
Object Identity

A Position Paper for I-WOOOS '93

Andrew P. Black

Cambridge Research Laboratory

Digital Equipment Corporation

This position paper discusses the rôle of Object Iden-
tity in object-oriented systems. A distinction is drawn
between object identity and object identi�er; the for-
mer is an intrinsic part of an object-oriented system,
while the latter is not. An equality test on object
identi�ers breaches encapsulation; such a test should
therefore only be enabled at the speci�c request of the
implementor of an abstraction.

1 Object identity is fundamental

I believe that object identity is fundamental to
object-oriented systems: the existence of some con-
cept of object identity is one of the attributes that
makes a system object-oriented.

Consider the semantic equations that give mean-
ing to the constructs of an object-oriented language.
Clearly, the meaning of self depends on the identity
of the containing object. The meaning of any identi-
�er i also depends on the identity of the containing
object. Thus, the semantic function that de�nes the
meaning of an expression like i must take amongst
its parameters some indication of the identity of the
current object.

An application built on an object-oriented operat-
ing system may have its own notion of identity that
di�ers from that provided by the underlying system.
For example, clients of a replicated directory service
may wish to regard all the replicas of a particular di-
rectory as identical. Because these replicas are (by de-
sign) distinct system-level objects, they have di�erent
identities as far as the underlying system is concerned.
Indeed, understanding that they are distinct objects is
vital to the correct implementation of the replication
protocol. The fact that di�erent notions of identity
exist at di�erent levels of abstraction is not an argu-
ment against the centrality of the concept of identity
to object-orientation.

2 \Identity" should be distinguished
from \Identi�er"

Just because identity is essential, it does not fol-
low that it must be possible to reify the identity of
an object into a form that can be manipulated in the
language itself. For example, it is possible to give a
perfectly satisfactory semantics for an object-oriented
language by representing each object as a separate
state function: rather than having a single global state
from which the right part must be extracted by in-
dexing with some sort of object identi�er, each object
can instead be represented as a separate state. These
states, being functions from locations to values, might
not themselves be expressible in the language. Even
if they are expressible, they cannot be compared for
equality.

3 Should Objects have Identi�ers?

The question that we should ask, then, is not
whether the concept of object identity should be man-
ifest to programmers, but in what ways should pro-
grammers be allowed to manipulate object identity.
Given a reference to an object, what can be done with
it, beyond invoking the object to perform one of the
operations in its protocol? At one extreme is the an-
swer \nothing at all"; the other extreme is to give
object references a full set of operations, like those
available on integers.

The minimal set of operations that enable a
programmer to implement more complex operations
seems to be

hash : object ! integer
equal : object � object ! Boolean

In theory, hash is super
uous: it is possible to
implement hash using equal and exhaustive search.
Although the ine�ciency that this would introduce
makes hash desirable in practice, for the purpose of
theoretical analysis we can con�ne discussion to the



availability of an equality operation on object refer-
ences.

4 The Case against Object Reference
Equality

Providing an equality operation on object refer-
ences breaches encapsulation. Consider a �le object
with an operation openForReading that returns a byte
stream. Although the �le and stream objects are dis-
tinct in the abstract, they may well be implemented by
(two di�erent interfaces of) the same concrete object.
But perhaps they are implemented by distinct con-
crete objects, or perhaps this choice has been made dif-
ferently by di�erent implementors. Whatever choice is
made, it should be the private concern of the imple-
mentor. The client of the �le and the stream should
not be able to ask if they are in fact the same object.

If unrestricted equality on object references is per-
mitted, implementation secrets such as this cannot be
safeguarded. In contrast, if object reference equal-
ity is not provided as a primitive, the implementor of
a particular object is free to export various equality
operations. Should unique identi�ers be required, the
implementor can even provide an oid operation, by the
simple expedient of storing a su�ciently large unique
integer in one of the �elds of the object.

5 The Case for Object Reference
Equality

Caching is a tremendously useful technique for im-
proving the performance of distributed systems. Con-
sider a system that lets a user browse through cata-
logues held on a large collection of remote computers.
Potentially interesting catalogue cards can be tagged
and set aside for further examination.

Getting the data associated with a particular cata-
logue card is an expensive remote operation. But the
second time that the user selects a given card, the data
can be displayed immediately if it has been cached on
the local computer. Moreover, a cross-reference card
that refers to the same object should be able to take
advantage of the cached data too. The simplest way
of organizing the cache is to key it on object identity:
this requires the ability to test object references for
equality (and, in practice, to hash them).

\Simulating" object identi�ers by storing large in-
tegers as one of the �elds of the data objects is not
a practical alternative. Since accessing such an \oid
�eld" would require a remote operation, and access to

the cache is keyed by oid, searching the cache would
take just as long as obtaining the remote data. If
the performance penalty involved here were minor,
we might dismiss this argument as seeking to sacri�ce
conceptual clarity on the alter of e�ciency. But the
cost of a remote operation may be a thousand times
greater than the cost of a local operation. Without
an e�cient way to maintain a cache, many distributed
applications become impossible.

6 A Compromise?

One possible compromise is to allow the implemen-
tor to decide whether to provide an oid operation, and
thus whether or not to expose the identity of the un-
derlying object, but to provide system and language
support to make this operation particularly e�cient.
In particular, going from an object to an oid should
not require a (possibly remote) invocation on the ob-
ject; the oid is actually extracted from the object ref-
erence itself. However, the implementor of an object
would retain the discretion not to provide an oid op-
eration at all, if that were inappropriate. So it might
be possible for a client to discover that two directory
entries actually referred to the same �le, but not that
two streams were actually reading the same �le, even
though all four references might actually name the
same implementation-level object.

Even with this compromise, it should be realised
that requesting system support for oids is likely to im-
pose a cost. For example, the implementation might
not normally use uids in its object references, so re-
questing system support for oids might increase the
size and complexity of the object reference, even for
clients that do not use oids.

7 Summary

Object identity, as an abstract concept, is essential
to object-oriented systems. The rei�cation of object
identity as some form of object identi�er is sometimes
very convenient, but never essential.

Object-oriented operating systems should consider
the costs and bene�ts of providing object identi�ers
and comparison operations thereon. There are costs
as well as bene�ts, and the costs may impinge on all
clients, even on those that do not use object identi�ers.
One of the costs is the breaching of object encapsula-
tion; for this reason, the designers of abstractions must
be able to inhibit the use of the identity operation on
the references to their objects.


