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Encapsulating Plurality

Andrew P. Black and Mark P. Immel

This paper describes the Gaggle, a mechanism for grouping and naming objects in
an object-oriented distributed system. Using Gaggles, client objects can access
distributed replicated services without regard for the number of objects that
provide the service. Gaggles are not themselves a replication mechanism; instead
they enable programmers to construct their own replicated distributed services in
whatever way is appropriate for the application at hand, and then to encapsulate
the result.

From the point of view of a client, a Gaggle can be named and invoked exactly
like an object. However, Gaggles can be used to represent individual objects,
several ordinary objects, or even several other Gaggles. In this way they
encapsulate plurality. If a Gaggle is used as an invokee, one of the objects that it
represents is chosen (non-deterministically) to receive the invocation.

1. Introduction  
When designing a distributed object-oriented system, particular choices must be
made for the implementation of each object in the system, and for the location of
each object. These decisions can have a profound effect on the performance of the
system as a whole, and they are therefore likely to be revisited and changed as the
system evolves.

A good programming language and development environment will make it
easy to encapsulate system components so that the effects of any changes in their
implementation are localized. This is true even in centralized environments.
Distributed programming environments, of which Emerald will be used as an
example, go a step further: they also encapsulate distribution [5]. That is, the syntax
and semantics (modulo failures) of the basic computational step, the invocation of a
named operation on a receiver object, are independent of the location of the receiver.

A particular choice must also be made for the number of objects used to
implement a particular abstraction. This choice can have a profound effect on the
availability and reliability of the system as a whole. However, ordinary objects do
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not provide a way of encapsulating such a choice. This paper introduces the
Gaggle, a facility for ‘‘encapsulating plurality’’, i.e., for hiding from a client the
number of objects that implement a service. Simply put, Gaggles provide a way of
treating a plurality of objects as if they were a single object.

The context of this paper is the Emerald programming language, but we
believe that the concept of the Gaggle is equally applicable to other environments
for the programming of distributed applications.

1.1. An Example  

To clarify the problem caused by replicated services, consider a highly available file
service. High availability is achieved by using multiple servers.

Suppose that there are three servers and that the quorum consensus algorithm
is used to ensure consistency [8]. Any object that wishes to read a file must
therefore know both the identities of the servers and the algorithm for reading a file.
We will refer to this information as the access data (shown as the small circle
labeled ‘‘A’’ in Figure 1.)

It is possible for every client to have a separate and independent copy of the
access data. This has the advantages of simplicity and robustness; provided a
quorum of servers is available, the client will be able to obtain service (see Figure
1a). However, this arrangement has serious maintainability and transparency
problems. First, the client must treat replicated files in a different way from non-
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Figure 1: Four ways of accessing a replicated service.
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replicated files. Second, if the replication algorithm is changed, perhaps to the
available copies algorithm [2], then every client must be found and modified to
reflect that change. In a wide-area distributed system this is infeasible.

The obvious solution to this problem is to encapsulate the access data in a
clerk object, as shown in Figure 1b. When a client object needs to read a file, it
invokes a clerk, which then executes the read algorithm on its behalf. Now only the
clerk need be modified if the access data change. Moreover, if the same clerk
interface is used to read non-replicated files, then the representation of a file can be
changed from non-replicated to replicated without necessitating any changes in the
client. Schroeder [13] discusses the Clerk paradigm in more detail.

Unfortunately, using a single clerk reintroduces a single point of failure into
the system: if the clerk fails, then the client cannot read its file, even though the file
servers may all be available. There are two ways to avoid this loss of availability:
co-location of the clerk and the client, and replication of the clerk.

 d If the client and the clerk are co-located in the same address space, the clerk is
unlikely to fail separately from the client, and the existence of the clerk does
not compromise availability. This arrangement is shown in Figure 1c, where
the dotted line encloses the co-located objects. Although Emerald provides
various facilities for requesting that objects be co-located, it is not always
appropriate to solve the availability problem in this way.

If the client is running in a small machine (perhaps a laptop computer), or if it
obtains its services over a low-bandwidth link (perhaps a dial-up telephone
line or a radio modem), then there are obvious load- and traffic-reduction
reasons for locating the clerk near the servers. It is also advantageous to
allow many clients to share a data cache kept by a single clerk; in this
situation the clerk cannot be local to all of the clients. In addition, initializing
a clerk may be time consuming, so that clients that expect to interact only
briefly with the service will be best served by an existing clerk.

 d An alternative is to replicate the clerk, and to allow clients to invoke any clerk
that is available, as shown in Figure 1d. A client might pick a clerk
essentially at random, or in a way that minimizes response time or that shares
the load on the clerks. If the clerk used in the initial invocation is no longer
available on a subsequent invocation, the client transparently ‘‘fails over’’ to
one of the other clerks.

The Gaggle was conceived as a mechanism for transparently invoking one of a
number of clerk objects. The problem that it solves is fitting the notion of
transparent fail-over within a group of essentially equivalent clerks into an object-
oriented computation. To understand this problem better, we must briefly look at
the primitive mechanisms of such a computation.

1.2. Characteristics of Distributed Object-Oriented Computation  

For the purposes of this paper, we can characterize distributed object-oriented
computation by the collaboration of several active objects through the exchange of
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invocation messages and replies. Such computations proceed by means of
invocations such as

buffer ← file.read [offset, length ];

this invocation has four parts. file names some object, which we call the invokee;
this is the object that will actually carry out the computation. read is the name of
the operation that the invokee is requested to perform. [offset,  length ] is the
argument list; the values of the arguments (i.e., the names of the objects that offset
and length denote) are sent to the invokee along with the operation name, so that the
invocation request can be parameterized. When the invocation completes, a result
object has been generated, and the result variable buffer will name it.

