The Case for Multiple Views

Andrew P. Black and Mark P. Jones

Department of Computer Science & Engineering, OGI School of Science & Engineering,
Oregon Health & Science University

{black, jones}@cse.ogi.edu

Abstract

We argue that viewing a program as a linear sequence of
symbols on paper or on a display is outmoded and unnec-
essarily restrictive. Instead, programs should be regarded
as complex multi-dimensional artifacts on which linear
text provides but one possible view. Freeing ourselves from
these restrictions is very difficult: it requires not only a
modest amount of new technology, but also a qualitative
change in the way that programmers think.

However, the potential benefits are enormous. Multiple
views make it easier to understand complex programs, and
provide a unifying framework for many common program
transformations. In addition, Multiple views provide a
solution for language designers trying to choose between
competing alternatives: provide the advantages of both,
but in different views.

1. Introduction

Since the dawn of computing, programs have been thought
of as linear text, stored first on paper tape and then on mag-
netic media, and presented to programmers in the form of a
“listing”. We believe that this one-dimensional view of pro-
grams is completely inadequate to represent the complex
structure of a large program. Instead, we are seeking to
apply the power of information technology to the process
of programming itself, using computers to present pro-
grams in a far richer form. The long-term goal of our
research is to change the way that programs are written,
read, maintained, modified, and evolved.

Our approach is based on the realization that people
understand a complex artifact more quickly and more eas-
ily if they can see multiple views of the artifact. An archi-
tect seeking to describe the design of a building to a client
does not give the client a single drawing: the architect pro-
vides site models, building models, plans, elevations, per-
spectives and interior views. Each of these views shows
some aspect of the proposed building to best advantage,
while ignoring or glossing over details that are irrelevant to
that aspect. The same glossed-over details may take center
stage in some other view.

Programs, particularly large programs that have evolved
over time and have passed through many hands, are every

To be presented at the Workshop on Directions in
Software Engineering Environments, ICSE 2004, Edinburgh

bit as complicated as large buildings. Indeed, modern soft-
ware systems may well be the most complex artifacts that
humankind has ever created. Chosen judiciously, multiple
views can be a powerful aid to mastering this complexity.

We are working to develop both practical tools and the
supporting theory that is necessary for constructing and
using multiple views. We are focusing first on the coarse
structure of object-oriented programs, by which we mean
the structure of the program above the level of methods: we
focus on using multiple views to elucidate the varied and
complex ways in which methods, classes and state interact,
rather than to show the internal structure of individual
methods.

Our research methodology combines experimentation
and theory: we are building prototype tools that can be
evaluated through use, but the tools will be supported by a
consistent conceptual framework that rests upon a sound
theoretical base.

As our prototypes have evolved, we have found an addi-
tional and unexpected benefit of multiple views: they pro-
vide a way of avoiding many of the thorny political
decisions that plague a language design. This includes
somewhat superficial decisions, such as whether a lan-
guage should use keywords rather than symbols, or paren-
theses, rather than spaces to delimit parameters. Instead of
laying down the law in these matters, these features can be
represented in different ways in different views. With
proper tool support, much deeper questions, such as
whether typing should be explicit or implicit, strong or
soft, can also be un-asked.

To date, we have been focusing our efforts in two areas:
the implementation of a multiple-view browser for Java,
and the structuring of classes using traits.

1.1. A Multiple-view Browser for Java

The Java language treats programs as the composition of a
set of classes, and most editors and development environ-
ments expect the programmer to view a whole class at a
time. This is similar to the way that a building is a com-
posed of several floors, and a set of architect’s plans lets us
view one floor at a time. However, we have found that it is
also valuable to treat a Java program as if it were composed

Page 1



of generic operations that are defined on objects of many
different classes using case discrimination. The generic
operation view has similar properties to elevations of and
sections through a building: the elevations and sections
contain the same information as the plans, but highlight
relationships that would otherwise be hidden. Thus, if our
programming task involves adding operations to a family
of related classes, the generic operations view is much
more useful than the class-by-class view because the latter
does not reveal the complex relationships between the
methods in different classes. Other programming tasks
may be assisted by flattening the inheritance hierarchy and
showing all of the methods that are understood by
instances of a class, no matter whether they are inherited
or implemented locally.

