
nference on

?bruar:
acif ica
- 1 -

Y 3-5, IEEE Computer Society Order Number 762

Hotel Library of Congress Number 86-46344
IEEE Catalog Number 87CH2407-5

1s ~naeles. Ca~~~ornia. USA I C Q ~ 0-8 186-n7~3-a

THE CC
OF THE lE

IMPUTER
IEE

EOMI
SOCll
PRES

File Sessions: A Technique and its

Application to the UNIX File System
John H. Maloney and Andrew P. Black

University of Washington

Abstract - Thls paper describes a new technique for Files are often used in stylized ways. For exa~iiple,
analyzing dynamic file umge Patterm based upon some programs append data to files, while others create
classification of file sessioiis. AJile session is defined to be the new files or overwrite existing files with new data, wl1ile
set of operations On a given from the moment It opened all three of these styles may be equally efficient whell until the monient it Is closed. If file system measurement data
Is organized into sessions, each sesslon may then be classified using a particular file server, another server with a
by the pattern of file use that It demonstrates. Examlnatlon different design may One sty1e Over One
of the overall pattern of file use revealed by thIs classification might hope that an analysis of file usage would enable one
leads to valuable Lnslghts for file system designers. The to determine which server is best. However, since in all
technique Is Illustrated by applying It to data collected from a three cases the files may be opened in "write" mode,
UNIX@ file system by John Ousterhout at Berkeley [61. One statistics based on file open modes would not help one to
surprising result was a hlgh incidence of "lock files". determine the relative importance of these styles of access.

I. Introduction

The recent proliferation of networks of personal
computers has created a dernand for file servers, and has
caused renewed interest in file system design. One way
for file system designers to obtain i~ifonnation about file
systems is to study the daily patterns of use. in an
established file. system. Such information helps the
designer establish the feasibility of proposed designs,
provides a bwis for mxking engineering vadeoffs within a
given design, and can help identify patterns of use which
rnight be separated out as special cases to improve
performance.

The emphasis of this paper is on the analysis of
general purpose file systems, such as are commonly used
to store programs and documents of various kinds. A file
system may also support large databases with specialized
programs for accessing, locking, and updating records in
the database. However, this paper does not consider issues
related to database support. Moreover, the computers
from which we obtained our data were not used for serious
database work.

This paper describes a technique for organizing lile
system trace data in a way that highlights the distinctions
between different styles of file use. It then discusses [lit:

(sometimes surprising) results of applying this technique
to a UNIX file system.

The technique revolves around the concept of a file
session. A file session is defined as the entire set of
operations on a given file between the open operation and
the corresponding close operation. By analyzing this set
of operations as a group, it is possible to discover patlerns
which are not otherwise obvious. For example, a given
session might open a file for writing, position the write
head at the current end of the file, write some dim
sequentially, and then close the file. This is logically an
append operation, even if the file system does not have an
append primitive. By classifying file sessions into
categories and collecting statistics on each category as a
whole, one may obtain a view of the file system activity
which is oriented towards the functional needs of the user
community. It might be discovered, for example, that
append style access is very common in a certain file
system, suggesting that improved performance might be
obtained by implementing an optimized append operation.

The next section reviews recent work in the area of file
@ UNIX is a registered trademark of AT&T. system analysis with special emphasis on the technique

used. None of this work has categorized the data
'Illis work is supported ia part by the National Science Foundation under to style of access. section 111 then describes the
Gnnt Number DCR-8420945, by UIC Xerox Coq)oralion University
Grants Progrdnl, by Digib, Equiplnenl CorFor&ion Extenla, of the sessions technique to an of

Research Progratn. dynamic file usage patterns in a UNIX 4.2 BSD file systeni.
This analysis lead to the discovery of an unforeseen
pattern of access (the use of "flag" or "lock" files for

CH2407-5/87/0000/0054$0 1 .OO 0 1987 IEEE

synchronization) which alters the interpretation of the
of two recent studies of file usage patterns in UNIX.

The analysis also revealed that different.styles of access
have significantly different dynamic file size distributions.

11. Related Work

Satyanarayanan studied patterns of use in a TOPS-10 file
system 171. His technique was to analyze static snapshots
of the file system, collecting data about the functional
lifetimes, sues, and types of both on-line and archived
files. (The functional lifetime of a file is the length of time
that the contents of the file are useful, that is, the length of
time before the data is either forgotten or changed.)
Among other things, he discovered that files in the TOPS-
10 system tend to be small and have short-functional
lifetimes, that the size and lifetime of a file depends upon
its type, and that larger files tend to have shorter functional
lifetimes. Although these findings are relevant to the
choice of a file migration strategy, they say nothing about
the dyriamics of file system use.