In this computational model, the object that is to receive and execute the
invocation cannot be distinguished from the object named in the invocation
statement. In Emerald, objects are named using network unique identifiers, so the
invokee file can be anywhere on the network. Moreover, file can move from one
Emerald node to another: the invocation machinery will track it down. But Emerald
does not enable one to express the idea that the invokee should be a plurality of
objects.

1.3. Gaggles  

A Gaggle behaves very much like an object: it can be named and invoked in the
same way as an object. However, because a Gaggle can represent an individual
object, several ordinary objects, or even several other Gaggles, a Gaggle
encapsulates plurality. If a Gaggle is invoked, one of the objects that it represents is
chosen to receive the invocation.

We designed Gaggles to be a flexible low-level tool, useful as a basis for
experimentation, rather than as a finished solution to a particular problem. Their
advantages are that they fit into our object-oriented computational model, including
our rather rigid view of typing, and that the costs of the implementation fall only on
those objects that use them.

The remainder of this paper is organized as follows. Section 2 discusses other
work related to our proposal. Section 3 shows some of the ways in which Gaggles
can be used, and illustrates their use in solving real problems of distributed
computation. Section 4 looks at the design space for Gaggles, and discusses why
we feel that our particular design choices are appropriate. Section 5 describes some
possible implementations of Gaggles for systems of various scales. Section 6
summarizes the work and gives its current status.

2. Relationship with other work  

2.1. Group Communication amongst Objects  

Pardyak [12] has proposed a general model of group structure for the interaction of
clients and replicated services in an object-oriented environment. Figure 2 shows
his model; for consistency, we have re-labeled Pardyak’s ‘‘group objects’’ as ‘‘clerk
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objects’’. The ‘‘member’’ objects are the servers that actually provide the replicated
service; they can communicate amongst themselves using the member channel, or
with both members and clerks using the clerk channel. The clients access the
service by using a client channel to communicate with several clerk objects.

Pardyak’s implementation is less general than this model; it deals only with
the special case in which there is a single clerk object. This restriction permits the
client communications channel to be a traditional object invocation. Gaggles
provide the tool to generalize his work so that multiple clerk objects are permitted.
(Remarkably, we were not aware of this synergy until after the initial design of the
Gaggle had been completed.)

2.2. ISIS Process Groups  

ISIS, to quote its developers, is ‘‘a system for building applications consisting of
cooperating, distributed processes. Group management and group communication
are two basic building blocks provided by ISIS’’ [15]. The system has generated
significant interest and is in use at several sites. ISIS presents users with a sharp set
of tools for building one particular kind of fault-tolerant system, but it is not
particularly useful if other kinds of system organization are preferred.

In the most recent formulation of ISIS [15, 16], the sender of a message must
itself be a member of a group in order to send a message to that group. This means
that an ISIS process group cannot replace an existing single server process directly.
If a client wishes to make a request of a server group to which it does not belong, it
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Figure 2: Pardyak’s General Model of Group Structure (after [12])
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must send the request to a particular member of the group called the contact, which
will generally multicast the request to the whole group. If the contact fails, the
client must somehow choose a new contact and and retry the request. Thus the
client must be aware of the fact that it is making use of a group of processes rather
than a single process: plurality is not encapsulated.

The previous formulation of ISIS [3] had special support for clients of groups.
However, this gave rise to significant implementation complexity, and was hard to
make secure.

It should be emphasized that Gaggles do not compete with ISIS process
groups; the two ideas are complementary. Gaggles provide encapsulation; process
groups provide fault tolerance. Gaggles can be used to encapsulate any replication
mechanism; ISIS process groups can be used with or without encapsulation.

2.3. Replicated Objects in Emerald  

In existing Emerald systems, although great care is taken to present the illusion that
each object has a unique representation, some objects are actually replicated by the
implementation.

Emerald distinguishes immutable objects from mutable objects. Immutable
objects are often small objects like integers, strings, or types; if a remote node
wishes to access such an object, it makes sense to create a local copy on that node.
Because the state of an immutable object does not change, the implementation can
create many copies of an immutable object without affecting Emerald’s shared
object semantics.

User-defined objects can also be declared to be immutable; the implementation
may choose to replicate such objects too. Emerald requires only that the abstract
state of an immutable object not change; it is legal for an immutable object to
change its concrete representation. For example, an immutable object that
represents a function could memoize its results and still be immutable. If a
programmer erroneously declares as immutable an object whose abstract state
changes, then the result of a computation will depend on the number of copies that
the implementation chooses to create.

Gaggles may be viewed as an extension of this mechanism. Invoking a
Gaggle is like invoking an immutable object: one of the representative objects will
be chosen to receive the invocation, and the semantics of the computation should be
oblivious to this choice.

2.4. Fragmented Objects  

The SOS system designed at INRIA [14] supports ‘‘Fragmented Objects’’; fragments
of a single object can be located on separate machines. To clients, the whole
Fragmented Object appears to be a single object. However, each fragment can view
the other fragments as if they are self-contained objects, and the failure of one
fragment does not cause the failure of the whole Fragmented Object.
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A client accesses a Fragmented Object through a fragment in its own address
space, which plays a rôle similar to that of a stub in an RPC system. This stub
fragment in turn accesses other fragments using a lower-level fragmented object
called a channel. Any particular message is delivered to either a single fragment or
to multiple fragments, depending on the nature of the channel (which is under the
control of the Fragmented Object). The channels and the fragments may run a
membership protocol so that they are constantly aware of changes in availability.
Before a client can use a Fragmented Object for the first time, it must go through a
binding process to create an appropriate channel and encapsulate it in the stub
fragment.

