~. Clearly, the invariant ~ does not 
hold prior to ~XL~-~4~k, SO the proof cannot be justified on 
the basis of either set of proof rules. 

Hoare's informal semantics for the ~ operation make it 
clear that if there are no processes waiting on the queue of a 
particular condition, then signaling that condition is 
effectively a null operation; the signaling process simply 
continues. In this case the only way of achieving ~ as a 
postcondition of signal is to require it as a precondition. If 
there is a process waiting on the queue ( a situation 
characterized by Hoare's predicate ~ ) then control 
must pass to that process. Since this process is waiting for 
to become true, ~ must be a precondition of cond.signal in this 
case. However, the monitor invariant ~ is not a precondltion; 
the signalling process is not resumed until the waiting process 
has completed the monitor procedure, and thus restored ~. 

Thus we see that Hoare's precondition was too strict in two 
senses. It required ~ in all cases rather than just when the 
queue was empty, and it required ~ in all cases rather than just 
when there was a process waiting on the queue. A summary of the 
permissable preconditions of cond.signal and their semantics 
follows: 

resume the waiting process 

& ~ & not resume the waiting process 

& not ~ & null operation 

21 



not ~ & not ~ & ~ null operation 

The remaining four combinations are not permissable. The 
weakest prcondition for cond.signal is the disjunction of the 
above, which simplifies to: 

( ~ & E~L~_~L~ ) ~i ( ~ & not E~D~L~IL~L~ ) 

Note that since ~ is no longer a precondition of signal when a 
process is resumed, it cannot be assumed as a postcondition of 
wait. Thus we obtain the following new proof rules: 

The advantage of our rules is the weaker precondition of the 
rule for signal. This allows the rules to be applied to more 
programs: in particular they can be applied to the semaphore 
monitor. 

In the procedure ~ of the semaphore, ~ is represented 
by Ila > /i~: clearly, if /l~=Ii~ all the processes which called the 

procedure have completed iti so none are waiting. As in 
Howard's proof, we let ~ be 11~ < na & II~ = nv-l. In the then 
part of the conditional in ~, we have ~ & ~ ( see 
Howard's proof given above ). Thus the new proof rule for 
cond.signal applies and we may assume ~ as the postcondition. 
This completes the proof for the ~ procedure, since the rest of 
Howard's proof is sound. 

In the ~ procedure, ~ is implied by na > nv and the 
postcondition of II~ := II~+l, and thus we have established the 
precondition of E.~LdL~_W.~k.~. The rest of the proof is 
straightforward. 

3. Simplifying the semaphore monitor 

Our asymmetric proof rules help to illustrate that signal has 
two possible actions, whereas wait has only one. However, in 
the above semaphore monitor, signal only performs one of these 
actions. Since ~ & ~ always holds before cond.signal 
in procedure ~, E~D~L~/4~LL never acts as a null operation but 
always causes resumption of a waiting process. 

Interestingly, the ~ procedure will still perform the same 
function if the test /ll > II~ which guards cond.signal is 
omitted. The test of E~L~LL~ which takes place as part of 
the signal operation is exactly equivalent. The revised 
procedure becomes: 
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procedure ~ ( ~ ~ Ii~ = SLi/l(Da~,nv} ); 
begin 

( ~ = KLi/l(na,nv) } 
nv := nv+l; 

( ~ ~ D4~ = IKi/l(na,nv-l) ) 
r z u aa t 

end ~; 

Note that the precondition of ~ is satisfied since 

Q & ~ =-- Q & ~L~>n4~ => ~>134~ & Ja4~=~-~ -I rq I~ & cond.aueue 

and 

Q & not ~ =_ Q & II~ i ~ => D42=lla & llX-i _> 11a => /~ 

In the revised procedure 2, the variable np is now redundant and may 
be removed. It is what Clint [3] calls a "mythical variable", 
although "assertional variable" would be more suggestive. 

4. The Role of 

In Section 2 we repeated the conventional view that ~ is an 
assertion which describes the condition under which a process 
waiting on ~ should be resumed [5], [6], [7]. This is indeed 
true in the sense that a process released from a wait will find 

satisfied. However, the role of ~ has changed a little from 
that envisioned by the above referenced authors. 