John Ousterhout and his students studied the dynamics
of a UNIX 4.2 BSD file system [6]. Their technique was to
log operations at the kernel interface to the file system and
to perform a postmortem analysis of the log file. They
collected information about data transfer rates, file sizes
(weighted by the number of dynamic references), file
lifetimes, file open times, file access pauerns, and the
effect of various caching strategies. Some of their more
significant findings are: per-user data transfer rates tend to
be low; files tend to be small; most information tends to be
deleted soot1 after it is created; files tend to be open for
only a very short time; most files are accessed sequentially
in their entirety; and caching file blocks can significantly
reduce the amount of disk traffic. Although these findings
are valuable, Ousterhout's analysis of file access patterns
was not sufficiently detailed to answer certain questions.
In particular, accesses were categorized according to the
mode of access (read, write, and readlwrite) rather than by
the style of access.

In a very thorough study Rick Floyd also examined the
dynamics of the UNIX file system [3]. His work
corroborates many of Ousterhout's findings but goes much
further towards an analysis of access patterns based upon
the style of access. He broke the set of referenced files
into three categories: log files, temporary files, and
permanent files. This partitioning was done on the basis of
the file name: a priori knowledge of the system was used
to identify system log files, and temporary files were
identified by either the directory in which they were
created (lrmp) or by the syntax of the file name. The file
identification process required some tedious trial and error
and a deep understanding not only of the UNIX operating
system, but also of many of its application programs.
Furthermore, Floyd assumes that all references w iiles

identified as either logs or temporary will have the same
access pattern. The technique outlined in our paper
depends upon neither an extensive knowledge of the
system to be measured nor the assumption that all
references to a given file have the same access pattern.

The next section describes the technique and its
application to a Urn file system. This work relies heavily
upon the work of Ousterhout. In fact, since the analysis
was performed upon file system data collected by
Ousterhout, a direct comparison of these results with his
results is possible.

111. A Study of the UNIX File System

Motivation
Our primary interest in patterns of UNIX file usage stems
from our involvement in the design of a common file
storage service for use in our own department and in
similarly heterogeneous environments elsewhere [I]. The
file system design is novel in a number of respects, but for
the purposes of this presentation two aspects of the design
are particularly significant.

Multiple versions of a file can be stored; the file system
includes version naming and efficient storage for a
large number of versions using a novel difference
representation [2].
Immutability of versions: once created, a version is
treated as read-only. A file cannot be modifled in
place.
A new version of a file can be created only by writing
it sequentially from the beginning to the end.
Although immutability has the virtue of simplicity, its

implications on the performance and utility of the resulting
file service must be considered. We assumed a model in
which the user's workstation has access to a local disk for
temporary storage. A file on the file server is "updated"
by fetching the most recent version to the local disk,
modifying it as required, and storing the new version back
on the file server. If the modification is small (for
example, inserting a line in a text file) and the file is large,
considerably more work is required to create a new
version of the file using the fetch-modify-restore scenario
than would be necessary if the file server allowed the file
to be modified in place.

Fortunately, there is some empirical evidence that
makes the fetchistore design defensible. At the Xerox
Palo Alto Research Center, a file system in which versions
must be written and read in their entirety has been in use
for some years [9]. In the UMX environment, many
application programs deal with entire files J3,6]; for
example, if the insertion of the single linehVthe above
scenario were accomplished with a UNLX text editor, the
entire file would be read into main store and then

re-written to the disk. We wished to collect more detailed
information on usage patterns before committing to a file
server design that disallowed in-place modification. In
particular, Ousterhout's results were not detailed enough

distinguish between usage patterns corresponding to the
creation of a new file, appending to a file, or arbitrary
modification of a file.

Method
Analysis was performed on three traces of UMX system
activity collected by Ousterhout and his students at
Berkeley in the spring of 1985 [6]. The traces were
produced by logging every system call which affected the
file system. The following log entries were of interest to
US.

File opens and creates, which mark session
beginnings. There are also+.vo operations which may
be performed as side effects when the file is opened:
the file may be truncated to zero length (truncate
mode) or the write head may be positioned to the end
of the file (append mode).
File closes, which mark session ends. The read/write
head position is recorded when the file is closed.
Seek operations, which explicitly change the position
of the file's readfwrite head; both the old and new head
positions are recorded.
Read and write data transfer operations were not
recorded on the log, but could be inferred by
examining changes in the file's read/write head
position.
Truncate operations on open files, which change the
file's length.