Compared to Gaggles, Fragmented Objects provide the programmer with
much more flexibility, and associated complexity. provide one very simple way to
invoke a plurality of objects; Fragmented Objects provide a collection of mechanism
out of which the object designer can build his or her own robust invocation
mechanism.

3. Using Gaggles  
Gaggles are quite flexible, and can be used in many different ways. First we
describe some of the usage paradigms or ‘‘idioms’’ that we have encountered; then
we sketch some examples of more complete applications.

3.1. Usage Paradigms  

A Gaggle of Independent Objects.

This is the most obvious way of using a Gaggle. A number of equivalent and
independent objects are placed in the Gaggle; the client invokes the Gaggle directly
for service. A Gaggle of independent objects might be used to access one of a
number of equivalent time servers or name servers.

The Consistent Gaggle.

Although Gaggles do not themselves provide any consistency, they can be used to
encapsulate the interface to a group of objects that do collaborate to maintain
consistency. The replicated file service described in the introduction illustrates one
way of achieving consistency. An ISIS-style process group is another way. Because
the members of the Gaggle can refer to each other by their own names, any
consistency algorithm of the implementor’s choice can be used. Clients of the
consistent Gaggle invoke it using the name of the Gaggle invokee.

A Gaggle of Workers.

A Gaggle of objects can be used to encapsulate a pool of worker processes that
provide computational cycles for a client. Suppose a Gaggle of n objects is created
and located on various hosts in order to distribute the computational load. A client
object would invoke the Gaggle to initiate work on a particular subtask. Such a
request would be received by an arbitrary member of the Gaggle. However, because
each member of the Gaggle would be aware of the rule used to share tasks, it would
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be a trivial matter for the receiver to forward the task to the appropriate worker. For
example, the convention might be to assign task k to worker object k mod n.

If the amount of data associated with the task is large, this arrangement has
the disadvantage that the data must be sent to the receiver and then forwarded to the
worker. This can be avoided by not sending the data in the request message; instead
the client’s name is sent. Once the worker is selected, it can then invoke the client
to request its share of the data directly.

Multiple Names per Object.

Gaggles can be used to provide multiple names (object identifiers) for a single
object. The object simply creates several Gaggles, and then makes itself a member
of each. Each Gaggle will have a distinct name. So long as it is the only member,
all invocations on the Gaggles will arrive at the creating object.

To allow an object to have different behaviours when it is invoked by its
various names, we have added a new keyword (invokee) that permits an object to
ascertain the name used by the invoker (see section 4.3).

Hiding Object Identity.

It has long been assumed that because the concept of object identity is essential to
describing the semantics of object-oriented languages, the ability to test the identity
of two object references is similarly essential. Recently, this assumption has been
questioned. The ANSA system [1] does not provide a built-in way of testing object
identity at all; if the application demands the ability to test the identity of a certain
class of objects, then this can be provided by adding an explicit getIdentity operation
to the code that defines those objects.

In a system like Emerald that does provide testable object identity, Gaggles
can be used to hide it. This is done by creating multiple names for an object, as
described in the previous section. Indeed, the very possibility that an object might
be known by multiple names means that programmers cannot assume that distinct
names refer to distinct objects. Thus, if it is essential that a reliable identity test be
available on a particular class of object, the programmer should provide those
objects with a getIdentity operation.

3.2. Some Applications of Gaggles  

Accessing a Name Service.

Lampson has described a highly available large scale name service [11] with many
servers, each supporting some fragment of the naming tree. A given directory may
be replicated on several servers. Each server also keeps information on how to
access the servers that store the parents of its directories.

In order to resolve a name one typically accesses a local server. If that server
stores the appropriate directory, it will return the value associated with the name in
question. Otherwise, it will return information that will help the requester find an
authoritative name server.
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Updates are made in a similar way. Because there may be multiple copies of
a single directory, and two updates to the same subtree may be received by different
servers, it is possible for different servers to present inconsistent views of the
namespace. Various algorithms are run on the servers to ensure that all changes will
eventually be reflected at all concerned servers. However, clients may see temporary
inconsistencies, such as a newly-created sub-directory not yet being visible in an
ennumeration of the parent directory.

A client of the name service typically uses an object (a clerk) to provide a
single access point for the service. The clerk encapsulates information about the
service, such as which servers support various parts of the namespace, and may also
cache the results of previous queries. The name server clerk deals with an enquiry
by first searching its own cache, and if possible returning a result without ever
contacting a name server. If no match is found in the cache, the clerk makes a
corresponding inquiry of a nearby name server. The clerk can keep information
about the responsiveness and location of several servers to improve performance.
Updates are first reflected in the cache, and then forwarded to a server for the
appropriate naming domain.

The advantage of this arrangement is that while the clerk improves
responsiveness, it keeps no vital data. There is no need for the clerk to be
persistent. If it crashes, the client can use a new clerk. In fact, there typically will
be several clerks active at a give time; it does not matter which one the client uses.

This sort of application can be implemented conveniently by making the
clerks a Gaggle of independent objects. Using a sufficiently-large Gaggle helps to
ensure that a clerk is always available. Since using the same clerk in successive
operations is not necessary for correctness, the fact that successive Gaggle
invocations may be dealt with by different receivers is not a concern.

