
On Proof Rules for Monitors

J. M. Adams and A. P. Black

An inadequacy is pointed out in the original proof rules for
monitors and in later extended rules. This inadequacy gives
rise to an anomaly in proving the invariant for a monitor
simulating a counting semaphore. New proof rules are proposed
and used to give a sound proof of the invariant.

Key Words and Phrases: concurrency, monitor, operating system,
proof rules, semaphores

CR Categories: 4.32, 4.35, 5.24

Authors' addresses: J. Mack Adams, Computer Science Department,
New Mexico State University, Las Cruces, New Mexico 88003;
Andrew P. Black, Department of Computer Science, University of
Washington, Seattle, Washington 98195.

18

I. Introduction

The concept of a monitor as a method for ensuring mutual
exclusion was introduced by Brinch-Hansen [2]. Hoare [5]
developed the idea and introduced condition variables as a
method of releasing the mutual exclusion while a process was
waiting for a resource. A monitor may contain several condition
variables, each associated with a different resource. The
operation ~ is invoked when a process requiring the
resource associated with the condition variable ~ond finds that
it is not available. When another process releases or produces
some of the resource it performs the ~ operation.
Hoare described the operation of wait and signal by associating
with each condition a queue of processes currently waiting for
it. He then derived proof rules to formalize the semantics.

Howard [6] noted an inadequacy in Hoare's proof rules and
proposed extended rules. He demonstrated a monitor which
simulated a counting semaphore with a constant of zero. This
monitor, which also appears in Turski [7], is given below:

monitor ~ ;
var

procedure £;
begin

11a := 8+1;
if na > nv then ~.~.W.~.~;

n4~ := a~ +I
end £;

procedure
begin

nv : = nv+l ;
if Ika > II~ then ~ ;

end ~;

begin (initialization)
:= O:

n4~ := O;
nv := 0

end

Neither Howard's nor Hoare's rules can be used to prove that
this monitor does in fact satisfy the semaphore invariant of
Habermann [4] , which is accepted as defining the semantics of
the semaphore. Howard 9ustified his proof by specific
assumptions, but did not generalize beyond this one example.
This paper examines the inadequacy of the existing rules and

19

proposes new rules which can be used to prove the monitor
semaphore.

2. Proof Rules

The proof rules given by Hoare [5] with a slightly alterated
notation are:

(~) ~ (~ & ~ } and (~ & ~) cond.sianal (~ }

where ~ is the monitor invariant and ~ is an assertion which
describes the condition under which a process waiting on
should be resumed.

The extended rules given by Howard [6] are:

(d & K) .~.D.~u_W.aA_K (~ & ~) and (~ & H) ~i~s.~Li (~ & ~)

where ~ is an additional assertion which ensures that no ~ is
satisfied unless the corresponding queue is empty.

In Howard's monitor D~, .D,.~, and ~ count attempted ~ operations,
successfull ~ operations, and ~ operations respectively. The
monitor should satisfy Habermann's invariant for semaphores,
which in this case reduces to:

We will call this expression ~. A proQf that ~ is an invariant
of the monitor involves proving that ~ is true after the
initialization and that it is restored by the action of the
monitor procedures. Howard's flawed proof is essentially as
follows:

monitor ~/LQ/L~ ;
var

I k ~ , . n . 1 2 , n v : .i.IL~.eLg_~.Zl;

procedure ~;
begin

(n42 = ~L~(~,nv) }
D~ := ~+I;
(~ = ~Li/l(~-l,nv} }
if ~i~ > nv then { D4~ = ~-~

(D42 < ~
(~ = ~.Ltz(~.a,~)-I }
a~ := ~+I

& ~42 < ~a }

& ~42 = Ii.~-I);

20

end ~;

procedure ~;
begin

(~4~ = ~Li/l(~,nv))
:= nv+l;

(D4~ = ~Li/l(~,nv-l) }
if /I~ > li~ then (li~ > D42 & ~ = nv-I)

(~ = KLi/1(11~,nv) }
end ~;

begin (initialization}
Eu~ := O;

n4~ := O;
nv := 0

(D4~ = ~Li/l(~L~,nv))
end

Both the original and extended proof rules have ~ & ~ as the
precondition for ~/~_L/~L~. Clearly, the invariant ~ does not
hold prior to ~XL~-~4~k, SO the proof cannot be justified on
the basis of either set of proof rules.