We are targeting this work on Java because of its grow-
ing importance as a commercial programming language.
Many vendors offer integrated development environments
(IDEs) for writing and maintaining Java programs. How-
ever, all of the IDEs of which we are aware compel the
programmer to adopt a file-by-file or class-by-class view,
which does not always match the programmer’s task.

1.2. Structuring a Class using Traits

Classes are more than collections of methods and fields;
they frequently have a rich internal structure. Some
aspects of that structure, such as inter-method dependen-
cies, can be inferred, as is done by Lanza’s Blueprints [9].
However, other kinds of structuring, such as logical group-
ing of methods, should be expressible by the programmer.
We are working to develop a theory of class structure, and
programming tools that exploit this theory to display the
structure of a class using multiple views. These views may
be placed on a continuum: at one extreme is the flat view,
which shows no internal structure at all above the level of
field and method. At the other extreme is the fully struc-
tured view, with fields and methods being grouped into
semantically coherent components that are nested inside
each other and conjoined to create higher-level compo-
nents, which in turn are used to build yet higher level com-
ponents and, eventually, whole classes. The conventional
view —and the only view supported by common languages
and tools —shows a class as comprising exactly three com-
ponents: its own fields, its own methods, and its super-
class. This view lies on our continuum, but is not the only
useful view between the extremes.

Our theory breaks classes into small components that
we call traits. A trait represents a unit of reusability
smaller than a class; classes are built from traits, but the
same trait can be reused in many classes.We have built a
Smalltalk browser that supports the decomposition of
classes into traits [2], and we have started to use traits on
sizable programs [1]. Because of the compositional prop-
erties of the trait operators, traits provide a natural frame-
work for viewing classes in multiple ways: the flat view,
the fully structured view, and many intermediate views can

Page 2

all be expressed using traits. We have also defined a vari-
ety of operators that can be used to modify traits and com-
bine them into larger traits and into classes.

Traits were first defined and implemented in the context
of Squeak Smalltalk, an excellent experimental platform
that enables rapid development and evaluation of different
versions of the trait algebra and supporting programming
tools. However, to maximize our influence on practising
programmers, we are in the process of developing a simi-
lar model for Java. We also plan to enhance the multiple-
view browser so that it supports the decomposition of Java
classes into traits, and allows this decomposition to be
viewed at different levels of aggregation.

Several features of Java — notably types, overloading and
the absence of a metaclass hierarchy —raise significant
issues that the Smalltalk version of traits did not need to
address. We are working to develop the theory of traits to
overcome these problems and provide Java programmers
with the same benefits that we have begun to enjoy when
we program with traits in Smalltalk.

2. Background

The idea behind a software engineering environment that
provides multiple views is not new. Multiple views have
been explored in requirements engineering (e.g.,[12]), and
across the software life-cycle (see Scott Meyers’ survey
[11]). The Desert environment built by Steve Reiss and his
students at Brown [14, 15] — focussing as it does on pro-

gramming rather than other aspects of the life-cycle, and
on presenting all the views in a single tool — approaches
our ideal more closely, although Desert still treats pro-
grams as text objects that are stored in files. Theme-based
literate programming [7] is based on a similar ideal. Our
focus on treating a program as a higher-level abstraction,
of which any given view is just that—a view —draws on
several additional sources, which we now describe.

2.1. Refactoring

A refactoring is a source-to-source transformation on a
program that preserves its execution semantics [5, 13]. The
purpose of a refactoring is to improve the structure of a
program, for example, to remove duplication or to make it
easier to perform a modification. An example of a refactor-
ing is abstract field, which replaces all direct accesses to a
field by calls to accessor (‘get’ and ‘set’) methods.
Another refactoring, enabled by abstract field, is replace
eager by lazy initialization. The inverse operations are also
refactorings; neither form of the program is absolutely
“better” than the other, but may be more appropriate for a
specific purpose. Refactoring is essential if code quality is
to be maintained as a program evolves. The Refactoring
Browser [16], a tool for automating the refactoring of
Smalltalk programs, showed that tools encourage refactor-
ing and reduce the risk of introducing errors. Several com-



mercial refactoring tools are now available for Java.