Causally Consistent Name Service.

Although the weak consistency of a Lampson-style name service helps to ensure
high-availability and low latency, Ladin has observed that sometimes this semantics
is inadequate [10]. For example, suppose a system administrator wishes to create a
new sub-directory and then to populate it with information about printers. If the
update that creates the directory goes to one server and the request to add the first
printer goes to another, the operation to add the printer may fail because the
directory does not exist. In this situation, high availability doesn’t help: the
perceived behaviour does not meet the user’s requirements.

Ladin describes a mechanism that lets the client obtain whatever degree of
consistency it requires. Each update to the namespace returns an identifier.
Enquiries and updates may require that the state on which they operate is ‘‘later’’
than the state created by a certain set of updates; this set is identified explicitly by
providing the set of update identifiers as an argument to the name server request.
Using this mechanism it is possible to state that the various additions to the printer
directory must be ‘‘later’’ than the update that created the directory. If such an
addition happened to be sent to a server that has not yet seen the creation of the
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directory (i.e., it arrives too ‘‘early’’), the addition will be delayed until the server
has been able to obtain and apply the update that created the directory. In this way
the algorithm achieves tighter consistency, possibly at the expense of increased
response times.

A Gaggle of independent objects can be used to provide an interface to a
Ladin-style name service just as effectively as to a Lampson-style name service, and
in the same way. However, in a small-scale Ladin-style name service, where all
directories are fully replicated, the rôle of the clerk in finding an authoritative server
for a given operation disappears. Any server will do. In this situation, all the
servers can be made members of a consistent Gaggle that can itself be the receiver
of the updates and queries.

Mail dispatch.

When sending mail, the user agent needs to contact a message transfer agent that is
willing to store and forward its messages. Any of a number of message transfer
agents will serve.

This problem can be solved by constructing a Gaggle of independent message
transfer agents, and by invoking the Gaggle to deposit outgoing mail. This Gaggle
invocation will succeed if any one of the transfer agents can be found.

One Object, Many Rôles.

Sometimes a single object may play several rôles. For example, in a hierarchic file
system the rôles of the various directory objects might all be implemented by a
single B-tree object, rather than by having a separate object for each directory.

Reference 4 discusses a similar situation: a file that can be read by multiple
clients simultaneously. A current file position index must be kept for each reader.
The file object might create a channel sub-object for each reader; in this case the
current file position would be implicit. Alternatively, the file might service all of the
readers itself, and require that each read request supply a channel identifier.

A system designer ought to be able to use a single object playing multiple
rôles, or to use a separate object for each rôle, depending on the costs and
constraints of a particular situation. It might even be desirable to try both design
alternatives. Unfortunately, in an object-oriented system in which each object has a
single name, the two alternatives present different interfaces to the client. For
example, if the operation to read from a channel relies on the identity of the channel
object to determine which stream is to be read, then it would not be possible to
combine several streams into a single multi-channel object, since an additional
parameter would be required to select the required stream.

As we showed in Section 3.1, Gaggles provide a mechanism for giving an
object multiple names. This enables each client to invoke a receiver specific to its
channel, while still allowing the implementor to choose between the above
strategies. A single file object known by multiple names could use the value of the
invokee to choose the correct channel. Alternatively, the multiple names could be
used to refer to genuinely distinct open file objects.
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Type Restriction.

Hutchinson has experimented with an extension to Emerald in which it is possible to

restrict the dynamic type of an object†. In this extension, the statement

restrict e to t

denotes a new object that has the same value as e but whose type is t. It is legal
whenever typeof e – the dynamic type of the object denoted by e – conforms to t.
This means that typeof e must be more general than t ; e contains more operations,
or the operations return more general results. Type restriction is not part of the
standard Emerald language, but the same functionality can be obtained using
Gaggles.

In Emerald, the dynamic type of an object will always conform to the
syntactic type of any expression that evaluates to it. If E [[ expr ]] denotes the value
of expr, and T [[ expr ]] denotes the syntactic type of expr, we have

E [[ typeof n ]] c> T [[ n ]] .

The Emerald type checker guarantees this invariant, and also ensures that for every
invocation n.op, the operation op is contained in the type T [[ n ]] [7]. This means that
if n is a variable that names an object b, only a subset of b’s operations will in
general be available for invocation on n.

It is tempting to use this mechanism to restrict the operations that certain
clients may perform on a particular object. However, such a restriction can always
be circumvented, because an explicit widening coercion (a view expression) can be
used to transform n into an expression with wider type on which all of b’s operation
can be invoked.

However, Gaggles can be used to achieve the effect of secure narrowing.
Consider a Gaggle invokee B whose type is a restriction of the dynamic type of an
object b, and which has b as its only member. If the typeof primitive is applied to
B, the result will be the restricted type (as explained in section 4.2), and any attempt
to view it as a wider type will fail. Any invocations sent to B will be received by b,
since it is the only member of the Gaggle.

4. The Design of Gaggles  
This section presents the current design of Gaggles and discusses some of the
alternatives we considered.

4.1. Syntax  

One of the last issues that we dealt with is how Gaggles should appear in the
Emerald language. In some ways, Gaggles are similar to other forms of collection,
like Array and Vector, which are already in the language. Constructors for these
333333333333333333333333333333333333
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collections are presented as Emerald objects. Much of their implementation is also in
Emerald, although some operations must be implemented by system primitives. It
seemed desirable to present Gaggles in the same manner. This approach minimizes
changes to the language itself; the only additions are system primitives.