Hoare's informal semantics for the ~ operation make it
clear that if there are no processes waiting on the queue of a
particular condition, then signaling that condition is
effectively a null operation; the signaling process simply
continues. In this case the only way of achieving ~ as a
postcondition of signal is to require it as a precondition. If
there is a process waiting on the queue (a situation
characterized by Hoare's predicate ~) then control
must pass to that process. Since this process is waiting for
to become true, ~ must be a precondition of cond.signal in this
case. However, the monitor invariant ~ is not a precondltion;
the signalling process is not resumed until the waiting process
has completed the monitor procedure, and thus restored ~.

Thus we see that Hoare's precondition was too strict in two
senses. It required ~ in all cases rather than just when the
queue was empty, and it required ~ in all cases rather than just
when there was a process waiting on the queue. A summary of the
permissable preconditions of cond.signal and their semantics
follows:

resume the waiting process

& ~ & not resume the waiting process

& not ~ & null operation

21

not ~ & not ~ & ~ null operation

The remaining four combinations are not permissable. The
weakest prcondition for cond.signal is the disjunction of the
above, which simplifies to:

(~ & E~L~_~L~) ~i (~ & not E~D~L~IL~L~)

Note that since ~ is no longer a precondition of signal when a
process is resumed, it cannot be assumed as a postcondition of
wait. Thus we obtain the following new proof rules:

The advantage of our rules is the weaker precondition of the
rule for signal. This allows the rules to be applied to more
programs: in particular they can be applied to the semaphore
monitor.

In the procedure ~ of the semaphore, ~ is represented
by Ila > /i~: clearly, if /l~=Ii~ all the processes which called the

procedure have completed iti so none are waiting. As in
Howard's proof, we let ~ be 11~ < na & II~ = nv-l. In the then
part of the conditional in ~, we have ~ & ~ (see
Howard's proof given above). Thus the new proof rule for
cond.signal applies and we may assume ~ as the postcondition.
This completes the proof for the ~ procedure, since the rest of
Howard's proof is sound.

In the ~ procedure, ~ is implied by na > nv and the
postcondition of II~ := II~+l, and thus we have established the
precondition of E.~LdL~_W.~k.~. The rest of the proof is
straightforward.

3. Simplifying the semaphore monitor

Our asymmetric proof rules help to illustrate that signal has
two possible actions, whereas wait has only one. However, in
the above semaphore monitor, signal only performs one of these
actions. Since ~ & ~ always holds before cond.signal
in procedure ~, E~D~L~/4~LL never acts as a null operation but
always causes resumption of a waiting process.

Interestingly, the ~ procedure will still perform the same
function if the test /ll > II~ which guards cond.signal is
omitted. The test of E~L~LL~ which takes place as part of
the signal operation is exactly equivalent. The revised
procedure becomes:

22

procedure ~ (~ ~ Ii~ = SLi/l(Da~,nv});
begin

(~ = KLi/l(na,nv) }
nv := nv+l;

(~ ~ D4~ = IKi/l(na,nv-l))
r z u aa t

end ~;

Note that the precondition of ~ is satisfied since

Q & ~ =-- Q & ~L~>n4~ => ~>134~ & Ja4~=~-~ -I rq I~ & cond.aueue

and

Q & not ~ =_ Q & II~ i ~ => D42=lla & llX-i _> 11a => /~

In the revised procedure 2, the variable np is now redundant and may
be removed. It is what Clint [3] calls a "mythical variable",
although "assertional variable" would be more suggestive.

4. The Role of

In Section 2 we repeated the conventional view that ~ is an
assertion which describes the condition under which a process
waiting on ~ should be resumed [5], [6], [7]. This is indeed
true in the sense that a process released from a wait will find

satisfied. However, the role of ~ has changed a little from
that envisioned by the above referenced authors.

