
Objects are Enough — A Position Paper
ECOOP '93 workshop on Object-based Distributed Programming

Andrew P. Black
Digital Cambridge Research Laboratory

I. Objects Encapsulate Location

The idea of using an object to encapsulate the implementation details of a computational structure is
central to object-oriented programming. Objects can also be used as the unit of distribution, that is,
each object can be confined to a single address space. Alternatively, object boundaries can be taken
as orthogonal to distribution boundaries, thus admitting the possibility that parts of an object may be
in different address spaces. A mechanism must then be provided for the various parts of the
distributed object to communicate with each other.

Our experience is that it is perfectly adequate to let object boundaries also encapsulate location. In
other words, we require that the whole of an object be in a single address space. The added
complexity of a truly distributed object does not seem to be warranted. If a given object’s state
appears to need to be distributed, the desired effect can always be obtained by partitioning the state
of the given object into smaller objects, each of which is located in a suitable (possibly remote)
address space. The original object’s state can now be replaced by references to the new objects.

II. Invocation Encapsulates Communication

In a centralized environment, the insistence of the object model that every operation be represented
as a message sent to an object is cumbersome and unnatural. In a distributed environment, the idea
that 3 + 4 means send the message ‘+4’ to the object ‘3’ reflects the communication that is actually
necessary to compute the sum. Moreover, it makes us conscious that a while the representations of
the two objects may be quite different, a mutually understood way of transmitting the parameter to the
target of the invocation must exist.

III. Little Need be added for Distributed programming!

Many people ask what they should add to their programming environment to make it capable of
distributed programming. And a few extra facilities are often necessary — the ability to ask where an
object is located, for example. But the longest list is usually of those “features” that must be taken out
of the language because of their genuine implementation difficulty or semantic obscurity in a
distributed setting.

1. Disallow the testing of equality on object identity

• It compromises encapsulation

A number of writers have recently pointed out that enabling clients to ascertain, by
comparing the identity of the references to two interfaces, whether they are (or are not)
implemented by the same object compromises encapsulation.

• It is expensive to implement in the absence of global naming

Not all object systems incorporate a global naming scheme. Alternative arrangements
whereby all object names are relative to the object that holds the reference are quite
workable; the relative name may be thought of as a path from the referee to the referent.
Even if global names exist, it is usually more efficient to allocate a global name to an object
only when its name must be passed to a remote location, and for on-machine references to
be abbreviated. Thus, many objects may not have or need a global name, and even for
those objects that do have such names, finding them may involve non-trivial computation.

• It may limit one’s freedom to replicate immutable objects

In the case of immutable objects in a centralized system, there is no need to distinguish
between value-based equality and object-identity; it is convenient to adopt the semantics
that “3” is the denotation for a unique integer object, and that whenever a program
mentions “3”, it refers to the very same object. The number of copies of 3 that the
implementation makes is irelevant. For simple objects such as integers, it is fairly easy to
preserve this semantics in the face of distribution, even though most implementations will
keep multiple copies of each immutable object. However, for immutable objects with a
complex recursive structure, it can be very hard to ensure that identically-valued objects
created on separate machines share the same object identifier.

2. Don’t require a one-to-one mapping between Object IDs and Objects
In a distributed system, objects are often replicated for reliability. Clients need a mechanism
whereby the replicated service can be accessed as if it were a single object, without
compromising the ability to “fail-over” from one representative to another. This can be
achieved in a straightforward way provided that there is no assumption that an object
identifier refers to a unique object. (The paper “Encapsulating Plurality”, to be presented at
the conference, contains the full details, so they will not be repeated here.)

3. Don’t use classes
I distinguish object-oriented languages, in which objects are the primary structure with which
programmers concern themselves, from class-oriented languages, in which programmers
deal with objects via a level of indirection. Simula and Smalltalk are the prototypical
class-based languages. Some such languages allow changes to a class — by assignment
to a class variable, by modification of the method code, or by the addition of new methods —
to change the behaviour of all of the objects that have ever been created from that class.

Class-based languages also tend to use classes as a classification mechanism; objects that
are not created from the same class are assumed to be dissimilar, even though they may
behave identically.

In a distributed system, there is no simple and efficient mechanism whereby changes to a
class variable or to a class’ method code can be quickly and consistently seen by multiple
objects on remote machines. Moreover, it is common for there to be multiple
implementations of the same specification at different locations; this may be because the
implementations were built by different vendors, or because the hardware of the machines on
which they are running have different characteristics. In such a system, it is more natural to
treat objects as autonomous: each owns its own code and data, and classification of objects
must be done on the basis of their (public) interfaces rather than on their (private) code.

4. Don’t “generalize” the object Model
Having confused themselves by abandoning objects and thinking instead about classes,
some workers have observed that the differing behaviour of

aCowboy.draw

and

aRectangle.draw

is due to the fact that aCowboy and aRectangle have different classes. (In fact, it is because
they are different objects). They then extrapolate to invocations with arguments:

 printer.print(aPostscriptFile, doubleSided)

and

Objects are Enough — 25th July 1993 Page 2 of 3

 stream.print(“Today’s date is”, today)

and conclude that it is necessary for the code selected by the invocation mechanism to
depend not only on the class of the target object, but also on the class of the arguments.
They call this extrapolation a “Generalized Object Model”, perhaps hoping to imply that
because the classical object model is a special case, the generalized model is therefore
better.

It turns out that the “Generalized” model can be implemented in the classical model, using a
technique described by Ingalls at OOPSLA in 1986. The idea is to discriminate first on the
target, and then on the arguments one at a time. Proponents of the generalized model
argue that this is inefficient and convoluted, and in a centralized system, where it is possible
to have global knowledge of all objects and of all of the invocations that they understand, this
argument may have some force. But in a distributed system, it does not. The only
distributed implementation of the generalized object model of which I am aware requires
exactly the cascading of discriminations that Ingalls described. Programming this explicitly in
the rare cases where it is required is acceptable; incorporating it into the basic computational
model, and thus forcing it on every invocation, is not.

5. Don’t be distracted by generic functions
Some recent work has attempted to subsume object-oriented computation into a model
based on generic functions. Let’s look at an example:

selectPoint √ √ √
drawTo √ √ √ √ √
moveTo √ √ √ √ √

setWidth √ √
arrowTo √ √

M
ar

ke
r

P
en

ci
l

E
ra

se
r

Li
ne

S
pl

in
e

The object-oriented view classifies things by columns; each column corresponds to a
particular object (a marker, a pencil, and so on). A tick indicates that the corresponding
method (selectPoint, setWidth, and so on) is understood by that object.

The generic function view classifies things by rows; each row represents a generic function
that is specialized for each of the “data structures” that are represented by the columns.

Of course, both views are equivalent — until one considers distribution boundaries! Because
the distribution boundaries are vertical, the object-oriented view is much more useful when
we are concerned with distribution. Moreover, when we have distribution we must allow
allow for evolutionary growth. The chart grows by adding new columns, not new rows!

The generic function model of computation may have its place — but not in the world of
distributed computation.

Objects are Enough — 25th July 1993 Page 3 of 3

	Objects are Enough — A Position Paper
	I. Objects Encapsulate Location
	II. Invocation Encapsulates Communication
	III. Little Need be added for Distributed programming!
	1. Disallow the testing of equality on object identity
	2. Don’t require a one-to-one mapping between Object IDs and Objects
	3. Don’t use classes
	4. Don’t “generalize” the object Model
	5. Don’t be distracted by generic functions

