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Distribution and Abstract Types in Emerald 
ANDREW BLACK, NORMAN HUTCHINSON, ERIC JUL, HENRY LEVY, AND LARRY CARTER 

Abstract-Emerald is an object-based language for programming 
distributed subsystems and applications. Its novel features include 1) 
a single object model that is used both for programming in the small 
and in the large, 2) support for abstract types, and 3) an explicit notion 
of object location and mobility. This paper outlines the goals of Em- 
erald, relates Emerald to previous work, and describes its type system 
and distribution support. We are currently constructing a prototype 
implementation of Emerald. 

Index Tenns-Abstract data types, distributed operating system, 
distributed programming, object-oriented programming, process mi- 
gration, type checking. 

I. INTRODUCTION 

W HILE distributed systems are now commonplace, 
the programming of distributed applications is still 

somewhat of a black art. We believe that the complexity 
of distributed applications is heightened by the lack of 
programming language support for distribution. For ex- 
ample, most distributed applications are implemented by 
calling operating system communications primitives, such 
as send and receive. The programmer is responsible for 
locating the communications target, explicitly packaging 
parameters, and so on. Before the introduction of concur- 
rent programming languages, concurrent programs were 
constructed in a similar fashion. Language support for 
concurrency greatly simplified concurrent programming; 
we believe that language support for distribution can have 
a similar effect on distributed programming. Experience 
with the remote procedure call facilities of CedarIMesa 
[2] and with the Eden Programming Language [I] has jus- 
tified this belief. With Emerald, we intend to go beyond 
simple syntactic support for message send and receive, 
and address some of the fundamental semantic problems 
of distribution. 

Although distribution has many benefits [22], it also 
introduces challenges for the designer of a distributed lan- 
guage. First, the language must present a model of dis- 
tributed computation; it must provide the conceptual 
framework that allows the programmer to define the ob- 
jects that he manipulates in both the local and distributed 
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environment. Second, it must provide for both intra- and 
internode communication in an efficient manner. The se- 
mantics of communication and computation should be 
consistent in the local and remote cases. Third, it must 
allow the programmer to exploit the inherent parallelism 
and availability of a distributed system. Fourth, since 
shutting down and recompiling an entire distributed sys- 
tem in order to modify some component is unacceptable, 
the language must permit system extensibility without re- 
compilation; existing programs must continue to work in 
collaboration with new programs. 

Our research focuses on simplifying the programming 
of distributed subsystems and applications by providing 
language support for distribution. We have designed an 
object-based language, called Emerald, and a distributed 
run-time system for Emerald that facilitate the construc- 
tion of distributed programs for a local area network of 
independent nodes (workstations). The novel features of 
Emerald include: 1) a single object model that is used for 
both programming in the small and in the large, 2) support 
for abstract types, and 3) an explicit notion of object lo- 
cation and mobility. The goal of our research is to dem- 
onstrate the feasibility of using one simple semantic model 
for programming both sequential, single-node applica- 
tions, and concurrent, potentially distributed applica- 
tions. We currently have a prototype Emerald compiler 
and run-time system running on a local area network of 
VAX@ workstations. 

The next sections present a discussion of previous work 
in distributed programming languages and an overview of 
Emerald. Following sections describe the type system and 
the support for distribution. 

11. REVIEW OF PREVIOUS SYSTEMS 
To date, languages have supported distribution in sev- 

eral different ways. In the Xerox Cedar System [33], a 
remote procedure call facility allows programs to access 
remote servers through standard CedarlMesa procedure 
calls [2]. The advantage of this approach is that it requires 
no change to the semantics of the language. Automati- 
cally generated stub routines on the client and server ma- 
chines are responsible for packing and unpacking param- 
eters and transmitting and receiving messages. Pro- 
grammers access a remote service in the same way that 
they would access a local service, except that they must 
explicitly locate and connect to the service before it can 
be used. 

"VAX is a registered trademark of Digital Equipment Corporation. 
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At the University of Washington, the Eden Program- 
ming Language (EPL) [3] has been developed for writing 
distributed applications on the Eden system [I].  EPL is 
an extension of Concurrent Euclid [19] that provides lo- 
cation-independent invocation of Eden's objects in an in- 
tegrated distributed system. Because the location of an 
Eden object is (conceptually) evaluated at each invoca- 
tion, objects are free to move at any time; one need not 
locate or connect to an object before invoking it. 

The M.I.T. Argus system [24], [25] is an ambitious 
distributed language project that extends the CLU lan- 
guage [23] to support atomic transactions in a distributed 
environment. An Argus Guardian encapsulates the notion 
of a physical machine. Inside a guardian are data objects 
and processes. One Guardian communicates with another 
by calling a handler in the target Guardian, to which data 
are passed by value. 

In general, object-based systems and languages have 
viewed their objects in two ways: as large, long-lived re- 
sources (e.g., files) as in operating systems such as Hydra 
[3S] and StarOS [20], or as small resources (e.g., records 
and integers), as in languages such as CLU [23] and 
Smalltalk [IS]. In a distributed environment, both views 
seem to have their place; the Argus and EPL languages 
each support two kinds of objects. Argus has Guardians, 
which are network-wide objects, and CLU objects, which 
are local to a Guardian; EPL has network-wide Eden ob- 
jects that contain local EPL variables, monitors, and 
modules. The reason for this dichotomy is one of locality 
and performance; local objects communicate through 
shared store, while network objects communicate through 
message passing, which requires more communications 
overhead. Unfortunately, this requires the programmer to 
use two different object abstraction mechanisms, to code 
in two different styles, and to foresee all possible uses to 
which an object will be put. For example, while program- 
ming a Collaborative Editing System in Argus, Greif et 
al. [16] Fave observed that a designer can be forced to use 
a Guardian where a cluster might be more appropriate. 