In [5] Hoare disucsses a bounded buffer monitor and gives an
implementation using two condition variables, ~ and
~[Q-~-Lt/~/~, which indicate that the buffer is in the appropriate
state. Clearly, before appending to the buffer it may be
necessary to wait for the ~ signal; before removing a
message it may be necessary to wait for the ~ signal.
Figure 1 shows an implementation of such a buffer with a proof
that the invariant is maintained. The implementatzon uses
abstract sequences: UnitSeauence(~) is a new sequence containing

as its only element, and + denotes sequence concatenation. A
and ~ appear only in assignments to themselves, and need not be
implemented: they are assertional variables like D42-

The assertions ~ and ~ formally describe the conditions
associated by Hoare with ~ and h~_~d~_~£. But the proof
cannot be completed using, say, l~i for ~ul, the ~ associated with
l~_Q_~_/l/~i. In order to obtain (~ & Buffer.lenath < ~ > at line
17, ~ must be ~ & l~i, not just RI. Similarly, I~2~ must be ~ & I~2~.

23

With our proof rules the only information available to a process
which has ~ust been released from a wait is the truth of the
appropriate ~. So ~ must be strengthened to include not just
the "resource condition" ~ but also any other information
necessary to complete the proof. In the bounded buffer example
Hoare's rules already supplied this information: by demanding
& ~ as a precondition of signal they were able to supply it as a
postcondition of wait. In general, our rules can be used in any
proof which relies on Hoare's rules simply by strengthening ~ so
that it implies ~.

The semaphore example cannot be proved using: Hoare's rules
because the ~ & K precondition they demand is too strong. K is
nv > ~, the condition that the number of calls on ~ exceed the
number of completed calls on 6. The proof in section 2 uses ~

< ~i~ & II~ = nv - /J_: no weaker ~ will suffice to establish
at the conclusion of the £ procedure.

Thus we see that the choice of ~ is quite critical, like the
choice of a loop invariant. The resource invariant ~ is usually
easy to identify from the problem definition. Certainly ~ must
imply K, but its exact composition may be difficult to
determine.

5. Howard's Extended Proof Rules

Howard's motivation for proposing his extended rules [6] was
that Hoare's rules allow a process which could legally continue
to be left waiting. He recogniz,ed two situations when this
could occur:

l) A procedure which makes available a resource for which a
process is waiting might not signal the appropriate
condition.

2) A process may execute a P~DJi~bCW~i_K even though the resource
associated with ~_Q/~I is available.

As Howard states, the first situation can be prevented by the
introduction of an additional predicate ~ (to be true at monitor
exit) which allows a resource to be available only if there are
no processes waiting for it. In the notation introduced above,

is the conjunction of tnot ~ or ~ot ~/K~_~L~L~) for each
condition in the monitor. Howard required that ~ be true
whene~er- the inv~riant ~ must be true, except that after a wait
and before a signal (when Hoare's rules required ~ & ~) Howard
did not require ~ in addition. The reason should be obvious.
However, our proof rules for wait and signal have weaker
conditions in those places, so ~ may be incorporated into
without difficulty. We do not need a revised set of rules to
ensure that necessary conditions are signaled. All that is

24

necessary is ~ => K.

The second situation~is not prohibited by Howard's preconditzon
& ~. If the res,ource is available and the queue is empty then

is true, and provided that ~ is true the precondition for wait
is satisfied. Executing a ~ in these circumstances
would place a process on the queue and release the mutual
exclusion. The monitor is thus exited with 9~Q~_qAL~A~ & ~, i.e.
not ~. This can be remedied by including not ~ in the

precondition for wait, giving the rule:

(~ &' n o t ~) ~ (~)

In the semaphore example, ~ is nv > ~. The precondition of
is ~ = ~ & 1~4~ < na. This clearly implies not ~ as

well as ~. Indeed, we should_ be worried were this not the case.
Habermann's invariant was designed to preclude unnecessary
waiting. In a semaphore satisfying this znvariant ~ can
only be executed when absolutely necessary. Thus we should

expect to find that ~ is false before ~.Q/l~_~.~.i~..

In the bounded buffer example, ~ & not ~i is true on line 14
after the then: the A~ statement ensures this. Slmilarly, ~ &
not ~2~ is true on line 31 after the then. Thus the proof of the
bounded buffer can be 9ustified with our r~euis'ed rule.

If not ~i were not required as a precondition of NotFull.wazt,
the test ~ L _ /~/~/I = ~ could be omitted entirely. The
proof would be valid but any use of the buffer would lead to
deadlock because the append procedure would wait unnecessarily.