The object Gaggle is similar to Array; it is immutable and has the following
interface:

function of [AType : Type ] → [result : GaggleType ] .

The result of Gaggle.of[AType] is an immutable object with the following interface
(which we will call GaggleType)

function getSignature [ ] → [Signature]
operation new [ ] → [GaggleManager] .

There are two ways of viewing a Gaggle. A GaggleManager represents the
management interface of the Gaggle, and exports operations to add members and to
access the service interface:

operation addMember [AType ] → [ ] % the only management operation
function invokee [ ] → [AType ] % returns the service interface .

The result of invokee looks like an ordinary object of the type given in the of
operation. In particular, it can be invoked; for this reason we call this entity the
GaggleInvokee.

The following code fragment shows how a Gaggle might be populated and
used.

const aGaggleManager ← Gaggle.of[NSClerk].new
aGaggleManager.addMember[ NS.lookup[′′primary clerk′′] ]
aGaggleManager.addMember[ NS.lookup[′′alternate clerk′′] ]
aGaggleManager.addMember[ NS.lookup[′′backup clerk′′] ]
const aClerk : NSClerk ← aGaggleManager.invokee[ ]

After this sequence, aClerk is bound to the Gaggle’s service interface, which can be
treated like an object of type NSClerk.

4.2. Semantics  

In order to make a GaggleInvokee like an object, every aspect of the language that
involves objects must be defined for GaggleInvokees.

In Emerald, a program may move an object to a location, fix an object at a
location, unfix an object, refix an object at a new location, determine the typeof an
object, view an object as having another type, determine whether an object isfixed,
invoke an object, and locate an object. We have devised ways of handling all of
these primitives.

 d The Emerald move primitive is actually a hint; the implementation is not
required to perform the move suggested. Thus, one alternative is to say that
move applied to a GaggleInvokee does nothing. But, it is conceivable that the
Gaggle would like to take some action when an object tries to move it, such
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as creating a new member at the specified location. For this reason, members
of a Gaggle may provide an operation move_handler which takes the
appropriate action.

The semantics for move, when applied to a GaggleInvokee, is to invoke the
operation move_handler on the GaggleInvokee. If the chosen receiver does
not have such an operation, no action is taken.

 d The fix statement fixes the location of an object; this prevents the object from
moving until it is unfixed. Often, rather than specifying a location by means
of a node object, the programmer specifies a second object at which to fix the
first. In this case, the location of the second object is ascertained, and the first
object is fixed at the same location. The fix statement fails if the object is
already fixed.

Since immutable objects are copied rather than moved, fixing an immutable
object is a null operation. The location of an immutable object is always
‘‘here’’ (it is co-located with the enquirer), so fixing an object at an immutable
object has the same effect as fixing an object at the current location. (At one
time we considered creating a special object everywhere to represent the
location of immutable objects; however, this was never implemented.)

We considered imitating these semantics for Gaggles, but decided against it.
Because the number and location of the members of a Gaggle are chosen by
its manager, not by the system, there is no guarantee that there will always be
a member at a particular location, and it seemed inappropriate to allow the
statement fix g at l to succeed in spite of the fact that no member of the
Gaggle g is at location l.

The same objection can be raised against another alternative: treating fix like
move, i.e., to say that members of a Gaggle may provide an operation
fix_handler. Since move is a hint, the (user-defined) implementation cannot
be ‘‘wrong’’. But fix, unlike move, is not a hint.

We finally decided to make it an error to fix a GaggleInvokee, or to fix an
object at a GaggleInvokee. With hindsight, it might also be wise for it to be
an error to fix an immutable object.

 d Since it is not an error to unfix an object which is not currently fixed, it is not
an error to unfix a GaggleInvokee.

 d The refix construct is an atomic unfix and fix; like fix it fails if either the
object or location is a GaggleInvokee.

 d The typeof a GaggleInvokee is the type that was used as argument to the
Gaggle.of [ . . . ] invocation that built the Gaggle manager. typeof does not
return the type of any particular member, which might contain more
operations). This is because the meaning of the statement ‘‘object o has type
T’’ is that all the operations in T can be invoked on o without danger of a
‘‘Message-Not-Understood’’ error. In the case of a Gaggle, we can offer this
guarantee only for the type specified as the argument to Gaggle.of [ . . . ].
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 d The expression view o as t has syntactic type t. At execution time, the system
checks that typeof o c> t. If it does, the view expression succeeds (and returns
the o); otherwise, the view expression fails. This rule needs no modification
for GaggleInvokees.

 d The isfixed predicate tests whether or not a particular object is fixed. Since a
GaggleInvokee cannot be fixed, isfixed applied to a GaggleInvokee is always
false.

 d Invocation of a GaggleInvokee is defined to be the invocation of some
member of the Gaggle, if a member can be found. If no member can be found
with reasonable effort, the GaggleInvokee is considered unavailable. The
implementation is free to invoke any member, and need not choose the same
object on consecutive invocations. Our reasons for this choice are discussed
in Section 4.4.

 d The expression locate o returns the current location of the object o.
Evaluation of a locate expression requires running the object-finding
algorithm normally used for invocation; nil is returned if the object cannot be
found. For GaggleInvokees, an attempt is made to find some member of the
Gaggle, and return its location. If no member can be found with reasonable
effort, nil is returned.

