
Position paper

1991 ECOOP Workshop on Types, Inheritance, and Assignment

Norman C. Hutchinson

Department of Computer Science

University of British Columbia

Vancouver, B.C., Canada

May 23, 1991

Background

Historically, types have been required to serve two purposes:

� Classi�cation of the entities involved in a computation, and

� Providing \representation independence"; ensuring that the meaning of a program is not

dependent on the representations chosen for its values.

If we throw away all of the baggage that the phases \object-oriented" and \object-based" have

accumulated over the last decade, we can see that the fundamental advantage that systems that

support objects have over systems that do not is encapsulation. That is, a system that supports

objects requires the grouping of data and operations and guarantees that only those operations de-

�ned with the data will be allowed access to the data. The encapsulation of objects provides exactly

the \representation independence" mentioned above; it ensures that only code that understands

the representation used for data will be allowed access to that data.

Objects and types

Accepting the object-oriented philosophy allows us to rethink the question of what we want from

our type systems. We already have a mechanism for enforcing encapsulation, what we need is a

mechanism for the classi�cation of objects. There are two major forms of classi�cation that we
might desire:

� Classi�cation based on implementation. The class systems that have evolved since Simula

address this need very nicely. One can de�ne a subclass of an existing class as a re�nement:

either extending or modifying the behaviour of the superclass.

Such a classi�cation scheme is of interest to the programmer of a collection of classes because

it allows her to reuse code, ensure that objects behave in a consistent way, etc. It is also of

interest to the compiler writer because the information about how objects are implemented

can be exploited to generate smaller objects and faster code.

� Classi�cation based on the abstract invocation protocol implemented by the object. By this

I mean that each \client" of an object expects the object to implement a particular collection

of operations, and any supplied object that implements all of the required operations meets

(at least syntactically) the requirements imposed by that client.1

1We could strengthen this form of classi�cation by requiring that the object's semantics appropriately satisfy the

demands of the client. While this is obviously desireable, I believe this to be outside of the scope of type systems.

1



Example of such requirements abound. A window manager expects a particular protocol from

each window under its control (move, resize, refresh, terminate). A �le system expects its

directories to implement add, lookup, delete, and list.

One can simulate this in a traditional object-oriented system by creating abstract superclasses

that de�ne \dummy" implementations of the operations and then subclassing to get each of

the various implementations. There are at least two important problems with this approach:

{ You must have the insight to do this in advance of the need, since adding superclasses

to existing objects is not generally possible.

{ I believe that this kind of classi�cation is fundamental, and we must directly address the

need rather than simulating it using mechanisms that were designed to solve a di�erent

problem.

Position

I believe that in order to ful�ll their full potential, object-oriented systems must address both of

these forms of classi�cation. I therefore believe that we need to be talking about two notions of
typing for object-oriented languages. I therefore believe that class, which has historically referred

to classi�cation based on implementation should continue to address this need, and that type should

be used for classi�cation at the abstract level, separate from implementation.

There are a number of issues that must be addressed by further research.

Subclass vs. subtype

Does creating a subclass imply that it must be or should be a subtype? Without additional

restriction, a subclass may not be a subtype since the subclass may rede�ne the types of

arguments or results to an operation. Whether languages should force a subclass to also be
a subtype is not so clear.

Type inference

Type inference can be done at both levels, for di�erent purposes. Type inference at the

abstract level can free the programmer from the tedium of specifying all the type information.

Type inference at the concrete level provides the compiler with additional information to aid

in optimization.

Implementation

If typing is done at an abstract level, then the compiler gets no information (in general) about

the implementations of the objects that are being manipulated. How can one eÆciently im-

plement method lookup under these circumstances? The methods used in untyped languages

can surely be applied, but can one approach the eÆciency of the single level of indirection

achievable in languages where typing is based on classes?

The Emerald programming language has been exploring these notions for the past several years,
and has partial answers to some of the questions, but much more work needs to be done.

2