Emerald has drawn on the experience of all of these 
systems. The most important difference between Emerald 
and these systems is Emerald's uniform model of com- 
putation. Like Smalltalk, all entities in Emerald are ob- 

TABLE 1 
EMERALD LANGUAGE FEATURES 

jects, and a single semantic model suffices to define them. 
Unlike Smalltalk, however, Emerald is a distributed pro- 
gramming language; its object model is sufficient to de- 
scribe both local data objects and potentially remote 
objects containing independent processes. Table I 
enumerates the principal features of Emerald and com- 
pares them to those of Argus, Xerox RPC, EPL, and 
Smalltalk. The following section provides a brief over- 
view of the Emerald programming language, focusing on 
its uniform object model, and following sections deal with 
two important aspects of Emerald: its type system which 
is based on the concept of abstract types, and its support 
for distribution. 

111. INTRODUCTION TO EMERALD 
Emerald is object-based and all information is encap- 

sulated in objects. An object model is appropriate for a 
distributed system because it implicitly defines 1) the units 
of distribution and movement, and 2) the entities that 
communicate. All objects in Emerald are coded using the 
same object definition mechanism, regardless of the way 
in which they will be used. The Emerald object model is 
appropriate for defining small objects such as integers, 
characters, and Booleans as well as large objects such as 
directories and compilers. While different objects may be 
represented by the system in different ways, all objects 
exhibit the same semantics. Each Emerald object exports 
a set of operations; an object can be manipulated only by 
invocation of one of those operations. Furthermore, Em- 
erald objects are mobile. Objects can move at any time, 
and can be invoked without knowledge of their location. 

Each Emerald object has four components: 
1) An identity, which distinguishes the object from all 

others within the network. 
2) A representation, which consists of the data stored 

in the object. The representation of a programmer-defined 
object is composed of a collection of references to other 
objects. 

3) A set of operations, which defines the functions and 
procedures that the object can execute. Some operations 
are exported and may be invoked by other objects, while 
others may be private to the object. 

4) An optional process, which operates in parallel with 
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const inCoreFile = = object inCoreFile 
export Read, Seek, Write 
monitor 

4 const maximumSize = = 200 
const CharacterVector = = Vector. of [Character] 
var contents : Charactervector 
var position : Integer 

8 operation Read -r [ c  : Character] 
if position c+ contents. upperbound then 

c + contents.getUement[position] 
position + position + 1 

12 else 
c + nil 

end if 
end Read 

16 operation Seek[p : Integer] 
position + p 

end Seek 

20 operation Write[c : Character] 
assert position c+ contents. upperbound 
contents.setElement[position, c]  
position + position + 1 

24 end Write 

initially 
contents + Character Vector. create[maximumSize] 
position + 0 

28 end initially 
end monitor 

end inCoreFile 

Fig. 1. An inCoreFile object. 

invocations of the object's operations. An object with a 
process has an active existence and executes indepen- 
dently of other objects. An object that has no process is a 
passive data object and executes only as a result of invo- 
cations. 

An Emerald object also has several attributes. An ob- 
ject has a location that specifies the node on which that 
object is currently resident. Emerald objects can be de- 
fined to be immutable. Immutability is an assertion on the 
part of the programmer that the abstract state of an object 
does not change; it is not a concrete property and the sys- 
tem does not attempt to check it. On the other hand, the 
system takes advantage of immutability by copying such 
objects on remote reference. 

Fig. 1 shows an Emerald definition of a simplified file 
object. This object supports the usual read, seek, and write 
operations expected from files, but of only a single char- 
acter at a time. Its representation consists of a vector of 
characters and a current position indicator. Its three op- 
erations, Read, Seek, and Write, are exported and there- 
fore available to users of the object. Since inCoreFile has 
no process, it is a passive data object and executes only 
as a result of invocations. 

To exploit the inherent parallelism of distributed sys- 
tems, Emerald supports concurrency both between ob- 
jects and within an object. Separate threads of control are 
provided in the form of processes. Each object may have 
a process section specifying a parameterless, anonymous 
operation to be invoked asynchronously when the object 
has been initialized. Processes on the same processor ex- 
ecute in quasi-parallel with respect to each other and con- 

currently with respect to processes located on other pro- 
cessors. 

While an object has a single independent process, at 
any point in time multiple processes can be executing 
within a single object. This results from multiple invo- 
cations of an object's operations by other processes. Op- 
erations and variables may optionally be specified in a 
monitor section of the object. Processes executing moni- 
tored operations have exclusive access to the monitored 
variables and may synchronize using conventional con- 
dition variables [ I  81. An object's process normally exe- 
cutes outside the monitored section, but, like any other 
process, it can invoke the monitored operations should it 
need access to shared variables. 

Each object has an optional initially section-a param- 
eterless operation that executes exactly once when the ob- 
ject is created and is used to initialize the object's state. 
When the initially operation is complete, the object's pro- 
cess is started and invocations can be accepted. 

Although Emerald has a single, uniform model of ob- 
jects, objects are implemented in several different ways. 
An important goal of Emerald is to provide a very efficient 
implementation for objects. In order to accomplish this 
goal, the Emerald compiler chooses for each object an 
implementation style appropriate for its use. Some sup- 
port of this type is available in CLU [31]. The Smalltalk 
language also has two implementation styles: one for 
primitive objects such as integers and arrays, and one for 
user-defined objects. While primitive object operations are 
relatively efficient in Smalltalk, there is no mechanism 
whereby users can define equally efficient types. 