As we have said, refactoring is classically thought of as
a transformation between two programs. The point of
departure of our research was the realization that each
refactoring can also be thought of as defining an equiva-
lence relation on programs. Thus, a refactoring partitions
the space of all programs into equivalence classes. If we
shift our attention from the individual elements of these
equivalence classes to the classes themselves, we have
raised the level of abstraction of the programming process.

How are these equivalence classes to be presented to
the programmer? How can we focus on the essence of the
equivalence class—the common behavior of the witness
programs—and ignore the superficial differences? We
believe that the answer is to provide multiple views on the
equivalence class, that is, to represent it by different wit-
ness programs depending on the current needs of the pro-
grammer, and to make it possible to switch almost
effortlessly from one view to another.

2.2. The Tyranny of the Dominant Decomposition

Different programming languages come with different
mechanisms to support programmers in the task of struc-
turing the code for large applications. In each case, the
goal is always to provide language constructs or features
that will allow complex programs to be arranged into
small, manageable pieces that can be designed, under-
stood, implemented, and reused as independent building
blocks. Unfortunately, these same structuring tools can
also make it harder to add or change features of a program
that cut across its structure. Empowering programmers to
work with multiple views simultaneously would solve
these problems.

In Java, for example, programs are organized into pack-
ages, each of which contains classes. Sometimes, useful
functionality can be added to a program by defining a new
class, and making minimal changes elsewhere; such
changes fit very naturally into the package decomposition.
However, there are many changes that do not fit. For
instance, adding a new method to a hierarchy of classes, or
adding a parameter to an existing method, will typically
require changes to multiple classes, and perhaps even mul-
tiple packages.

The problem here is not that the decomposition of Java
programs is weak or inadequate. Rather, the problem is
that we currently have no choice but to work with a single
view of the code, with little flexibility or support for other
decompositions. Any system or language that imposes a
single view of structure on programmers—what Ossher
and Tarr have aptly referred to as the tyranny of the domi-
nant decomposition [19]—will cause similar problems.
Providing multiple views of the code is the way to break
free from tyranny.

2.3. Design Patterns and Programming Idioms

Once the conflict between different forms of program
decomposition has been identified, our first instinct may
be to “program around it.” For example, the Visitor Pattern
[6] may be viewed as an idiomatic response to the need to
define operations in a language in which the class decom-
position is primary. The effect of the Visitor Pattern is to
translate the cumbersome task of adding a new operation
into the easier task of adding a new class. The solution is
ingenious, but hardly easy to read, even after the pattern
has been identified, described in a catalog, and added to
university programming curricula. More sophisticated pat-
terns can be applied in situations where they are needed,
but there is always a danger that the extra code that is
introduced to support them might ultimately become more
a part of the problem than the solution. For example, a
more general version of the Visitor Pattern [8] supports
extensibility in both the operation and the class dimen-
sions, but requires the implementation and maintenance of
a complex programming protocol.

Like refactoring, the introduction of a design pattern or
an idiom is a way for programmers to transform their code
to fit the decomposition paradigm of their chosen lan-
guage. These techniques have demonstrated their potential
in many real-world projects, but they do have limits. For
example, by refusing to step outside the host language, we
must sometimes adopt encodings that reduce performance
and, more importantly, make code harder to read. In addi-
tion, even with the help of a programming environment, it
is hard for a programmer to move rapidly between differ-
ent views of a program. What the programmer conceptual-
izes as a single change, such as switching from an
operation-based to a class-based view, may require many
small steps. Because they can represent alternate decom-
positions of the program as views, the environments that
we envision avoid the need to resort to design patterns. For
example, if the tools allow the programmer to see the oper-
ation view directly, then there is no need to use the visitor
pattern to represent an operation as a class.

Note that we are not saying that patterns are bad. On the
contrary, they are an effective response to commonly-
occurring problems, given the constraint of a fixed pro-
gramming language. However, once such a problem has
been identified, it makes sense to solve it directly in our
programming tools, rather than forcing the original pro-
grammer, and all of the maintenance programmers that
follow, to resort to idioms.

2.4. Multidimensional Separation of Concerns
Hyper/J

Harold Ossher and Peri Tarr have developed an approach
to software composition and decomposition that is based
on a multi-dimensional separation of concerns [19], and
have prototyped this approach in Hyper/J, a tool for Java
developers. With Hyper/J, the programmer constructs a

Page 3



“concern matrix” that maps each primitive unit in a given
program —such as individual variable or method
definition — to a particular point in a user-specified coordi-
nate space. An additional “hypermodule” input to Hyper/J
is used to describe how different views of a program can
be projected out by giving the dimensions or regions of the
coordinate space that are of most interest.

