
7 7

The Workstation as Terminal

Andrew P. Black
Digital Equipment Corporation

Models of Operating System

There are a number of different models of distributed operating system. One point of reference is
‘‘clustered’’ systems, where a distributed OS Kernel runs on a collection of (usually homogeneous)
machines, with distributed algorithms implementing at least some OS functions. Examples are LOCUS,
VAXcluster systems, the Eden System and the Clouds system. At the other extreme, from the point of
view distribution, is a networked group of independent machines, each running its own operating system
and capable of standing alone. The network is used explicitly by specially written distributed
applications, such as mail delivery and remote conferencing or bulletin board service. However, any
distributed application must itself be aware of the network.

These two models can be contrasted according to the degree of autonomy that each machine
exhibits. In the clustered arrangement, each machine depends for its correct operation on the operation of
all the others, and the machines mutually depend on the communications medium. They conspire to
present the fiction that the several machines really represent a single large time-shared computer.
Moreover, the machines use a significant proportion of their resources on maintaining this fiction. The
independent machines model illustrates complete autonomy: the unavailability of a ‘‘foreign’’ host may
impact a particular distributed application that uses it, but not the operation of the system as a whole.

Neither of these models is appropriate for the extended, geographically distributed community of
users that now exists in many companies and research environments. On the one hand, a single world-
wide cluster is unmanageable from an administrative point of view, even if the implementation can be
scaled. Moreover, researchers want autonomy so that they can run experimental software on their
machines – they do not want to be constrained to conform to the cluster protocols. They want to be able
to turn their machines off, and they may sometimes want to take a machine on an aeroplane or a train. At
the same time, they do not want to spend their time managing those aspects of their systems that are
standard. In addition, heterogeneity is a fact of life; users with different requirements and budgets will
choose systems from different vendors with different architectures and interfaces, and it is unrealistic to
expect to bring all such systems into a single cluster. On the other hand, a group of independent
machines poses an unacceptable system management burden: all those machines must be administered.
Engineers, graphic artists and secretaries should not have to be systems managers. Moreover, writing
distributed applications in an environment where the network is visible only as a transport service is just
too much work.

I wish to discuss a third point of view: the workstation as terminal. This does not fall within the
spectrum defined by the above extremes. Instead, the workstation runs a minimal operating system and
obtains most services from ‘‘The Network’’. Of course, the services really come from servers on the
network, but this is a detail that most users will choose to ignore. I think that this change in viewpoint is
significant: to the user the network is a pool of services, not a communications medium. The servers
themselves may be clustered or autonomous – but that is not the topic of this workshop.

333333333333333333333333333333333333
Author’s Address: Dr A.P. Black, Digital Equipment Corporation, 550 King Street, LKG1-2/A19 Littleton, MA 01460-1289.

Electronic Address: Black@hobart.dec.com

– 2 –

The Workstation as Terminal

The workstation is like a terminal in the sense that its main purpose is provide the interface between the
user sitting in front of it and the computing resources sitting behind it. The display protocol might be
Postscript or X-windows rather than a character-cell protocol, but the functionality is in any case broadly
similar. The computing resources may be distributed over the network rather than concentrated in a
single mainframe, but this will usually not concern the user. Both terminals and workstations use remote
services to support themselves – down-line loading of fonts is an obvious example. Both terminals and
workstations use remote services to support their user: in the case of a terminal, almost every service the
user sees beyond simple editing is remote, but in the case of a workstation, quite significant services can
be provided locally. ‘‘Large grain’’ services, like filing, naming, and mail are commonly regarded as best
obtained from the network. How many other services can be removed from the workstation and provided
by the network? Possible candidates are authentication, loading, dumping, error-logging or perhaps
swapping or paging.

The main difference between a terminal and a workstation is that the manager of a workstation has,
at least potentially, much greater freedom in deciding which services should be local and which remote. If
the interfaces to the various network services are both well defined and location independent, it is
possible to (1) reimplement any component to suit a special purpose, and (2) to relocate any desired
service to the workstation. Two reasons for doing this are customization (of the computing environment)
and portability (of the workstation – the ability to operate it on a train).