6. Conclusion

Hoare's proof rules for monitors seem not to represent
adequately the semantics, of the wait and signal operations. The
following~rules are stronger and appear to capture more of the

semantics:

{ (~ & ~_~L~AL~) or {~ & not cond.oueue)) cond.signal (~ }

The invariant, ~, of the monitor must be true after the monitor
is initialized and must be restored by every monitor procedure.
The assertion ~ describes the condition under which a process
waiting on cond should be resumed, and cond.oueue is true if
there is at least one process waiting on cond.

These rules may be used to prove any monztor whzch can be proved
by the rules of Hoare. In addition, they can be used to prove
other monitors; the semaphore monitor is an example.

25

The extended rules of Howard which attempt to prevent
unneccessary waiting also seem inadequate. The following
extension of our wait rule together with a more stringent
invariant appear to accomplish that goal more effectively:

(~j & not ~ } ~ (~.)

where ~ affirms that the resource associated with ~ond is
available, ~ => R, and ~ => (not ~ S~/= not ~) for each
condition in the monitor.

One detracting feature of the rules proposed in this paper is
the informal use of the predicate ~L~_~L~L~. In Section 2 we
stated that within the ~ procedure na > 134~ ~ ~-~L~L~.
However, this claim cannot be substantiated formally, although
it is necessary for the formulation of the "correctness
criteria" [3]. Without a correspondence between ~ and
the variables in ~ and ~ our rule is no more powerful than
Hoare's.

The rule of assignment does not help us to establish the meaning
of ~ because a ~ in one procedure affects the
value of ~ in other textually unrelated ones. This
seems to be a deficiency in the proof system. Perhaps a more
powerful approach such as the concept of "cooperation between
proofs" [I] is required.

References

[i] Apt, K.R. , Francez, N. and de Roever, H.P. A proof system for
communicating sequential processes. ~_r_a/l~_~. ~_Q~ i~L~ ~_~_~ ~,
3 (July 1980), 359-385.

[2] Brinch-Hansen, P. Q4~aSJJ~ ~ - ~ Principles. Prentice-Hall,
Englewood Cliffs, N. J. 1973.

[3] Clint, M.
(1973).

Program proving: coroutines. Acta /~_ ~, 50-63

[4] Habermann, A.N. Synchronization of communicating processes.
Comm. ACM /~,3 (March 1972) 171-176.

[5] Hoare, C.A.R. Monitors: an operating system structuring
concept Comm. ACM ~LZ.,iO (Oct. 1974) , 549-557.

[6] Howard, J. H.
273-279.

Proving monitors. Comm. ACM /~9., 5 (May 1976),

[7] Turski, N.M. ~QK~L~ Programming Methodology: Heyden & Sons,
London. 1978.

26

5

I0

15

20

25

monitor ~_QILD~ ~KL~_~_~.Ii(~ : PositiveInteger) ;
(/~ly_a/Lia~.~ ~ ~ (~ = ~ + ~ & Buffer.lenath i ~))

var

A : ~ of m.es~.a~_e;
E : ~ of message;

~UJULe~ : ~ of me~.~g~;
: ~ (~ ~ (Buffer.length < ~));
: ~ (~2~ ~ (Buffer.length > O));

procedure ~41~/i~(value ~ : IK~_~_~_~g_~);
(~4Z~9~(~) ~-/~Q-/~-~-~ ~ := ~ + Uni~Sequence(~))

begin

(d)
if Buffer.lenath = ~ then (~ & not ~)

NotFull.wait;
(~.i)

(~ & Buffer.lenath < ~)

(~ = K + ~ + UDitSeauence(~) & Buffer.length < ~)
:= ~ + UnitSeauence(~) ;

(~ & Buffer.lenath > 0)

NotEmDtv.sisnal

end a~p~D~;

30

35

40

procedure remove(result ~ : ~) ;
(remove(z) ~AJD/~L~h-~ ~ := ~ + UnitSeauence(~))

begin

if Buffer.lenath = 0 then (~ & not ~2~)
NotEmDtv.wait ;

(~ & Buffer.lenoth > 0)
:= Buffer.first;

:= Buffer.rest;
{ ~ = ~ + UnitSeauence(~) + ~ & Buffer.lenath < ~ }

° w

:= ~ + UnitSeauence(~) ;
°

(~ = ~ + ~ & Buffer.lenath < ~)

NotFull.sianal

end remove;

45

5O

begin (initialization}
(true }

:= NullSeouence;
K := NullSeauence;

:= ~4ullSequenc@

end ~

Figure 1

27