There are three styles of implementation available for 
Emerald objects. Standard types such as integer are usu- 
ally implemented by a single word of storage and com- 
piler-generated in-line operations. For example, the in- 
teger add operation is reduced to a single machine 
instruction. Objects that are local to another object can 
often be implemented by a compiler-allocated data area 
and their operations implemented as normal (Pascal-like) 
procedure calls, thus avoiding the more general invoca- 
tion mechanism provided by the run-time kernel. Finally, 
objects that can move or be remotely referenced are im- 
plemented by a kernel-allocated data area and are indi- 
rectly referenced through an object table. Invocations of 
such objects are performed by a combination of compiled 
code and the run-time kernel. For example, if inCoreFile 
is used as a temporary file within another object it may be 
represented in storage with local pointers and manipulated 
by in-line code. If it is used to convey information be- 
tween passes of a distributed compiler it will require a 
remote procedure call interface. 

IV. TYPES IN EMERALD 

Emerald is a statically typed language that supports ab- 
stract types. We first motivate our decision to make Em- 
erald a typed language (Section IV-A) and our decision to 
support abstract types (Section IV-B). The conformity re- 
lation which forms the basis of the type system of Emer- 



68 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. I ,  JANUARY 1987 

ald is then introduced, first informally in Section IV-C, 
and then rigorously in Section IV-D. Section IV-E com- 
pares our type system to that of other languages and pro- 
vides reasons for the major differences, and Section IV-F 
discusses type system implementation considerations. 

A. Why Types? 
In standard value-oriented programming languages, the 

type system protects the user from misinterpretation of 
values, e.g., it prevents a character operation from being 
applied to an integer. In an object-oriented language the 
programmer is not allowed to apply operations to values 
at all; he may request only that an object perform an op- 
eration on itself. The point here is that the representation 
of the object is never handled directly by external opera- 
tions; only the internal operations of the object are al- 
lowed access to its representation. As a consequence, nei- 
ther Smalltalk objects, nor Eden objects, nor Emerald 
objects need be typed in order to guarantee their integrity. 
In contrast to Smalltalk, where identifiers do not have de- 
clared types, we have chosen to make Emerald a typed 
language, i.e., the programmer must associate a type with 
each identifier that she declares. We expect to see several 
advantages from this approach. 

First is better detection and notification of program- 
ming errors. Many errors found in Smalltalk program- 
ming are of the "message not understood" variety. In 
Smalltalk this message can be generated only at run time, 
when an invocation is attempted on an object that does 
not implement it; it generally indicates that a type error 
has occurred. In other words, the object assigned to a vari- 
able is not of the required "type", because it does not 
support the required operation. In Emerald, we wish to 
detect such errors earlier. Because Emerald is typed, these 
errors will often be detected through static type checking 
at compile time rather than at run time. However, due to 
the flexibility demanded by our environment, we cannot 
do complete type checking at compile time, and some type 
errors will be detectable only at run time. Even when this 
is the case, type errors will be detected when a type- 
incorrect assignment is attempted rather than when invok- 
ing an unimplemented operation on an object. Also, rather 
than generating error messages that indicate that an op- 
eration was not implemented, we wish to generate mes- 
sages that give a better indication of the reason for the 
operation not being understood. Making Emerald a typed 
language allows us to do this, generating messages that 
indicate that "object 0 is not of type T." 

Second, we feel that type checking can reduce the cost 
of invocation. Since there is no possibility of "message 
not understood" errors at invocation time, it follows that 
no check is necessary. In addition, we have developed an 
alternative procedure for locating the code to execute in 
response to an invocation request (doing method lookup 
in Smalltalk terminology) that may provide better per- 
formance than existing schemes. This is made possible by 
the introduction of typing into the language and is de- 
scribed more fully in Section IV-F. 

B. Abstract Types 
Emerald was designed to be used in the construction of 

open systems, i.e., those where system-level objects may 
be created and added to a running system after the basic 
system is operational. This implies that the type system 
must be flexible enough to enable old code to invoke 
newly implemented objects, provided that these objects 
behave in the expected way. This flexibility and extensi- 
bility is provided by both Smalltalk and Eden, but neither 
of these systems are typed, as was noted above. Emerald 
wishes to retain this flexibility, but within the framework 
of a typed programming language. 

In order to do this, Emerald objects are typed ab- 
stractly. An abstract type defines the interface of an ob- 
ject-the set of operations supported, their signatures, and 
(in principle) their semantics. An operation signature in- 
cludes the operation name and the number, names, and 
abstract types of the arguments and results. Each object 
implementation defines a similar set of operations, but in 
addition provides 1) a concrete representation for the ob- 
ject and 2) code to implement each of the operations. Ab- 
stract types are themselves objects that export a get- 
Signature operation. For details on this aspect of the type 
system, see [4]. 

The relationship between abstract types and object im- 
plementations is many-to-one in both directions: each ob- 
ject may implement several abstract types, and each ab- 
stract type may be implemented by several different 
objects. Fig. 2 illustrates these relationships. The object 
DiskFile implements the abstract type InputOutputFile, 
the abstract types InputFile and OutputFile (which require 
only a subset of the InputOutputFile operations), and also 
the abstract type Any (which requires no operations at all). 
The abstract type InputOutputFile illustrates that an ab- 
stract type may have several implementations, perhaps 
tuned to different usage patterns. Temporary files may be 
implemented in primary memory (using InCoreFile ob- 
jects) to provide fast access while giving up permanence 
in the face of crashes. On the other hand, permanent files 
implemented using DiskFiles would continue to exist 
across crashes. 

This separation of specification and implementation 
provides the flexibility found in untyped languages such 
as Smalltalk and Eden, but within the framework of a 
strongly-typed language. We expect to take advantage of 
this flexibility in two ways. 