Hyper/J and its underlying foundations are an important
experiment with more flexible notions of program repre-
sentation. Our work takes some of these ideas to the next
level, focusing more directly on interactive features for
constructing and switching between different views,
emphasizing that the multiple views are of equal impor-
tance, and incorporating a broader range of automated
techniques for classification and analysis of code.

3. Towards Multiple Views

As we explained in the introduction, we have been explor-
ing the application of the multiview concept to Object-ori-
ented programs in Smalltalk and Java.

3.1. Sweet

As a first experiment, we implemented a tool called Sweet,
a “Static weaver and editing tool”. This prototype is
designed as a tool for object-oriented program develop-
ment using Java, although the underlying ideas could be
adapted to other settings. The objective of Sweet is to
support more flexible decomposition and construction of
Java programs than is permitted by conventional Java
compilers. Specifically, Sweet gives programmers the
opportunity to organize, arrange, and group fragments of
code in a way that reflects the problem that is being solved
or the algorithm that is being used

Sweet is a practically motivated tool, but it represents a
radical new approach to program construction that we
have not seen elsewhere. In the input to Sweet, a program-
mer blends definitions of points in an abstract program
structure —each of which might correspond, for example,
to a package, class, or method—with descriptions of the
executable content that should be placed within that struc-
ture. The difference between writing programs with con-
ventional Java tools and writing programs with Sweet is
analogous to the difference between printing an image on
a piece of paper or drawing it by hand. To print an image,
we must convert it into a collection of pixels and then send
data for each one to the printer in a specific order. Typi-
cally, neither the decomposition into pixels or the sequenc-
ing of pixel data has any direct relation to the objects
depicted in the image. Moreover, the pixels corresponding
to individual objects in the image will often end up scat-
tered across the output pixel stream, concealing the rela-
tionship between them until the whole image has been
rendered. By contrast, when we draw a picture by hand,
we typically work at a much higher and more natural level,
painting complete objects and proceeding in an order that

Page 4

is determined by the image itself and not by the orientation
or size of the paper on which it is drawn. Only the most
abstract of artists would consider drawing an image in the
way that the printer does!

With the current, batch-oriented implementation of
Sweet, a program is written as a sequence of declarations,
the text of which may be spread across several files. As the
Sweet tool processes each declaration, it builds up a repre-
sentation of a complete program in an internal data struc-
ture referred to as a repository. These declarations should
be thought of, not as the code for a particular program, but
as instructions that describe how that particular program
might be constructed. As such, Sweet provides a primitive
form of meta-programming, although it differs from much
of the previous work in that area where the focus has been
on mechanisms for programming in the small. In its cur-
rent form, Sweet provides only one view on the repository,
using the repository contents to generate a set of conven-
tional Java source files that can be compiled using stand-
ard tools.

We have already used this prototype in experiments to
build several non-trivial programs including a compiler for
a “mini-Java” language that consists of over 60 classes,
and a reusable library for dependency analysis. In the case
of the compiler, an existing Java program was refactored
by hand so that it could be rewritten in a more natural way.
In contrast, the dependency analysis library was developed
from scratch using Sweet.

The syntax of Sweet has also been designed to reduce
the need for tedious boilerplate, duplication of information
and tangling of datatype definitions with the implementa-
tions of associated operations. For example, Sweet pro-
vides a compact notation for describing class hierarchies,
and allows uses of the visitor pattern to be described
directly at the level of source code, rather than forcing the
programmer to use an encoding. There is not space here to
give a realistic example of Sweet code, but the following
vignette illustrates the benefits in miniature.

public abstract class List {
public case Nil
public case Cons(private int x, private List xs)
}
public int length()
case List abstract;
case Nil {return 0;}
case Cons {return 1+xs.length();
}
The first code fragment defines a hierarchy of three
classes: an abstract superclass List and concrete subclasses
Nil and Cons representing empty and non-empty lists. The
second fragment defines the generic operation length on
lists, collecting together in one place the definitions of the
length method for each of the classes. Sweet would output
exactly the same Java program if the input were presented
to it in the ordinary Java style as three separate classes,
each containing the appropriate length method. In some



cases, and for some purposes, this version of the program
might be preferred, but in others the code shown above is
preferable because it highlights more clearly the relation-
ship between the classes, collects the definitions for a
single conceptual unit—the length operation—into a
single location; and emphasizes the separation between
these two aspects of the program. However, the important
point is that Sweet gives programmers the opportunity to
choose among these options (and others), whereas conven-
tional compilers and IDEs support only a single view.