At first glance, this may seem like a rather peculiar semantics for locate. Two
consecutive locate statements could return locations on different continents.
But the same possibility exists without Gaggles, because objects are mobile.

4.3. Other Language Constructs  

Emerald contains one other primitive, self, that must be clarified in the presence of
Gaggles. In addition, we have added two new primitives, denoted by the keywords
isplural and invokee.

 d self always denotes the current object, i.e., the one that evaluates self. In the
case of a member of a Gaggle, it does not refer to the Gaggle but to the
member itself.

 d invokee denotes the name of the current invokee. An object may need to
know if it has been invoked as a member of a Gaggle (and if so, of which
Gaggle) or if it is has been invoked under its own name. invokee returns the
GaggleInvokee if the object was invoked as part of a Gaggle, and self
otherwise.

This keyword is permitted only within the bodies of operations. Inside an
initially, recovery, or process section the object has not been invoked and thus
invokee has no meaning.

 d isplural is a primitive predicate; isplural o returns true if o is a
GaggleInvokee, and false otherwise. Although a client cannot violate the
encapsulation of plurality and see the members of a Gaggle, it may
occasionally be necessary to know whether or not an object is a
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GaggleInvokee. The provision of isplural is in the same spirit as the
provision of locate; we expect that it will be used infrequently, but that
sometimes it will be required.

4.4. Semantics of Gaggle Invocation  

Like objects, GaggleInvokees can be invoked. When this happens, the invocation
could conceivably be sent to one, some, or all of the members of the Gaggle.

Sending the invocation to all members is an unwise choice, because if one
member is unavailable the invocation must fail, and one of our goals was to increase
availability. A more reasonable choice is to send the invocation to all available
members; this is the option chosen by the ISIS process group mechanism. However,
this means that the implementation must keep a list of currently available members,
and that the delivery of invocations must be consistent with this list. In other words,
it requires a full implementation of causally consistent groups. Our intention is that
the Gaggle should be a lighter-weight mechanism that can be used to build causally
consistent groups.

Another possibility is to invoke many of the members: not necessarily all, but
several. This is not very useful; consistency cannot be achieved by this mechanism
alone, and having all members that receive the invocation communicate it to all
other members would generate an unnecessarily large number of messages.

The remaining alternative is to invoke a single member object. There are
motivations for this choice besides the process of elimination: this is all that many
applications require (see Section 3), and the other invocation protocols can be built
on top of this mechanism. This alternative maintains the property that the users of a
service are the only ones who pay for them. In addition, it results in simpler
semantics and implementation.

4.5. Failure Semantics  

With the above semantics for invocation, one should not interpret the fact that the
GaggleInvokee is unavailable to indicate that every member of the Gaggle is broken.
Indeed, given two simultaneous invocations of the same GaggleInvokee, one may
fail while the other succeeds.

We have considered allowing an object to retry a failed invocation, while
indicating to the system that it should try harder. Objects could thus try increasingly
expensive levels of invocation before deciding that the GaggleInvokee is
unavailable. Another possibility is to allow invoking objects to indicate the
‘‘permissible expense’’ of an invocation directly. Then, the implementation would
try no harder than instructed to locate the object.

4.6. Ownership vs. Multiple Interfaces  

We explored various alternatives for providing the management and service
interfaces before settling on the scheme described above. One alternative was that
one member of the Gaggle would be special: it would be the ‘‘owner’’. execute
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management operations. Unfortunately, if the owner crashed, the Gaggle would be
incapacitated. We therefore considered allowing the owner to pass ownership rights
to other objects.

The ownership concept implied that the owner of a Gaggle would not have the
same type as other members of the Gaggle, since it would have additional operations
for management. What, then, would be the type of a GaggleInvokee? This problem
prompted us to conceive our present solution, which uses two distinct object
identifiers to name the two distinct interfaces.

4.7. Types  

The type of each member of a Gaggle must conform to the type of the
GaggleInvokee. This does not imply that each member must have the same concrete
type, or even the same abstract type. This typing rule is the most lenient possible: it
is the minimum requirement on the members that ensures that sending an invocation
to any one of the members will not result in a ‘‘Message-Not-Understood’’ error.

4.8. Removal and Enumeration  

We do not provide these services for Gaggles. To do so would require maintaining
a list of all members of a Gaggle and running consistency protocols. The price we
pay for our light-weight Gaggles is that these operations are not possible. However,
if they are required, these operations can be implemented at the user-level as
follows.

An object can forward invocations to another object by making the body of
each of its operations invoke the corresponding operation on the other object.
Similarly, it may forward invocations to a set of objects by maintaining a list of the
objects and forwarding invocations to each. The forwarding object can provide a list
of the objects to which it currently forwards; these are the members. If it accepts
instructions to update the list, it can also export operations to add and remove
members.

However, the forwarding object is a single point of failure. If it breaks, the
entire group is unavailable. This can be remedied by making the forwarding object
a Gaggle. The Gaggle can also provide the desired removal and enumeration
facilities; the members of the Gaggle run their own consistency protocol to ensure
that membership changes are seen by all members of the Gaggle. Users of the
group invoke the Gaggle, which forwards the invocation to the members of the
group.

4.9. Gaggles as members of Gaggles  

Since Gaggles are designed to be treated as objects, there is no reason why Gaggles
should not be members of other Gaggles. An invocation of a Gaggle can be
forwarded to any member, including a member that is a Gaggle. The consequence is
that the invocation must eventually be delivered to a member of the transitive
closure of the Gaggle that was initially invoked. Since Gaggles have no
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membership list, we cannot prevent a Gaggle from being (indirectly) a member of
itself. This implies that the invocation protocol must detect cycles.