New objects satisfying old interfaces can be added at 
any time without changing existing objects. For example, 
consider a windowing system where Window is an ab- 
stract type. New windows with new functionality can be 
added, and the window manager can manipulate them 
without requiring any modifications, or even recompila- 
tion or relinking. 

An abstract type may have multiple implementations 
tailored to particular usage patterns, such as the file ex- 
ample of the previous section. In addition to multiple im- 
plementations explicitly provided by the programmer, the 
compiler itself may generate multiple implementations of 
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InputFile OutputFile 
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DiskFile 

Write 

Legend 

Abstract type 

Implementation H 
Fig. 2. Abstract types and object implementations. 

some objects from the same source code. For example, 
one implementation might be appropriate for a remote ob- 
ject, another for the case in which the object and its in- 
voker are known to be on the same machine, and yet an- 
other when the object is known to be private to some 
containing object. 

An additional benefit of the separation of abstract types 
and implementations is that it is exactly the separation of 
specification and implementation necessary for top-down 
program design and separate compilation. In some exist- 
ing languages, additional syntax and semantics are re- 
quired to make possible this separation of specification 
and implementation. These include external declarations 
in Concurrent Euclid, Pascal, and Modula, and separate 
specification and implementation parts in Ada@. The type 
system of Emerald directly supports separation of speci- 
fication and implementation; no additional language fea- 
tures are necessary. 

C. The Emerald Type System 
In Emerald, all identifiers are typed abstractly, i.e., the 

programmer declares the abstract type of the objects that 
an identifier may name. Such a declaration captures his 
knowledge of the set of invocations to which those objects 
should respond. 

The notion of type conformity is central to Emerald. 
The legality of an assignment is based on the conformity 
of the assigned object and the abstract type declared for 
the identifier. This conformity will always be checked at 

'Ada is a registered trademark of the U.S. Department of Defense (Ada 
Joint Program Office). 

compile time, except where a run-time check is explicitly 
requested by the programmer. Roughly, a type P con- 
forms to another type Q if P provides at least the opera- 
tions of Q. ( P  may also provide additional operations.) 
Moreover, the types of the results of P's operations must 
conform to the types of the results of the corresponding 
operations of Q. Finally, the types of the arguments of 
the corresponding operations must conform in the oppo- 
site direction, i.e., the arguments of Q's operations must 
conform to those of P's operations. 

To illustrate the need for the parameter matching rules, 
consider the following examples. Any is the abstract type 
containing no operations, thus every type conforms to it. 

const IntegerPusher = = 

type 
operation Push[Integer] 

end 

const AnyPusher = = 
tY Pe 

operation Push[Any] 
end 

These rather useless types define "write-only storage" 
into which integers and arbitrary objects can be Pushed. 
Intuitively, one would expect AnyPusher to conform to 
IntegerPusher, because an implementation of AnyPusher 
can be used wherever an IntegerPusher is required. The 
rules bear this out; the two types are identical except for 
the argument types of Push, and these conform in the op- 
posite direction, i.e., Integer conforms to Any. 

Now consider 

const IntegerPopper = = 

tY Pe 
operation Pop + [Integer] 

end 

const AnyPopper = = 

tY Pe 
operation Pop + [Any] 

end 

Here IntegerPopper conforms to AnyPopper, because the 
results of Pop conform in the same direction. Finally, ob- 
serve that 

const IntegerStack = = 

type 
operation Push[Integer] 
operation Pop + [Integer] 

end 

and 

const AnyStack = = 
type 

operation Push[Any] 
operation Pop + [Any] 

end 

are incomparable; they do not conform in either direction. 
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The reason for this should be obvious; users of an 
IntegerStack object expect its Pop operation to return an 
integer, so an AnyStack clearly will not do. Users of an 
AnyStack expect to be able to Push arbitrary objects; the 
Push of IntegerStack can be applied only to integers. 

Emerald type conformity is similar to type compatibil- 
ity in Owl [30], but differs in a fundamental way from 
inheritance in Smalltalk. In Smalltalk, a subclass does not 
necessarily conform to its superclass; for example, it may 
ovemde some of the operations of the superclass so that 
they expect different classes of argument. Moreover, one 
class may conform to another without a subclass relation- 
ship existing between them. What a subclass and its su- 
perclass do have in common is part of their representation 
and some of their methods. In short, inheritance is a re- 
lationship between implementations, while conformity is 
a relationship between interfaces. 

i) s f  = A, or 
ii) arity(s) = arity(sf) and writing 

s f  = a;, . . , ah + ri, . . 9 rA 

we have 

<a;, a i>  E 8, for i = 1, 2, . . , m 

< q , r - >  € 8 ,  f o r j  = 1 , 2 ,  a - - , n .  

Informally, corresponding pairs of results must be in 8 
and corresponding pairs of arguments must be in 8-'. 
Looking at the conformity of Integerpopper and Any- 
Popper from the previous section, we have 

s = +Integer 

and 

D. Formal Dejnition of Conformity S '  = +Any 

The above explanation of conformity in Emerald was 
not well-founded; the conformity of two types depended 
on the conformity of the types of the arguments and re- 
sults of the operations defined by the types. This section 
will present a formal definition of the conformity relation 
between types, which forms the basis of Emerald's type 
system, as well as an algorithm for checking conformity. 
This presentation of conformity has been simplified in two 
ways. First, we have omitted operations which are func- 
tions and types which are immutable; these would only 
clutter the presentation with unnecessary detail. Second, 
we have ignored Emerald's support for polymorphism 
which is beyond the scope of this paper. 