Unlike Ousterhout, we were not interested in the file reads
corresponding to program loading (execs), since we
assumed that frequently executed programs would be
resident on the workstation's disk. More detailed
information about the data maintained in the trace log may
be found in Ousterhout's paper.

The three machines from which the traces were taken
were used primarily for document preparation and
program development (the machines named A5 and E3)
and computer-aided design (machine C4). Analysis was
performed on the same three traces analyzed by
Ousterhout to allow easy comparison of ow results with
his. Each trace covers approximately three weekdays and
contains between 733 000 and just over a million event
records which constitute between 233 000 and 358 000
complete file sessions. Because the system was not
quiescent when tracing was started and stopped, each trace
also contains a tiny number of incomplete sessions, which
were ignored.

Before analysis is begun, our technique requires that
one postulate a set of access-style categories, using
intuition and observations. It may be necessary to repeat

this process several times to develop an appropriate set of
categories. The final set of categories used for this
analysis was as follows.
Readonly The file is not modified.
NewData The file is .created from scratch or by

completely overwriting an existing file. The
latter may occur if the file is written
sequentially from the beginning past its
previous end-of-file, or if it is truncated to
zero length and before data is written into it.
Either way, none of the old contents of the file
is retained.

Modifred The file is modified in some arbitrary way.
Database updates would fall into this
category. All sessions in which the file is read
as well as written were placed in this
category.

Flag No data is written. The file starts empty, ends
empty, and is empty in between.

Append New data is added to the end of the file. The
old contents of the file remain untouched.

DeleteBody The file is auncated to zero length and left
empty.

Temp The file starts empty and ends empty but some
data resides in the file in between. (No
sessions of this type were encountered.)

Flag sessions result from the use of the file system for
synchronization. Older versions of UNIX did not provide
file locks as a primitive, and some applications use the
existence of a file with a certain name as a lock. (No
attempt is ever made to read the flag file itself; it exists
solely to cause certain operations on the directory to fail.)
Although we were familiar with this locking convention,
we did not expect to find that it was used so frequently.
We made flag sessions a separate category when we
discovered a large number of files with zero length in the
Modified category. The opposite occurred with Temp
sessions: sessions matching this pattern were expected but
not observed. It is probable that applications which create
a temporary file close the file with data still in it and then
delete the file. Since no Temp sessions were encountered
they will not be mentioned again.

Since the purpose of this analysis was to investigate
issues relating to a network file server, the classification of
file sessions ignored manipulation of newly created data;
workstation software would presumably perform this
manipulation locally before transferring the file to tlie
server. For example, consider a session which opens a file
for writing, positions the write head at the current end of
the file, writes 100 bytes of data, moves the write head
back to the original end of the file and re-writes 30 bytes
of data, and finally truncates the file to 10 bytes greater
than its original length. This session would be placed in
the Append category, since the overall effect is that the file

Table 1: Distribution

has 10 new bytes of data appended to it. (Note that no
operation involved the data which constituted the original
body of the file.)

Com~osite
count,

%of sessions

580151 64%

185736 21%

57270 6%

48487 5%

30866 3%

6434 1%

908944 100%

AS - E3
Category count, count,

%of sessions %of sessions

ReadOnly 240274 67% 208149 66%

New Data 69616 19% 58080 18%

Modified 15954 5% 20053 6%

Flag 17727 5% 19224 6%

Append 11559 3% 10078 3%
-

DeleteBody 3049 1% 2116 1%

Total 358179 100% 317700 100%
L

Results

C4
count,

%of sessions

131728 56%

58040 25%

21263 9%

11536 5%

9229 4%

1269 1%

233065 100%

Table 1 shows how the file sessions were distributed
between the various categories. The "Composite" column
combines the columns for the individual machines.
ReadOnly sessions constitute about two-thitds of all
sessions. Among the write sessions, the NewData
category is the most significant, accounting for over half
of the write sessions. Flag sessions form an unexpectedly
large fraction of the write sessions.