In [5] Hoare disucsses a bounded buffer monitor and gives an 
implementation using two condition variables, ~ and 
~[Q-~-Lt/~/~, which indicate that the buffer is in the appropriate 
state. Clearly, before appending to the buffer it may be 
necessary to wait for the ~ signal; before removing a 
message it may be necessary to wait for the ~ signal. 
Figure 1 shows an implementation of such a buffer with a proof 
that the invariant is maintained. The implementatzon uses 
abstract sequences: UnitSeauence(~) is a new sequence containing 

as its only element, and + denotes sequence concatenation. A 
and ~ appear only in assignments to themselves, and need not be 
implemented: they are assertional variables like D42- 

The assertions ~ and ~ formally describe the conditions 
associated by Hoare with ~ and h~_~d~_~£. But the proof 
cannot be completed using, say, l~i for ~ul, the ~ associated with 
l~_Q_~_/l/~i. In order to obtain ( ~ & Buffer.lenath < ~ > at line 
17, ~ must be ~ & l~i, not just RI. Similarly, I~2~ must be ~ & I~2~. 
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With our proof rules the only information available to a process 
which has ~ust been released from a wait is the truth of the 
appropriate ~. So ~ must be strengthened to include not just 
the "resource condition" ~ but also any other information 
necessary to complete the proof. In the bounded buffer example 
Hoare's rules already supplied this information: by demanding 
& ~ as a precondition of signal they were able to supply it as a 
postcondition of wait. In general, our rules can be used in any 
proof which relies on Hoare's rules simply by strengthening ~ so 
that it implies ~. 

The semaphore example cannot be proved using: Hoare's rules 
because the ~ & K precondition they demand is too strong. K is 
nv > ~, the condition that the number of calls on ~ exceed the 
number of completed calls on 6. The proof in section 2 uses ~ 

< ~i~ & II~ = nv - /J_: no weaker ~ will suffice to establish 
at the conclusion of the £ procedure. 

Thus we see that the choice of ~ is quite critical, like the 
choice of a loop invariant. The resource invariant ~ is usually 
easy to identify from the problem definition. Certainly ~ must 
imply K, but its exact composition may be difficult to 
determine. 

5. Howard's Extended Proof Rules 

Howard's motivation for proposing his extended rules [6] was 
that Hoare's rules allow a process which could legally continue 
to be left waiting. He recogniz,ed two situations when this 
could occur: 

l) A procedure which makes available a resource for which a 
process is waiting might not signal the appropriate 
condition. 

2) A process may execute a P~DJi~bCW~i_K even though the resource 
associated with ~_Q/~I is available. 

As Howard states, the first situation can be prevented by the 
introduction of an additional predicate ~ (to be true at monitor 
exit) which allows a resource to be available only if there are 
no processes waiting for it. In the notation introduced above, 

is the conjunction of tnot ~ or ~ot ~/K~_~L~L~) for each 
condition in the monitor. Howard required that ~ be true 
whene~er- the inv~riant ~ must be true, except that after a wait 
and before a signal (when Hoare's rules required ~ & ~) Howard 
did not require ~ in addition. The reason should be obvious. 
However, our proof rules for wait and signal have weaker 
conditions in those places, so ~ may be incorporated into 
without difficulty. We do not need a revised set of rules to 
ensure that necessary conditions are signaled. All that is 
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necessary is ~ => K. 

The second situation~is not prohibited by Howard's preconditzon 
& ~. If the res,ource is available and the queue is empty then 

is true, and provided that ~ is true the precondition for wait 
is satisfied. Executing a ~ in these circumstances 
would place a process on the queue and release the mutual 
exclusion. The monitor is thus exited with 9~Q~_qAL~A~ & ~, i.e. 
not ~. This can be remedied by including not ~ in the 

precondition for wait, giving the rule: 

( ~ &' n o t  ~ ) ~ ( ~ ) 

In the semaphore example, ~ is nv > ~. The precondition of 
is ~ = ~ & 1~4~ < na. This clearly implies not ~ as 

well as ~. Indeed, we should_ be worried were this not the case. 
Habermann's invariant was designed to preclude unnecessary 
waiting. In a semaphore satisfying this znvariant ~ can 
only be executed when absolutely necessary. Thus we should 

expect to find that ~ is false before ~.Q/l~_~.~.i~.. 