Let T be the set of type names, and let ai, rj E T, for 
0 5 i 5 m, 0 5 j 5 n. A signature is either an expression 
of the form 

a ] ,  . . , am + r, ,  . . , r,, 
which has arity <m, n > , or the distinguished null sig- 
nature, A, on which arity is undefined. Let S be the set 
of all signatures, and F be the set of operation names. A 
type declaration of t E T is a total function (also denoted 
t) from F to S. Obviously, in actually declaring a type, 
one need only specify the operations which have non-null 
signatures. For example, the type IntegerStack can be de- 
fined as: 

/ Integer + if x = Push 

IntegerStack(x) - { +Integer if x = Pop 

I "  otherwise. 

Suppose 8 is a binary relation on T, i.e., 8 C T X T. 
Intuitively, 8 is a set of pairs which we hope are true 
assertions about conformity, i.e., < t ,  u >  E 8 implies 
that t conforms to u. However, we have not defined con- 
formity yet, so the intuition cannot be formalized. Now 
suppose that s, s f  are elements of S. Then 8 induces a 
relation E on S by the following definition. 

<s, s'> E E iff: 

In order for < s, s ' > to be in E, <Integer, Any > must 
be in 8. 

Now, what is to distinguish an arbitrary 8 from our 
desired conformity relation? Exactly the requirement that 
the corresponding pairs of signatures are in E. Formally, 
we say that 8 is valid if, for all type names t and u, and 
all operation names f E F 

Lemma: The union of two valid relations is valid. 
Proof: Follows immediately from the definitions. 

Corollary: There is a unique maximal valid relation, 
(which we will denote by .> . 

Finally we have defined conformance. We write 
< t, u > E D> as t 9 u or t conforms to u. One nice thing 
about valid relations all being contained in D> is that we 
know that if two separately defined systems of declara- 
tions are each valid, then we will not get any surprises 
when we combine the declarations. Our concept of con- 
formity is similar to the notion of implicit conversion of 
types as studied by Reynolds [28], [29]. 

Now we can define a decision procedure that will check 
whether a given statement of the form "t + u" is true. 
Starting from the pair < t, u > , we will build up the two 
relations 8 and E recursively. 8 will be a valid relation 
on T and E will be the relation on S induced by 8 .  We 
will do this by, whenever we insert < a ,  b >  into 8 ,  in- 
sertingpairs <a ( f ) ,  b( f )> intoEforallfsuchthatb(f) 
# A. This ensures that 8 remains valid. Additionally, 
whenever we insert <s ,  s t >  into E, we insert all the ap- 
propriate <a/ ,  a i> 's  and < rj, r -  > 'S into 8 so that E is 
indeed the derived relation for 8. But we fail in attempt- 
ing to insert a pair < a( f ), b( f )  > into E if the arities of 
a( f )  and b( f )  mismatch, or if a (  f )  = A when b( f )  # 
A. If we succeed, we will have constructed a valid rela- 
tion. By the unique maximality of .>, this will prove that 
t + u. On the other hand, we only inserted necessary ele- 
ments into the relations 8 and E, so if the procedure fails, 
then t does not conform to u. 
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Let us apply this decision procedure to check whether 
IntegerStack 9 AnyStack. In order to insert <Integer- 
Stack, Anystack> into 9 ,  we must insert 

and 

= <Integer -*, Any -* > 
into E. Inserting < -* Integer, -* Any > into E causes us 
to insert <Integer, Any > into 9 which causes no further 
insertions in E since Any@) = A for all x. Attempting to 
insert <Integer -*, Any -* > into E causes us to insert 
<Any, Integer> into 9 ,  which in turn causes us to at- 
tempt to insert < Any(+), Integer(+) > into E which fails 
since Any(+) = A and Integer(+) # A. Thus we con- 
clude that IntegerStack does not conform to AnyStack. 

Note that there is no need to start with empty relations 
9 and E; any valid relation 9 on types and its induced 
relation E on signatures may be used as a starting point. 
In actually implementing this procedure, the relations 8 
and E may be retained after conformity checking, thus 
eliminating the need to recompute them. 

E. Comparison to Other Languages 
One currently popular view of a data type is as a set of 

operations. That is, each data type is a set of operations 
that may be applied to values of the type, thereby provid- 
ing an interpretation for those values [ I  11, [23]. There 
are, however, two approaches to the question of the own- 
ership of these operations. 

A number of languages, including Russell [9] and CLU 
[23], consider the operations to bejields of the type; that 
is, the operations are owned by the type, and are selected 
from the type. As an example, consider the type Integer. 
In Russell or CLU, the type would own operations like: 

operation 0 -* Integer 
operation + (Integer X Integer) -* Integer 
operation * (Integer X Integer) -* Integer 

In order to add two integers in CLU (Russell is similar), 
one selects the + operation from the Integer type to apply 
to the values: 

result : = Integer$ + (argumentl, argument2) 

The other approach is exemplified by Smalltalk. In 
Smalltalk, the operations that may manipulate objects are 
broken into two disjoint sets. Some operations, generally 
those that create new objects, are defined as messages to 
(operations on) a distinguished object called the class. An 
example of a class operation is creating an integer value 
from a character string representing the value. The other 
set of operations are defined as messages to the object 
itself; the operations + and * on integers are examples. 
The Smalltalk statement that adds two integers and as- 
signs the result to a variable is: 

result + target + argument 

This statement is interpreted to mean "send the message 
with the name + to the object target, providing the object 
argument as argument, and assign the resulting object to 
the variable result." 

In Emerald, we have adopted an approach similar to 
Smalltalk's. Our primary motivation was a concern over 
distribution. In the CLU and Russell approach, the state- 
ments in the body of an operation have access to the rep- 
resentation of an arbitrary number of objects of the type 
of interest. In particular, the implementor of the addition 
operation on integers is allowed to access the bits that 
make up the representation of both of the arguments. In 
the face of distribution, implementing this is potentially 
very complicated. Either the two objects need to be moved 
to a common location in order to perform the operation, 
or else the implementation needs to be able to perform 
arbitrary primitive operations remotely. In our view, only 
the object that is performing the operation has its repre- 
sentation accessible, and all other objects, including oth- 
ers of the same type, must be accessed through invoca- 
tions. 