3.2. Traits

Traits have been developed through a collaboration with
IAM/UniBern, which was initiated in the autumn of 2001
while the first author (Black) was on sabbatical at the Soft-
ware Composition Group of the University of Bern.
Because classes can be decomposed into traits, and
because this decomposition can be viewed at any level of
nesting without any change in semantics, traits provide a
rich set of alternate views on a class.

Stripped to its essentials, a trait is a first-class collection
of named methods. Methods in a trait must be pure behav-
ior; this means that they cannot directly reference any
fields, although they can do so indirectly. The purpose of a
trait is to be composed into other traits and eventually into
classes. A trait itself has no superclass; if the keyword
super is used in a trait, super is treated as a parameter
that becomes bound when the trait is eventually used in a
class. A more complete description of traits can be found
in the ICSE conference proceedings [2].

Because traits contain pure behavior, and because of the
richness and careful design of the combinators, traits pro-
vide the advantages of multiple inheritance and mixins
without the associated complexity. Moreover, it is always
possible to flatten a program containing traits into an
equivalent program that uses only conventional classes.
Similarly, traits that are composed from other traits can be
flattened—can have this internal structure removed — with-
out changing their semantics. Flattening makes traits very
useful for providing multiple views on complex class
libraries because the programmer can choose to show or
hide detail as required by the task at hand.

4. The Role of Language

As we have described in section 2.1, the realization that
multi-view programming could be a powerful tool came
from an appreciation of the way that refactoring can help a
programmer to understand legacy code. However, because
refactorings are source-to-source transformations, the
power of refactoring is limited by the expressive power of
the programming language. That is, the only views of the
program that can be obtained through refactoring are those
that can be expressed in the source language!

To see this more clearly, imagine that you are modify-
ing a compiler written in Java and working with a deep
inheritance hierarchy that represents expressions; it con-
tains subclasses for terms, factors, literals, variables, and
so on. Imagine further that you are trying to implement
compile-time evaluation of constant expressions, but that
something is not working. You need to examine the code,
but you do not want to see all of the methods in all of the
expression sub-classes: you want to focus on the
evaluateConstant methods. In fact, you want to think of
evaluateConstant as a single generic operation defined by
cases on all of the subclasses. However, no amount of
refactoring in Java can provide you with this view, because
the Java language cannot express the idea of a generic
operation: all it can express are individual methods and
classes. What you need is an extended notation like that of
Sweet (see Section 3.1).

Thus, in order to provide some of the views that we
have found to be useful for particular tasks, we must first
extend the underlying language to permit a wider range of
expression. The extended language makes possible more
refactorings; these refactorings define more equivalences,
and thus more ways to view the program. The key point is
that we are not proposing language extensions that
increase the power of the language to communicate with
the computer: we are proposing extensions that enable
programmers to view existing programs more directly, in
ways that clarifies their meaning. Thus, although accom-
plishing our aims requires extending the base program-
ming language, developing language extensions is for us a
means to an end and not an end in itself.

Traits provide a good example of a language feature
designed in this vein. Because traits do not bind super,
any composite built from traits can also be built as a flat
collection of methods. Thus, it is simple to provide several
semantically equivalent views of a composite class, at sev-
eral levels of decomposition. (This is not true for mixins.)
Similarly, the alias mechanism in traits was designed so
that its effect could be understood entirely at the class
level: the internals of the aliased method are not affected.
This would not be true of a rename operation.

5. Ongoing Research

In the MultiView project we are investigating the practi-
cality and the impact of multiple-view programming envi-
ronments. As we have hinted above, the work involves
language design and theory as well as tool-building and
evaluation.

Our experience with Sweet has been encouraging, but
has also revealed some significant limitations and weak-
nesses, which indicate that an integrated development
environment (IDE) is essential if we are to realize our
objective of programming with multiple views. Our cur-
rent work is thus focused on the following three tasks.