In the bounded buffer example, ~ & not ~i is true on line 14 
after the then: the A~ statement ensures this. Slmilarly, ~ & 
not ~2~ is true on line 31 after the then. Thus the proof of the 
bounded buffer can be 9ustified with our r~euis'ed rule. 

If not ~i were not required as a precondition of NotFull.wazt, 
the test ~ L _  /~/~/I = ~ could be omitted entirely. The 
proof would be valid but any use of the buffer would lead to 
deadlock because the append procedure would wait unnecessarily. 

6. Conclusion 

Hoare's proof rules for monitors seem not to represent 
adequately the semantics, of the wait and signal operations. The 
following~rules are stronger and appear to capture more of the 

semantics: 

{ (~ & ~_~L~AL~) or {~ & not cond.oueue) ) cond.signal ( ~ } 

The invariant, ~, of the monitor must be true after the monitor 
is initialized and must be restored by every monitor procedure. 
The assertion ~ describes the condition under which a process 
waiting on cond should be resumed, and cond.oueue is true if 
there is at least one process waiting on cond. 

These rules may be used to prove any monztor whzch can be proved 
by the rules of Hoare. In addition, they can be used to prove 
other monitors; the semaphore monitor is an example. 
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The extended rules of Howard which attempt to prevent 
unneccessary waiting also seem inadequate. The following 
extension of our wait rule together with a more stringent 
invariant appear to accomplish that goal more effectively: 

( ~j & not ~ } ~ ( ~. ) 

where ~ affirms that the resource associated with ~ond is 
available, ~ => R, and ~ => ( not ~ S~/= not ~ ) for each 
condition in the monitor. 

One detracting feature of the rules proposed in this paper is 
the informal use of the predicate ~L~_~L~L~. In Section 2 we 
stated that within the ~ procedure na > 134~ ~ ~-~L~L~. 
However, this claim cannot be substantiated formally, although 
it is necessary for the formulation of the "correctness 
criteria" [3]. Without a correspondence between ~ and 
the variables in ~ and ~ our rule is no more powerful than 
Hoare's. 

The rule of assignment does not help us to establish the meaning 
of ~ because a ~ in one procedure affects the 
value of ~ in other textually unrelated ones. This 
seems to be a deficiency in the proof system. Perhaps a more 
powerful approach such as the concept of "cooperation between 
proofs" [I] is required. 
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monitor ~_QILD~ ~KL~_~_~.Ii(~ : PositiveInteger) ; 
( /~ly_a/Lia~.~ ~ ~ (~ = ~ + ~ & Buffer.lenath i ~) ) 

var 

A : ~ of m.es~.a~_e; 
E : ~ of message; 

~UJULe~ : ~ of me~.~g~; 
: ~ ( ~ ~ (Buffer.length < ~) ); 
: ~ ( ~2~ ~ (Buffer.length > O) ); 

procedure ~41~/i~(value ~ : IK~_~_~_~g_~); 
(~4Z~9~(~) ~-/~Q-/~-~-~ ~ := ~ + Uni~Sequence(~) ) 

begin 

( d ) 
if Buffer.lenath = ~ then ( ~ & not ~ ) 

NotFull.wait; 
( ~.i ) 

( ~ & Buffer.lenath < ~ ) 

( ~ = K + ~ + UDitSeauence(~) & Buffer.length < ~ ) 
:= ~ + UnitSeauence(~) ; 

( ~ & Buffer.lenath > 0 ) 

NotEmDtv.sisnal 

end a~p~D~; 
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procedure remove(result ~ : ~ ) ; 
( remove(z) ~AJD/~L~h-~ ~ := ~ + UnitSeauence(~) ) 

begin 

if Buffer.lenath = 0 then ( ~ & not ~2~ ) 
NotEmDtv.wait ; 

( ~ & Buffer.lenoth > 0 ) 
:= Buffer.first; 

:= Buffer.rest; 
{ ~ = ~ + UnitSeauence(~) + ~ & Buffer.lenath < ~ } 

° w 

:= ~ + UnitSeauence(~) ; 
° 

( ~ = ~ + ~ & Buffer.lenath < ~ ) 

NotFull.sianal 

end remove; 

45 

5O 

begin (initialization} 
( true } 

:= NullSeouence; 
K := NullSeauence; 

:= ~4ullSequenc@ 

end ~ 

Figure 1 
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