The view of operations as being owned by objects is 
also required by our separation of abstract types and im- 
plementations. Since the two integers being added may in 
fact be implemented differently, the only way of imple- 
menting the integer operations is by invoking lower level 
operations that each concrete type may implement differ- 
ently. 

F. Type Implementation Considerations 

A major consequence of the flexibility of Emerald's 
type system is that multiple objects are allowed to imple- 
ment a single abstract type. In principle, multiple imple- 
mkntations of a data type cause no problems because op- 
erations are invoked by name, and it is up to the invoked 
object to understand the name. In practice, it is important 
to optimize this process. 

In Smalltalk and Eden, the cost of invocation by name 
appears at invocation time since the appropriate code for 
each invocation must be located when the invocation is 
attempted. Substantial effort has been put into implemen- 
tations of Smalltalk that reduce the overhead of code lo- 
cation (method lookup in Smalltalk terminology) to an ac- 
ceptable level [lo], [21]. Techniques include caching of 
operation addresses at call sites and making likely guesses 
about the implementations of objects with certain abstract 
types (like Integer), thereby optimizing for the common 
case. Since our object model is similar to that of Small- 
talk, all of the optimizations that can be done in the im- 
plementation of Smalltalk could also be done in Emerald. 
In addition, the fact that Emerald is statically typed al- 
lows an alternative code location strategy that may yield 
better performance. 

With each identifier, we associate a vector of opera- 
tions. The length of this vector is determined by the iden- 
tifier's abstract type, since only the operations defined by 
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DiskFile InCoreFile 

0 Object 

I Fig. 3. (a) Before the assignment. (b) After the assignment. 

the abstract type may be invoked on the object named by 
the identifier. The content of the vector is determined by 
the implementation of the object currently named by the 
identifier, since it consists of the addresses of the machine 
code sequences that implement the operations. Consider 
a variable f of abstract type a .  The operations that may be 
performed on f are determined by a;  the addresses of the 
appropriate code for these operations depend on the im- 
plementation c of the object named by f. Thus the pair 
<a, c >  uniquely determines an operation vector asso- 
ciated with f. In Fig. 3(a), a is InputFile and c is DiskFile. 
The vector has one element for each of the InputFile op- 
erations read and seek; the values of these elements are 
the addresses of the corresponding DiskFile routines. 

When an assignment is made to f, the contents of its 
operation vector may need to be changed. For example, 
when an InCoreFile object is assigned to f, the operation 
vector associated with f must become appropriate to the 
pair < InputFile, InCoreFile> , as shown in Fig. 3(b). 

This scheme replaces the method lookup required by 
Smalltalk by a single indexing operation. The cost is an 
additional word of storage for the pointer to the operation 
vector, and occasional recomputation of the elements of 
these vectors on assignment. The operation vectors them- 
selves may be shared between all identifiers of identical 
abstract type that name objects with the same implemen- 
tation, since it is the pair cabstract type, implementa- 
tion > that determines the contents of the vector. 

I As previously stated, the principal objective of Emerald 
is to simplify the construction of distributed programs. 

I Systefn concepts such as concurrency, multiple nodes, and 

object location are integrated into the language. This dif- 
fers from, for example, EPL, where distribution is lay- 
ered on an existing language through the use of a prepro- 
cessor, and from Accent [27], where distribution is 
provided as an operating system facility. 

In Emerald, objects encapsulate the notions of process 
and data and are the natural unit of distribution. At any 
time each Emerald object is located at a specific node. 
Conceptually, a node is an object of a system-defined 
type. Node objects support node-specific operations, 
thereby allowing objects to invoke kernel operations. Such 
access to the underlying kernel is analogous to that pro- 
vided by kernel ports in Accent. 

Programmers may choose to ignore or exploit the con- 
cept of object location. In a distributed system, objects 
must be able to invoke other objects in a location-inde- 
pendent manner. This facility makes network services 
transparently accessible. In Emerald, locating the target 
of an invocation is the responsibility of the system. An 
object is permitted to move between successive invoca- 
tions, or even during an invocation. While applications 
can control the placement of objects, most applications 
can ignore location considerations since the semantics of 
local and remote invocation are identical. 

Nevertheless, there are two reasons for making location 
visible to the programmer: performance and availability. 
In a network, the efficiency of interobject communication 
is obviously a function of location. An application can 
colocate objects that communicate intensely and thus re- 
duce the communication overhead. Alternatively, numer- 
ical applications can achieve significant performance gains 
by placing concurrent subcomputations on different nodes. 
An object manager may increase availability by placing 
replicas of its objects on different nodes. 
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A. Object Mobility 
An important feature of the Emerald design is support 

for unrestricted object mobility. Mobility (sometimes 
called process migration in nonobject systems) has been 
discussed in the literature as a design goal for many op- 
erating systems [I], [7], [26], [27], [34], although full 
implementations are not common. Mobility can be used 
to improve the overall performance of a distributed sys- 
tem by load sharing, i.e., moving objects from loaded 
nodes to idle nodes. For example, when a user starts a 
compilation and concurrently continues editing, it is often 
an advantage to move the compilation to another (less 
loaded or more powerful) node [12]. The advantages of 
load sharing are offset by the cost of obtaining load in- 
formation and the cost of moving objects. The lower the 
cost of object relocation, the greater the potential for per- 
formance improvements. Therefore a goal of Emerald is 
to provide low-cost mobility. 