Page 5



5.1. Building a Browser supporting multiple
simultaneous views.

While Sweet permits great flexibility in the way that pro-
grams are described, it supports this by batch translation
from the original source code view to the Java output view.
As such, Sweet still provides programmers with only a
single view of their code at a given time; it does not allow
them to move easily between different views. We plan to
construct an interactive environment that will support mul-
tiple views simultaneously, and that will enable program-
mers to move easily from one view to another. This
activity will extend in time through the life of the project,
as the results of other activities are incorporated into this
environment.

To see how this environment might work, let us assume
that the user starts with the source code for a compiler,
structured as a conventional Java program: a hierarchy of
packages, classes, and methods. This view of the program
is represented by the tree structure shown on the left of
Figure 1. Let us further assume that the user wishes to
work with a different view that organizes the code accord-
ing to its function in the compiler; this might result in a
presentation of the program with a different tree-like struc-
ture, in which the code fragments concerned with lexical
analysis, with parsing, with type checking, and with code
generation are each organized into different branches, as
shown on the right of Figure 1.

To define this new view, the programmer would start
with a new empty view, create a hierarchy of new ‘folders’
into which different sections of the code can be organized,
and describe how parts of the original view should be
mapped to the structure of the new one. This latter step
might be accomplished by enumeration (e.g., by dragging
a part of the original view and dropping it at an appropriate
location within the new one) or by a computational rule.
We are considering many candidate computational rules,
from simple pattern-based rules (e.g., methods with signa-
tures matching a particular regular expression, or methods
in which the code fits the pattern of a simple accessor
method) to more sophisticated dependency-based tech-
niques such as program slicing [10]. Additional mecha-
nisms, such as the heuristic method classification
techniques used in Codecrawler [9], and closure operators

original view view definition new view

Figure 1. A view definition captures the relationship
between two views by describing how one of them
can be derived from the other.

Page 6

(i.e., adding the minimum amount of code from the origi-
nal view that will make the new one executable) will also
fit naturally into this framework.

We plan to implement our tools as plugins to the
Eclipse framework. Eclipse (http://www.eclipse.org) is
“an open extensible IDE for anything” that is rapidly gain-
ing in popularity. It will give us a high-level platform on
which to build, and also a vehicle for disseminating our
work: Eclipse users will be able to reap the benefits of
multiple views without giving up the other tools with
which they have become familiar.

An important aspect of the multiple-view browser is
that the steps taken to build the new view are recorded in a
view definition that can be used to reconstruct the new
view if changes are subsequently made to the original
view. As a program evolves, we expect it to accumulate a
library of such view definitions, each corresponding to dif-
ferent views that have been found to be useful. These defi-
nitions would themselves be first class entities, on a par
with the program source code, and could be edited and
revised as necessary. Indeed, in some cases, definitions
might even be shared between different projects or devel-
opment teams. After a while, users of such a system might
begin to loose the sense of there being any particular, dis-
tinguished original view, seeing instead just a menu of dif-
ferent views. Internally, the relationships between views
might be represented by a graph, as shown in Figure 2,
with translations between adjacent views corresponding to
particular definition, and with moves between arbitrary
connected views made possible by composing the defini-
tions.

5.2. Extending the use of Traits for structuring
classes.

This research builds on our successful experience with
traits in Smalltalk, and is being conducted in collaboration
with the members of the Software Composition group at
the University of Bern.

Traits as described in section 3.2 contain pure behavior,
that is, they contain methods but no fields (i.e., instance or

) |Bag

g
e

Figure 2. Moving between multiple views



class variables) or references to fields. This simplifies not
only the implementation of traits but also their use:
because field access can occur only in a method supplied
by a class, there is never any ambiguity about what an
access means. However, some applications require state.
For example, one of our “customers” has expressed inter-
ested in using traits to add transactional behavior to arbi-
trary objects: this requires adding a field to store the
transaction id as well as the appropriate methods.

We believe that we will be able to find a way to imple-
ment “state traits”, that is, traits that add various kinds of
fields to a composition. However, we are concerned that
doing so may destroy the pleasant conceptual properties
that make traits more friendly to programmers than mixins
or multiple inheritance [17].