There is a discrepancy between our analysis and the
results of Ousterhout and Floyd. Ousterhout observed that
81 to 85 per cent. of write-only file accesses wrote data
sequentially from beginning to end, while Floyd observed
that, overall, 78 per cent. of write-only or readtwrite file
accesses wrote to the entire file. (Floyd does report that
log files are a significant exception.) Yet, in the current
work, nearly all of the whole-file, sequential writes
occurred in the NewData category, which constitutes only
58 per cent. of all. writes. What accounts for the
difference? It seems that both Ousterhout's and Floyd's
results were skewed by the large number of Flag sessions,
which both considered to be whole-file accesses even
though no data is actually written. This is clearly a case
where knowing the styles of access leads to a greater
understanding of the data Since Flag files are an artifact
of the UNR environment, the Flag session class should
Probably be considered irrelevant to the design of network
file servers.

Our analysis verified the finding of Ousterhout and
Floyd that about two-thirds of the ReadOnly sessions
access the entire file. This fact, and the fact that many
write sessions touch the entire file(even after eliminating

Sessions by category.

Flag sessions from consideration), agrees with the Xerox
PARC experience that a file server that provides only
whole-file transfers is not unreasonable. Yet what about
the sessions that do not touch the entire file? One
argument for not making special provision for these
sessions has been put forth by the designers of the ITC file
server [5]: files are small enough that the cost of
transferring the entire file from one place to another is not
significantly greater than the cost of transferring only part
of the file. To test this hypothesis, size distribution
statistics were collected for each session category. Graphs
of the file sue distributions for the NewData, ReadOnly,
Modified, and Append categories are presented in
Figure 1. (These graphs show the combined file size
distributions of all three traces.)

The file size distributions for these categories are
markedly different fiom each other. First, consider the
graph for NewData sessions. Newly created files tend to
be small, with a median size between 50 and 500 bytes.
Ninety per cent. of the NewData sessions created fewer
than 5 000 bytes of data. ReadOnly sessions also have a
tendency to access small files; seventy per cent. of these
sessions access files of 5 000 bytes or fewer. However, a
noticeable fraction of the ReadOnly sessions accessed files
in the 500 000 to 5 000 000 byte range. This leads us to
question file server designs that require clients to read the
whole file. Random access read is easy to implement and
may significantly reduce the overhead involved in reading
small portions of large files.

Append sessions showed a marked tendency to access
larger files than either NewData or ReadOnly sessions.
About seventy-five per cent. of these files are over 5 000
bytes and fifty-five per cent. are over 50 000 B ~ s . This is
not surprising; Append sessions are used by UNN to add
entries to log files maintained for accounting purposes.
Since our size statistics are weighted by the number of

5 50 500 5K 50K 500K 5M 5 50 500 5K 5OK 500K 5M
File Sizes File Sizes

5 50 500 5K 50K 500K 5M 5 50 500 5K 50K 500K 5M
File Sizes File Sizes

Figure 1: Dynamic file size disfriburjon for various session types. In each case, the columns indicate the percentage
of sessions that used a file of the indicated size. The lines plot the same data cumulatively, i.e. the percentage of
sessions using files less than the given size.

accesses, the frequent use of append mode by the system
(whose log files are large) could be weighting the file size
distribution towards larger files.

For this and other reasons, it would be nice to know
what portion of the sessions in the Append category
correspond to system activities. Floyd found that
programs run by users made relatively little use of user-
owned log files. Recall, however, that his categorization
of log file accesses was based upon an a priori
identification of the "log files" in the lile system rather
than on analysis of the actual patterns of access. When we
filtered out sessions opened by programs running under
user names 'root' and 'daemon', wc discovered that
Append sessions accounted for five per cent of the
remaining sessions. Surprisingly, this is significantly more
:than fheir fraction (three per cent) of the unfiltered
sessions. This discrepancy could be explained by user
programs accessing system- and network-owned files,
since Floyd examined only user programs accessing user-

owned files. It might also be explained as an artifact of
Floyd's static categorization method: there could be
significant numbers of appends to files which Floyd did
not identify as log files. It is not possible to establish the
truth of either hypothesis without using both techniques to
analyze identical data.

We were extremely interested in the file size
distribution for the Modifled category, since it is these
sessions which could cause the greatest unnecessary
performance penalty for a file server that disallows in-
place file modification. We were relieved to discover that
most of the files accessed by Modified sessions were fairly
small. Two-thirds of them were less, than 5 000 bytes and
only twenty per cent were in the 50 000 to 500 000 byte
range.

Relevance to File Server Design
The results of our analysis allow us to answer several
critical file server design questions including:

should the file server support only "whole-file
uansfer" for file reading?

. should the file server make special provision for
append operations?