Emerald differs from previous systems with migration 
facilities in the grain of mobility. Systems such as V [34], 
DEMOSIMP [7], and LOCUS [26] use processes (and 
their associated address spaces) as the unit of mobility. 
Emerald advocates the use of a single object model and 
therefore allows any object, even a single data item, to be 
the unit of migration. 

Emerald provides two primitives to control location. A 
programmer can& the location of an object at a specific 
location, or the programmer can move an object to a spe- 
cific location. The location is specified either directly, by 
refering to a node object, or indirectly, by refering to an- 
other object's current location. Thus, while programmers 
can ignore location with respect to invocation, they can 
also choose to benefit from the advantages of specific lo- 
cations within the network. 

B. Parameter Passing and Call-by-Move 

In Emerald, objects communicate through invocation. 
Since the invocation parameters must themselves be ob- 
jects, the natural parameter passing method is call-by- 
object-reference. This is similar to CLU and Smalltalk. 
However, call-by-reference does present a problem when 
used in a distributed system. On a remote invocation, ref- 
erences by the called object to its parameters are likely to 
require remote invocations also. To avoid seriously de- 
grading performance, systems such as Argus have as- 
sumed that parameters to remote calls must be passed by 
value [17]. In Emerald, because objects are mobile, it is 
possible to avoid most remote references to invocation pa- 
rameters by moving them to the site of the callee. Whether 
or not this is worthwhile depends on the size of the pa- 
rameter object, the number of active invocations of the 
object, and the number of invocations of the object to be 
initiated by the destination. 

Argument motion may be appropriate in two cases. 
First, based on type information available at compile time, 
the compiler may choose to move an object along with 
the invocation. For example, since integers are small and 
immutable, they are obvious candidates for relocation. 

Second, the programmer may explicitly request that an 
object be moved with the invocation, based on his own 
information. This is done by means of a new parameter 
passing mode that we call call-by-move. A call-by-move 
parameter object is passed by reference (as is any other 
parameter). However, at call time the call-by-move ar- 
gument object is moved to the destination node, allowing 
it to be efficiently referenced by the invokee. The pro- 
grammer can also specify that the argument is to move 
back upon completion of the invocation. 

Call-by-move is a performance optimization, since it 
could be emulated by first moving each of the call-by- 
move parameter objects to the invokee's node, and then 
invoking the object. However, performing the moves sep- 
arately would cause multiple messages to be sent across 
the network. For small objects, it is significantly more 
efficient to package the referenced objects together with 
the invocation, thereby reducing the network traffic and 
message count. 

Although call-by-move reduces the cost of references 
made by the invokee, it increases the cost of the invoca- 
tion itself. If the parameter object is mutable and shared, 
it also increases the cost of references by the invoker. One 
of the goals of Emerald is to enable us to investigate these 
tradeoffs experimentally. 

C. Addressing and Storage Structure 
Performance is an important goal of the Emerald sys- 

tem, and our implementation stresses a high degree of in- 
tegration between the compiler and the run-time kernel. 
The interface between them is defined so that many func- 
tions can be performed either by the kernel, by the com- 
piler, or by compiler-generated code. For example, the 
compiler may detect that an invocation will always be lo- 
cal and generate code that circumvents the more general 
invocation mechanism of the kernel. Thus, while Emerald 
has a uniform object model, objects can be implemented 
in different ways using different addressing mechanisms, 
different storage structures, and different invocation pro- 
tocols. 

As previously stated, simple local objects can be di- 
rectly allocated within the containing object's data area. 
Such objects are addressed directly by offset in the data 
area; no other structures are needed. More complex local 
objects are heap allocated and are accessed through a 32- 
bit data address stored in the object's data area. Finally, 
remotely accessible objects have a 64-bit object reference 
in the containing object's data area. An object reference 
consists of the address of an object descriptor and the ad- 
dress of the object's operation vector. The object descrip- 
tor contains necessary control information including the 
object's current location and a pointer to the object's data 
area. 

To support object mobility, internode object references 
either must be location independent or must be translated 
when crossing node boundaries. Both options impact per- 
formance; however, the impact is lessened by integrating 
distribution support into the programming language. We 
have chosen to optimize for the local case at a small pen- 
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Fig. 4. Storage layout for inCoreFile. 

alty to mobility. Therefore, efficient location-dependent 
references are used locally, but these references must be 
translated when an object moves. 

In addition to an object descriptor, each remotely ac- 
cessible object is assigned a unique object id (OID). Each 
node has an Object Table that stores pointers to the local 
object descriptors for all remotely accessible objects. The 
object table is accessed by a hash function using the OID 
as a key. When a reference to the object is sent across the 
network, the OID and a forwarding address (see Section 
V-E) for the object are sent along as well. At the desti- 
nation node, the reference is translated to a node-local 
object descriptor address by looking up the OID in the 
object table. If the lookup fails then a local object descrip- 
tor is created using the OID and forwarding address passed 
with the reference. 

If an object moves then only the descriptor need be 
changed. This allows for efficient referencing of node- 
local objects-there is no need for a table lookup as is the 
case for referencing Accent ports [27], Eden objects [I], 
or Smalltalk objects [ I  51. 

For example, Fig. 4 shows the addressing and storage 
structure for an inCoreFile object as previously defined in 
Fig. 1. On the left of the figure are a reference to the 
inCoreFile object and the Object Table. The inCoreFile 
reference contains pointers to the object descriptor and an 
operation vector. The inCoreFile's object descriptor 
points to its data area. Inside of the data area are two vari- 
ables: contents, a reference to a vector object, and posi- 
tion, a reference to an integer object (lines 6 and 7). The 
vector object has been heap allocated and is referenced by 
its heap address. The integer object has been allocated 
directly in the inCoreFile's data area. In this case, be- 
cause both objects are local and both implementations are 
known at compile time, the compiler does not generate an 
operation vector or procedure calls; instead, it generates 
in-line machine instructions to execute these objects' op- 
erations. For example, the addition and assignment in line 
11 of Fig. 1 reduces to a single VAX increment instruc- 
tion, while the getElement invocation on line 10 produces 
in-line instructions to perform the bounds check and 
move. Objects that may be referenced remotely are also 
heap allocated but would be referenced indirectly through 
an object descriptor, as noted above. 