Given state traits, it will be possible to refactor inherit-
ance into a combination of a behavior trait (containing the
methods of the superclass), a state trait (containing its
fields), and some local definitions. The ability to add ali-
ases to methods from the “superclass trait” can be used to
simulate super. This suggests the question: is this refac-
toring useful as an aid to understanding a program using
inheritance? Or does it provide only a clumsy way of
expressing something that inheritance itself captures more
clearly and simply? Put another way: we need to consider
whether inheritance itself is a beneficial language feature.

Neither traits, nor the Smalltalk language in which they
have been implemented, enforce any controls on the visi-
bility of methods. However, traits exacerbate this short-
coming of Smalltalk, because in Smalltalk all fields are
private to the object that contains them, whereas using
traits frequently requires that fields have accessor meth-
ods, and are thus effectively made public. Because visibil-
ity control can be an important tool for program
understanding, we seek a solution that is more complete
than visibility declarations in Java. We are exploring using
interface declarations to control visibility, which will ena-
ble different clients to see different parts of an object at
run-time [18].

5.3. Integrating Traits into the Multiple-view
Browser

Our third research activity is to develop a traits model for
Java-like languages and to integrate it into the multiple-
view browser. Because of the way that Java was designed,
this requires a lot more than mere translation from one
syntax to another.

Because Java uses the name of a class explicitly within
the body of that class, the way that traits are viewed must
be changed. The simplest example arises with “construc-
tors,” which do not have names of their own, but overload
the name of the class. We plan to use a keyword to identify
constructors in a trait. The class name is also used in dec-
larations of parameters, fields and local variables within
the class. For example, the method copy in the class Set

may declare a local variable of type Set. If copy is
abstracted into a trait, the word Set must be replaced by
something more generic. The obvious solution is to gener-
alize the language by adding a notation for thisType, but
this generalization may also complicate the type system.

The type of a method in a trait is parametric: it will
change depending on the class into which the trait is ulti-
mately incorporated. We might simply ignore this problem
and duplicate the trait method code whenever it is used so
that it can be type-checked in the appropriate context.
Apart from being conceptually inelegant, this approach
also has some practical problems, including object code
bloat and the possibility of confronting the programmer
with type errors in generated code. It would be preferable
to type-check trait methods once, in a type system general
enough to ensure that they are correct wherever the trait is
used. It is not yet clear to us whether the GJ type system
[4] is sufficiently expressive to deal with trait methods, or
whether it must be extended further.

Studies of Java code have also suggested that there are
other opportunities for reuse that traits could capture if
they were to be suitably generalized. For example, identi-
cal method bodies appear in different classes, but with dif-
ferent visibility or synchronization declarations. The
duplication could be avoided if these declarations were
made “first class,” so that they could be applied to a
method obtained from a trait.

The criterion for success in all these activities is not
conceptual elegance, but making real programs easier to
understand and reuse. This can only be assessed by imple-
menting traits in the multi-view browser, applying it in the
field, and evaluating how well the browser helps program-
mers to accomplish their tasks.

6. Impact of our Research

Understanding large legacy programs well enough for
them to be modified safely is the critical problem in soft-
ware maintenance and re-engineering, and one to which
several conferences and workshops are devoted. However,
collaborations between the re-engineering and the pro-
gramming language research communities are uncommon.
We hope to fill that gap.

We also have hopes that we can influence the way in
which industrial programming tools are built. We have
demonstrated the traits browser to Cincom, the leading
commercial Smalltalk vendor, which has expressed inter-
est in incorporating this technology into a future version of
VisualWorks. The Squeak community has also been enthu-
siastic in its reception of traits, even at this early prototype
stage. It seems that the theoretical benefits of traits do pay
off in practice: many Smalltalkers who refused to accept
either multiple inheritance or mixins are surprisingly open
to the idea of adopting traits. We believe that this is
because the method-level syntax and semantics of the lan-
guage remain unchanged, and the extra structure and reuse

Page 7



opportunities provided by traits are therefore always
optional. The practical influence of the multiple-view
browser will be magnified because we plan to target it on
Java and build it as a plugin to the Eclipse framework (see
section 5.1). Nevertheless, we believe that many of our
results will be applicable to programming languages in
general, and not just to Java or Smalltalk.