Will disallowing modification of files in place preclude
the use of the file server for the usual activities
supported by UNIX?
Ousterhout and Morris have made strong arguments

for supporting only whole-file transfer [5,6], noting that
the majority of read sessions access the file in its entirety.
~ndeed, we found that sixty-nine per cent. of the ReadOnly
sessions accessed entire files. It certainly is possible that
fewer ReadOnly sessions access large files in their entirety
than similar sessions on smaller files. (One could conduct
an experiment to test this hypothesis by splitting the
ReadOnly category into two categories, ReadOnlyLarge
and ReadOnlySrnall, with separate whole-file transfer
statistics for each category.) However, even assuming that
the whole-file transfer characteristic is independent of file
size, we must still be concerned about the thirty-one per
cent. of the ReadOnly sessions which do not access the
entire file.

Fetching the entirety of a large file to the user's
workstation takes a lot of time and consumes a large
portion of the workstation's local disk. Because we
cannot assume that the program will always need the
entire file, it seems best to choose a transfer increment
which is larget, but not necessarily as large as the entire
file. For example, if files were transferred in 8k byte
chunks, small files (seventy per cent. of the accesses)
would be transferred in their entirety in a single chunk but
larger files could be read incrementally.

Append sessions constitute only three per cent. of all
sessions. However, since fifty-five per cent. of Append
sessions involve files larger than 50k bytes, we conclude
that special provisions might reasonably be made for them.
In a typical append operation, the amount of data
appended is only a very small fraction of the existing data.
Note that supporting an append operation is not
inconsistent with the notion of immutable file versions: an
append operation creates a new file version similar to the
old one except that some additional data appears at the
end. It is possible to avoid storing multiple copies of the
same data by integrating the append operation with the file
version storage mechanism; only the new data and a
pointer to the previous file version need be stored.

The final potential problem concerns Modified
Sessions. What does it cost to support this usage pattern
without in-place file modification? We may assume that
workstations cache files, as they do in the VicdVirtue
System [8]. Thus, a sequence of changes to a file within a

t Large transfers are to be p f e d because the sewer overhead is amor-
tized over more bytes; gee reference 4 for details.

short period of time would share the cost of a single fetch
and store. Once the file has been fetched to the
workstation, the cost of file modification, as perceived by
the user, would be determined by the speed of the
workstation's file cache. Storing the new version back on
the server may be done in the background. What cannot
be hidden from the user is the cost of the initial fetch
operation. Ignoring communication and processing
overhead, and assuming a file transfer rate of 10
kbyteslsecond, we see that the files touched by eighty per
cent. of the Modified sessions could be fetched in five
seconds or less. The worst case is only fifty seconds.
These delays are acceptable, especially given the very
small fraction of sessions in the Modified category.
Furthermore, it is possible that many of these sessions
reflect database usage, which would be absorbed by a
database server rather than the file server.

One further area of interest is the CPU load on the
proposed file server. CPU load has been cited as a
significant influence on file server response time [4]. Our
proposed design, by insisting on transferring files in their
entirely (when creating new files or reading small files) or
in large chunks (when reading large files) keeps the file
server's processing overhead low. Disallowing in-place
file modification forces much of the cost of file updates to
be assumed by the workstations. The consequent
reduction in server CPU load should improve average case
performance.

Figure 2 summarizes the previous discussion. Notice
that NewData sessions always require the transfer of the
entire new contents of the file, so they would cost the same
independent of whether the file server allows the
modification of files in place. Flag and DeleteBody
sessions reflect UNIX operations that would not have
analogues in our proposed file server. The two possible
performance problems, Modify and Append sessions to
iarge files, areindicated

Validity
Two points of caution about the validity of these results
are in order. First, it is clear that the UNIX environment is
different from the workstation-based environment in
which file servers operate. Furthermore, U m ' s data
seeam abstraction encourages a certain programming
style. Many UNU utility programs are filters which
always process their entire input stream (or file) in
sequential order. Lessons taken from an analysis of UNIX
may not transfer well to systems with significantly
different programming "cultures". Second, it should be
noted that because these traces are based on usage patterns
averaged over a period of days, we are likely to be
counting system activities ' more heayily than user
activities. Not only are our statistics affpi:?% by large
system administration jobs scheduled to run in the small
hours of the morning, but we are also accumulating the
effects of ongoing system activities (network table

i All Accesses

Performance -
Problems

, . Figure 2: Summary of results relevant to server with immutable fles

maintenance, mail, etc.) around the clock, whereas the
user community is only active for part of that time. In a
workstation-based environment, much of this "system"
activity might be camed out by specialized servers (e.g.,
mail delivery servers) which would operate independently
of the file system. Floyd, who also collected data around
the clock, discovered that the system itself initiated about
seventy-three per cent. of the file system activity [3].