D. Moving Objects 
To support object mobility, the Emerald compiler gen- 

erates relocatable code and provides the kernel with de- 
scriptions of the structure of objects. These compiler-gen- 
erated descriptions, called templates, enable the kernel to 
find the variables that need to be translated upon migra- 
tion. To move an object, the object data area is traversed 
using the compiler-generated template. During the tra- 
versal, a translation table is constructed that maps node- 
local addresses of global objects into OID's. Local ob- 
jects referenced by the migrating object are moved to- 
gether with the object data area and their node-local ad- 
dresses are also entered into the translation table. At the 
destination, the object data area is rebuilt and the refer- 
ences are translated into node-local addresses. 

The migrating object may have one or more processes 
executing within it. These processes are suspended and 
the activation records for operations of the object are 
moved along with the object data area. In this way, the 
stack becomes segmented; each segment is represented 
internally as if it were an object, i.e., it is given an object 
descriptor and an OID. When an operation returns, the 
stack segment to return to may be found using the general 
object location algorithm (described in the next section). 

The precopy employed by the V system [34] avoids 
suspending processes during most of the migration. Since 
most objects in our system will be significantly smaller 
than the logical hosts of V, we would not expect to gain 
much from using this precopy technique. Furthermore, the 
technique requires access to the dirty bits of the paging 
hardware and such access is not available to our current 
prototype. 

E. Keeping Track of Mobile Objects 
When an object moves, it leaves behind a forwarding 

address in the object descriptor so that invocations sent 
to its old location can be forwarded. Every time a refer- 
ence is passed between nodes, the forwarding address is 
passed as well. To enable a node to decide which of two 
forwarding addresses is the most recent, a simple time- 
stamp is included in the forwarding address. Fowler [13], 
[14] has shown that it is sufficient to let the timestamp 
merely be the number of times an object has attempted to 
move. We plan to experiment with several of the for- 
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warding address propagation policies outlined by Fowler 
and with the policy used for updating DEMOSIMP [26] 
links. 

When machines crash, forwarding addresses are lost 
unless they are kept on stable storage. Emerald is de- 
signed to operate within a local area network; this makes 
it possible to recover forwarding addresses by exhaustive 
search, and thus avoids committing forwarding addresses 
to stable storage on every update. The exhaustive search 
is implemented using a reliable broadcast protocol [8] 
which is optimized for the case when the referenced ob- 
ject is accessible. 

VI. CURRENT STATUS AND PERFORMANCE 
Our current prototype of Emerald and its run-time sys- 

tem runs on a small local area network of DEC Micro- 
VAX I1 computers running U L T R I X ~ ~  (DEC's version 
of Berkeley U N I X ~ ~  4.2  bsd). Using UNIX avoids the 
need for implementation of low-level machine-specific 
and device-specific software. The cost of UNIX is seen 
in the performance of certain functions, most notably ma- 
chine-to-machine communications. Our use of UNIX does 
not have significant impact on the implementation of ob- 
jects within a single node. 

Each node is implemented as a UNIX process and all 
objects residing on a particular node share that single ad- 
dress space. As in Concurrent Pascal [5] and MesaIPilot 
[32], protection is provided by the compiler; no hardware 
protection scheme is used. The prototype does not support 
multiple languages-only Emerald programs may be run 
on top of the Emerald kernel. Processes are lightweight, 
making context switching fast; processes and monitors are 
implemented in a manner similar to Concurrent Pascal [6]. 
The use of a single address space makes it possible to 
implement process management and node-local commu- 
nication efficiently. Since objects can move to and from a 
node, dynamic loading is supported. This also enables the 
kernel to migrate an object to backing store so that its data 
area can be reused. 

The Emerald compiler and run-time system are cur- 
rently able to support the creation and invocation of Em- 
erald objects on a single processor or across the network. 
We are currently working on the implementation of object 
mobility and distributed garbage collection. The per- 
formance of local operations is summarized in Table 11. 
The implementation of remote invocations is not yet at a 
stage where performance figures are meaningful. 

VII. SUMMARY 
We have described the approach to typing and distri- 

bution taken in Emerald. By supporting abstract types, 
Emerald recognizes that a given abstraction will often be 
implemented in several ways. This allows a system to 
evolve and permits the coexistence of multiple compiler- 
generated implementations that take advantage of distri- 

TM ULTRIX is a trademark of Digital Equipment Corporation. 
TM UNIX is a trademark of AT&T Bell Laboratories. 

TABLE I1 
PERFORMANCE OF LOCAL OPERATIONS 

1 Example I Implementation ( time ( ~ s )  I 
position c position + 1 1 inline call 1.5 
c c contents.getElemenr[position] inline call 
inCoreFileSeek[Ol potentially remote call 1 2 1 

bution and locality. In addition, the concept of object mo- 
bility and call-by-move allows call-by-reference seman- 
tics to be used uniformly at all interobject interfaces, thus 
simplifying the construction and reconfiguration of dis- 
tributed applications. 

We believe that the integration of these system concepts 
into a programming language will allow us to use the same 
object model for both programming in the small and for 
programming in the large, and to achieve an efficient im- 
plementation in both cases. We are building a prototype 
compiler and run-time system to demonstrate the viability 
of our approach. 
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