References

[11 Andrew P. Black, Nathanael Scharli and Stéphane Ducasse.
Applying Traits to the Smalltalk Collection Hierarchy. In
ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’03), October
2003, pp. 47-64, Anaheim, CA: ACM Press.

[2] Andrew P. Black and Nathanael Scharli. Traits: Tools and
Methodology. In International Conference on Software En-
gineering (ICSE), May 2004, Edinburgh, Scotland.

[3] Gilad Bracha and William Cook. Mixin-based Inheritance.
In ECOOP/OOPSLA’90, Ottawa, Canada, October 1990,
pp. 303-311: ACM Press.

[4] Gilad Bracha, Martin Odersky, David Stoutamire and Philip
Wadler. Making the future safe for the past: Adding Generic-
ity to the Java Programming Language. In OOPSLA’98, Oc-
tober 1988, pp. 183-200, Vancouver, Canada: ACM Press.

[5] Martin Fowler. Refactoring: improving the design of exist-
ing code. The Addison-Wesley object technology series, ed.
G. Booch, I. Jacobson, and J. Rumbaugh. 2000: Addison-
Wesley. xxi+431 p.

[6] Erich Gamma, Richard Helm, Ralph Johnson and John Vlis-
sides, Design Patterns: Elements of Reusable Object-orient-
ed Software. Addison Wesley professional computing series.
1995: Addison-Wesley. iv+395 p

[7] Andreas Kacofegitis and Neville Churcher. “Theme-Based
Literate Programming.” In Ninth Asia-Pacific Software En-
gineering Conference (APSEC'02). 2002.

[8] Shriram Krishnamurthi, Matthias Felleisen and Daniel P.
Friedman. “Synthesizing Object-Oriented and Functional
Design to Promote Re-use.” In ECOOP 1998, pp. 91-113:
Springer Verlag, Lecture Notes in Computer Science, vol.
1445.

Page 8

[9] Michele Lanza and Stéphane Ducasse. “A Categorization of
Classes based on the Visualization of their Internal Struc-
ture: the Class Blueprint.” In Object-Oriented Programming
Syst., Lang. and Applications 2001: ACM Press, pp 300—
311.

[10] Loren Larsen and Mary Jean Harrold. “Slicing Object-Ori-
ented Software.” In Proceedings of the 18th International
Conference on Software Engineering (ICSE’96), March
1996, pp. 495-505.

[11] Scott Meyers. “Difficulties in integrating multiview devel-
opment systems.” IEEE Software 8(/) 1991: 49-57.

[12] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. “A
Framework for Expressing the Relationships Between Mul-
tiple Views in Requirements Specification.” IEEE Transac-
tions on Software Engineering 20(/0) 1994: 760-773.

[13] William F. Opdyke. Refactoring Object-Oriented Frame-
works [PhD thesis]. University of Illinois at Urbana-Cham-
paign, Urbana, Illinois: 1992. 151 p.

[14] Steven P. Reiss, “Simplifying data integration: the design of
the Desert software development environment.” In Proc.
18th International Conference on Software Engineering.
(ICSE’96)1996, pp 398-407.

[15] Steven P. Reiss, “The Desert environment.” ACM Transac-
tions on Software Engineering and Methodology (TOSEM),
1999. 8(4): pp 297-342.

[16] Don Roberts, John Brant and Ralph Johnson, “A Refactoring
Tool for Smalltalk.” Journal of Theory and Practice of Ob-
ject Systems 1997. 3(4): pp 253-263.

[17] Nathanael Schirli, Stéphane Ducasse, Oscar Nierstrasz and
Andrew P. Black. “Traits: Composable Units of Behavior.”
In Proceedings ECOOP, July 2003, Darmstadt, Germany:
Springer Verlag, Lecture Notes in Computer Science, vol.
2743, pp. 248-274.

[18] Nathanael Scharli, Andrew P. Black and Stéphane Ducasse.
“Object Encapsulation for Dynamically Typed Languages.”
Technical Report CSE 04-002, OGI School of Science & En-
gineering, Oregon Health & Science University, Beaverton,
OR. March 2004.

[19] Peri Tarr, Harold Ossher, William Harrison and Stanley M.
Sutton, Jr. “N degrees of Separation: Multi-Dimensional
Separation of Concerns.” In International Conference on
Software Engineering (ICSE) 1999, pp. 107-119, Los Ange-
les, CA: ACM Press.