5. Implementation Considerations  
Although do not yet have a complete implementation of Gaggles, we have
considered many possible implementation strategies and their suitability for systems
of varying scale. We are pleased that the design of Gaggles has not made
implementation inflexible; indeed, we often found ourselves dazzled by the array of
alternatives. Just as it is hard to imagine a single object finding algorithm suitable
for systems of vastly differing scale, it is unlikely that a single Gaggle invocation
algorithm will suffice in all situations. Given some basic constraints, such as the
inclusion of protocol version numbers in the headers of messages, there is no reason
why the implementation of Gaggles could not be different on different nodes, or be
changed dynamically while the system is running.

There are two major primitives to be implemented: adding a member to a
Gaggle, and invoking a gaggleInvokee. It seems that there is a tradeoff between
work done at the time a member is added and at the time an invocation is made. At
one extreme, we could tell every node in the network about every new member.
Then, every node would have a complete membership list and invocation would
easy. At the other extreme, we could tell no other node about the new member, and
to perform an invocation we could ask every node if it knows of any member of the
Gaggle.

There is no parallel to the Gaggle addMember operation in an ordinary
Emerald system. However, we do have experience with various algorithms for
finding (singular) objects. An understanding of these algorithms will form the basis
on which we can build a Gaggle finding algorithm.

5.1. Algorithms for Finding Objects  

Emerald combines the process of finding an object with the process of invoking it.
This is done for efficiency (objects are usually found at their previous location) and
for correctness (an object might move between the two stages of an algorithms that
first found an object and then invoked it).

The Broadcast Algorithm.

The original Emerald system ran over a five-node local area network at the
University of Washington. The identities of the nodes were static and well-known.

If a node needed to invoke an object not present locally, it checked to see if it
had a forwarding pointer to the object (a last known location of the object). If it
did, the invocation was sent to that node. If the object was still there, the invocation
would succeed. Otherwise, the forwarding chain would be followed until either the
object was found and invoked or the chain broke.

If the object was found, the invoking node received a new forwarding pointer
so that it could update its local tables. If the invoking node had no initial
forwarding pointer, or if the forwarding chain had broken, the invoking node used
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broadcasts and, if they failed, a series of reliable point-to-point messages to all other
nodes in the network. The object would either be found, or it would be determined
to be unavailable.

Although this algorithm was suitable for a small scale local area area network,
it is clear that it will not scale to the wide area.

The Hermes Algorithm.

The Hermes location algorithm was designed for the wide area and does not require
broadcasts [6]. Forwarding pointers are still used, but in the event of a broken
forwarding chain, the location of the object is obtained from stable storage.

Each Hermes object has a current location and a storesite, both of which may
change. The storesite is a stable storage device that preserves a record of the
object’s state. When an object moves, the node from which the object is moving
keeps a forwarding pointer to the new location; in addition, the storesite is informed
of the new location. The forwarding pointers are appropriately timestamped so that
one can tell which of two forwarding pointers is newer. Whenever a reference to an
object is passed from one node to another, a pointer to its last known location is
passed as well. Thus, when one object invokes another, the Hermes algorithm
always has a forwarding pointer to follow. If the chain of forwarding pointers is
broken, the location of the object is retrieved from stable storage.

Since the object can change its storesite, finding the current storesite is not
trivial. The name of the object’s initial storesite is encoded in its identifier. When
the object chooses a new storesite, the old storesite is required to keep a forwarding
pointer to the new one; the name service is also informed. When the location of the
new storesite has become stable in the name service, the old storesite can forget the
forwarding pointer.

Modifying the finding algorithms for Gaggles.

It is clear that following forwarding pointers will not work one object identifier can
refer to many objects. This is precisely the situation we have created with Gaggles.

One solution is to break the problem into two pieces. First, when a node
invokes a gaggleInvokee, it selects a particular member to invoke. Then the Hermes
algorithm is used to find and invoke that member. Unfortunately, this gives up the
advantages of the Gaggle’s non-deterministic invocation semantics. If the particular
member chosen happens to be at the end of a long forwarding chain, the invocation
will be slow, even though some of the nodes that participated in the forwarding
process might host other members of the Gaggle.

The alternative approach – invoking all known members in parallel – violates
the semantics of Gaggles. Finding all known members in parallel and then invoking
the one that is found first is correct but potentially expensive. We are forced to see
a compromise.

If a member of the invoked Gaggle is local to the invoking node, the
invocation can be performed without further ado. If there is no local member, one
of the known members is selected (using the best information that is available
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locally) and the forwarding chain for that object is followed. However, the
invocation message contains not only the identifier of the selected object, but also a
tag indicating that this is a Gaggle invocation, and the identifier of the
gaggleInvokee. Now the recipient of this message has more freedom of action. If
the selected member of the Gaggle is local, the invocation can be performed. If it is
not, but some other member of the Gaggle is local, the invocation can still be
performed. Failing these happy eventualities, the recipient can either follow the
forwarding chain for the initially selected object, or it can substitute some other
known member of the Gaggle and forward the invocation to it.

Some care must be taken to ensure that this algorithm terminates. It is
sufficient to record in the invocation message the most recent timestamped
forwarding pointers to all of the members on which invocation has been attempted.
In the case of nested Gaggles, this will also serve to detect membership cycles.