IV. Conclusions

The categorization of file sessions by access pattern is a
powerful tool for analyzing file system dynamics. When
we applied this technique to a UNIX file system, we
discovered two cases in which previous file system
analysis techniques have generated misleading
conclusions. First, the large number of Flag sessions in
UNIX led both Ousterhout and Floyd to over-estimate the
proportion of write accesses which display the whole-file
transfer phenomenon. (Although Floyd was aware of the
existence of Flag sessions, his technique made it difficult
to discard these sessions in his analysis of whole-file
transfer.)

Second, Floyd's static classification of file types led
him to under-record the number of append-style file
accesses, particularly those performed by user programs.
Our technique allows us to detect append-style file

accesses by examining actual patterns of access; there is
no need to pre-identify log files and no danger of
overlooking any append-style accesses.

We also discovered that the dynamic distribution of
file sizes is correlated with the style of access. For
example, newly created file versions tend to be small
while files accessed in the append style tend to be large.
An analysis of the file access traffic based upon a
combination of access style and file size lead us to
conclude that files should be read in large chunks (but not
necessarily in their entirety), that provisions should be
made for append-style accesses, and that a file server that
disallows in-place file modification is feasible.

This is not to say that in such a design all access
patterns will be equally efficient. On the contrary: we
have seen that small changes to large files will involve
reading and writing the whole file over the network, which
is potentially very costly. However, our data does say that
such usage is rare; the considerable extra effort necessary
to design, implement and maintain a file server with an
in-place modification protocol would yield a benefit in
only one per cent. of the sessions. Even if one has
manpower to spare, it is probably a mistake to provide this
facility: one would be better advised to devote one's
energy to optimizing the performance of the other ninety-
nine per cent. of sessions. This is the reduced instruction
set principle applied to software systems.

The value of the file sessions technique (and the study
of the UNlX file system) that we have presented is that it

system designers to optimize the "instruction set"
of their products to deal with real rather than imagined

Acknowledgement

We thank John Ousterhout for making his trace data
available to us.

References

[I] Black, A. P. and Lazowska, E. D. "Interconnecting
Heterogeneous Computer Systems". Proc. European UNIX
systems User Group A u w '86 C O ~ . , Manchester, UK,
September 1986, pp43-52.

(21 Burris, C. H. "Selection Matrices: An Algebraic System
for Representing File Versions ". MS Thesis (in prepara-
tion), University of Washington, Computer Science Dept.

[3] Floyd, R. "Short-Term F i e Reference Patterns in a UNIX
Environment". Tech. Rep. 177, Dept of Computer Sci-
ence, Univ. of Rochester, Rochester, NY 14627, March
1986.

Lazowska, E. D., Zahorjan, J., Cheriton, D. R. and
Zwaenepoel, W. "File Access Performance of Diskless
Workstations". Trans. Computer Systems 3, Nr 3 (August
1986), pp238-268.

Monis, J. H., Satyanarayanan. M., Conner, M.. Howard, J.,
Rosenthal, D. and Smith, F. D. "Andrew: A Distributed
Personal Computing Environment". Comm. of the ACM
28, Nr 3 (March 1986), pp 184-201.

Ousterhout, J. K., Da Costa, H., Harrison, D., Kunze, J.
A., Kupfer, K. and Thompson, J. G. "A Trace-Driven
Analysis of the UNIX 4.2 BSD File System". Proc. 10th
ACM Symp. on Operafing System Prin., December 1985,
pp 15-24.

Satyanarayanan, M. "A Study of File Sizes and Life-
times". CMU-CS-81-114, Computer Science Dept,
Carnegie-Mellon University, Pittsburgh, PA, April 1981.

Satyanarayanan, M., Howard, J. H., Nichols, D. A., Sidc-
bolham, R. N., Spector, A. Z. and West, M. J. "The ITC
Distributed File System: Principles and Design". Proc.
10th ACM Symp. on Operating SyStern Prin.. December
1985, pp35-50.

Schroeder, M. D., Gifford, D. K. and Needham, R. M. "A
Caching File System for a Programmer's Workstation".
Proc. 10th ACM Symp. on Operating System Prin.,
December 1985, pp25-34.