Location Independence

Conventionally, an operating system’s services are accessed by hardware traps. Essentially, the function
of a trap is to transfer control from an executing thread in the user’s address space to the system’s address
space. In distributed systems, remote procedure call (RPC) provides another mechanism for a thread to
cross from one address space to another: although we conventionally imagine the address spaces to be
physically remote, they need not be. Remote procedure calls can be used to access system services in a
uniform manner, whether they are resident on the same machine as the caller or are on a remote server
machine. There are two caveats: performance, and security.

Accessing a remote service will normally incur a larger communications overhead than accessing a
local service. This overhead can be eliminated by suitably slowing down the local (i.e., on machine)
RPC transport, but this can hardly be recommended. The communications overhead may sometimes be
offset by the availability of more and/or faster computing resources on the network, but it is clear
nevertheless that locating a service correctly can have a major impact on performance.

It is also true that the naive remoting of a service can create a security hole. A trivial example is a
routine that takes a password and principal name and checks that the password is indeed that of the
principal. This may be an appropriate interface for a local kernel, but it is not adequate for a network
service without adding significantly more machinery. For example, one needs to ensure that the server
cannot be spoofed, and that the password cannot be read in the clear from the network.

Security becomes more important in a networked environment because of the greater potential for
damage, and because users’ expectations are raised. Most applications should be ubiquitous, i.e. remote
access should be available despite administrative, managerial and cluster boundaries. That is not to say
that any user of the internetwork must be able to access the police force’s database, or someone else’s tax
return. What it means is that a properly authorized principal should be able to do these things, regardless
of her geographic or administrative location in the network. This implies the availability of access
controls that are easy to use, trusted and deserving of that trust.

Remote Access and Distributed Implementation

Despite this requirement for ubiquitous remote access, when implementing a distributed application it
may be reasonable to require that all of the machines that form part of the implementation are closely
integrated, homogeneous, part of the same security domain, and so on. This introduces an important
(although not sharp) distinction, and one that is often neglected. A distributed application is one whose

Workshop on Workstation Operating Systems Friday, 3rd December 1993

– 3 –

implementation is distributed. This should be compared to a centralized application, which is
implemented on a single machine. Either kind of application may provide remote access.

The most primitive form of remote access is explicit remote login and file transfer, typified by
telnet and ftp. Because a conventional operating system allows both applications and system services to
be accessed either from a terminal or as a file, telnet and ftp can be used to access almost anything – but
at a considerable cost in convenience. Running an application in a remote X-window is the workstation
equivalent of remote login: it is more convenient than telnet, but often unresponsive.

A more sophisticated form of remote access can be provided at the system call level. In the
Newcastle Connection and in the VMS operating system’s Record Management Services System (RMS),
the same call can be used to open a file whether it is local or remote. This often means that an
application can be run unchanged on remote files. However, in both of these systems the name of the file
betrays its location; if the file is moved, its name must change. The most complete and transparent form
of remote access occurs when naming transparency is also provided, for example by indirecting through a
name server. In this case, inspection of a file name says nothing about its location: a file name can be
changed without moving the corresponding file, and a file can be moved without changing its name.

A true distributed system is characterized by the lack of centralized state. Instead it exhibits
distributed state, usually with imperfect knowledge. In the case of a local area network, the usual reason
for designing such a system is to obtain fast response and loose consistency. (If tight consistency and
and slower response are required, it is usually easier to use centralized information and remote access –
the extreme case of non-distribution.) Other reasons for distributing an application are to increase
availability, for scalability, and to mirror the structure of an organization.

Summary

I have advocated a view of the workstation as a means of accessing network resources rather than as a
computing engine. Its operating system should be modular, and OS services should be accessed by
remote procedure call, in order that individual system services can be relocated at will. For this to be
feasible, reliable authentication and authorization mechanism must be provided.

Some system services will be implemented in a distributed fashion in the network, while others will
be centralized. These implementation decisions will be hidden from the user, since all will provide a
similar interface for remote access.

333333333333333333333333333333333333

The views expressed herein are those of the author, and should not be construed as those of Digital
Equipment Corporation.

VAXcluster, VMS and VAX are trademarks of Digital Equipment Corporation. LOCUS is a trademark of
Locus Computing Corporation.

Workshop on Workstation Operating Systems Friday, 3rd December 1993