The effectiveness of this algorithm depends on the care with which we select
the particular member to which the invocation is forwarded at each step. The
selection is assisted by keeping as much information as possible about the various
members. In addition to timestamped forwarding pointers, we might keep
information about network topology, system loads, and response times measured on
previous invocations.

The initial invoker (indeed, any node on the invocation path) can also limit the
flexibility that it grants to other nodes later in the chain by setting a maximum
number of forwarding steps; when the maximum is reached, the invocation is
forwarded no further, but instead a progress report is returned to the initial invoker
containing updated membership information and forwarding pointers. The initial
invoker can then decide whether to continue with its first choice of member or to try
a different member. (A similar facility appears in the Hermes algorithm under the
name of a hop-count; however, since in Hermes the invoked object is singular, the
initial invoker has no freedom of choice. However, limiting the length of
forwarding chains does increase robustness.)

In general, there are two parameters for the location algorithm: the topology of
the network, and the members of the Gaggle. Given complete information about
both, it would be easy to select the best member to invoke. But we do not have
such information. Our response is twofold: first, we try to propagate as much
information as we can, as cheaply as possible; second, we recognize that our
information will never be complete, and strive do as well as possible with what we
have.

Stable Storage.

The Hermes object-finding algorithm uses stable storage as a last resort. We can
increase the robustness of Gaggles by using the name service to provide a form of
stable storage for the gaggleManager.

Whenever a member is added to a group, it is possible to immediately update
the (global) name-service. Alternatively, the updates can be batched. Now, if a
node cannot find those members of a Gaggle that it knows about, it can ask the
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name server for a membership list and see if there are additional members. Since
the name server is not up-to-date, it cannot be relied on to supply the names of all
members; since it is a global service, it is relatively expensive, and should be used
only as a last resort. However, since members are never removed from a Gaggle,
the information received from the name service, while incomplete, will never be
incorrect.

Thus, stable storage for a Gaggle is implemented a little differently than for an
ordinary object, but not inelegantly. Just as objects that exist in a single place store
their state at a single storesite, objects that exist in a plurality of places store their
state in a ‘‘distributed storesite’’: a name service.

The addMember operation.

When a member is added to a Gaggle, it is not clear to whom that information
should be propagated. The membership table on the node where the addMember
invocation occurred should certainly be updated. In addition, a name server update
might be made or queued, as mentioned above. Beyond this, various alternatives are
possible.

The reason to propagate membership information is to reduce the message
traffic necessary to implement an invocation. Any propagation strategy that uses
extra messages is therefore suspect. However, piggybacking Gaggle membership
information onto existing node to node communication is promising. For example,
nearby machines could be notified of new Gaggle members when status and load
information are exchanged. Or, the next time an invocation for the gaggleInvokee is
seen by the adding node, the membership update could be returned.

5.2. The Emerald implementation of Gaggles  

The code for the Emerald run-time library that implements Gaggles is given in
Figure 3. The only necessary additions to the Emerald language are the system
primitives that implement addMember and that generate a new name (an object
identifier) for the gaggleInvokee. This name is the only state in a gaggleManager;
it is constant and assigned at object creation time, so the gaggleManager is
immutable. Thus, when the name of agaggleManager is passed from one object to
another, giving another object the ability to manage the Gaggle, the gaggleManager
can be passed by value. Thus, if the name of the gaggleManager is passed to several
objects on different nodes, the gaggleManager has been automatically replicated.

6. Current Status  
The original implementation of Emerald generated highly efficient native code for a
network of microVAXTM II workstations [9]. It has been ported to networks of
SUNTM workstations. However, both the generation of native code and the history
333333333333333333333333333333333333

TM VAX is a trademark of Digital Equipment Corporation. SUN is a trademark of SUN
microsystems, Inc.
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const Gaggle ←

immutable object Gaggle
export function of [memberType : type ] → [result : gaggleType ]

where gaggleType ←
typeobject gaggleType

function getSignature [ ] → [Signature]
operation new [ ] → [gaggleManager]

end gaggleType
where gaggleManager ←

typeobject gaggleManager
operation addMember [memberType ] → [ ]
function invokee [ ] → [memberType ]

end gaggleManager

result ←
immutable object gaggleCons

export function getSignature [ ] → [s : Signature]
s ← gaggleManager

end getSignature
export operation new [ ] → [aGaggleManager : gaggleManager ]

aGaggleManager ←
immutable object manager

initially
const theInvokee ← % a system primitive generating

% a new object identifier
end initially
export operation addMember [newMember : memberType ] → [ ]

% A system primitive handling member addition
end addMember
export operation invokee [ ] → [gaggleInvokee : memberType ]

gaggleInvokee ← theInvokee
end invokee

end manager
end new

end GaggleCons
end Gaggle222222222222222222222222222222222222222222222222222222222222222222221
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Figure 3: Emerald implementation of Gaggles

of the implementation have made the compiler and run time support for this version
of the system hard to maintain.

To promote the use of Emerald as a teaching and research tool, Norman
Hutchison created a portable version of the Emerald compiler (written in Emerald),
and a portable run-time system (written in portable C). However, this version of the
language was restricted to a single address space.

During the summer of 1992, the present authors started to add distribution to
the portable version of Emerald. As this work progressed, we began to consider the
extensions described here. We hope that Gaggles will be implemented as part of our
ongoing work to complete the distributed portable implementation of Emerald.
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We have not come to any definite conclusion about the relative merits of one
Gaggle finding algorithm over another; only benchmarks run on real
implementations can definitively decide that question. However, we have
highlighted some of the problems involved, examined many of the choices, and
presented some plausible solutions.
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