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Abstract-The Eden project is a five year experiment in designing,
building, and using an “integrated distributed” computing system. We
are attempting to combine the benefits of integration and distribution
by supporting an object based style of programming on top of a node
machine/local network hardware base. Qur experimzntal hypothesis is
that such an architecture will provide an environment conducive to
building distributed applications.

This technical review is written three years into the project. We begin
by summarizing the Eden system: its concepts, history, status, and
context. We next discuss the way in which the task of supporting the
Eden architecture is divided between the kernel, the programming lan-
guage, and user-level (library) code; we describe the experiences with
paper designs and prototype implementations that led us to this division
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of labor. We then show how distributed applications make use of
various aspects of the Eden architecture. We conclude by providing
some preliminary evaluations based on our experiences to date.

The objective of our research is to assess the benefits (in terms of
programmability) and the costs (in terms of necessary support) of our
system architecture. We feel we have gained insights on a number of
questions of relevance well beyond Eden or Eden-like systems.

o How should the job of supporting a system such as Eden be divided
between the kernel, the programming language, and user-level (library)
code?

e How do distributed applications make use of various aspects of the
Eden architecture (location independence, concurrency, etc.)?

e Of the many design and implementation choices we have made,
which are apparently good or apparently bad, based on our experience
to date?

Index Terms—Capability, Concurrent Euclid, concurrent programming,
distributed electronic mail, distributed program, distributed system,
Eden, object-oriented system, remote procedure call.
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I. AN OVERVIEW

HE Eden project is an experiment in designing, building,
and using an “integrated distributed” computing system.

Eden began with the observation that contemporary com-
puting systems tend towards two extremes: centralized systems
providing a high degree of integration but poor support for
personal computing, and distributed systems providing good
support for personal computing but a low degree of integra-
tion. There exists a spectrum of possibilities between these two
extremes.

in Eden, we are attempting to combine the benefits of inte-
gration and distribution by supporting an object based style of
programming on a collection of node machines connected by a
local network. Our experimental hypothesis is that such an
architecture will provide an environment conducive to building
distributed applications: we believe that the modularity af-
forded by an object based approach will be especially valuable
in such an environment.

The objective of our research is to assess the benefits (in
terms of programmability) and the costs (in terms of necessary
support) of our architecture. With two years of our five year
project remaining, a complete assessment is not yet possible.
However, we feel that we have gained insights on a number of
questions of fairly general interest.

¢ How should the job of supporting a system such as Eden
be divided between the kernel, the programming language, and
user-level (library) code? This is the subject of Section II.

e How do distributed applications make use of various
aspects of the Eden architecture (location independence,
concurrency, etc.)? This is the subject of Section III.

e Of the many design and implementation choices we have
made, which are apparently good or apparently bad, based on
our experiences to date? This is the subject of Section 1V.

In the remainder of this section we quickly review the con-
cepts, history, status, and context of Eden.

A. Concepts

In Eden, a distributed application is built as a collection of
Fden objects, or Ejects. From the point of view of the appli-
cations programmer, Ejects have the following characteristics.

o FEjects communicate with one another by means of invoca-
tions -messages sent from one Eject to another requesting a
particular action and a reply.

o Each Eject has a unique identifier. The Eject initiating an
invocation must have a capability for the Eject that is the
target of that invocation. This capability contains both the
unique identifier of the target Eject and a set of access rights.

o Possession of a capability for an Eject does not imply any
knowledge of its location within the Eden system. Ejects are
mobile, and invocation is location independent.

¢ Each Eject has a concrete Edentype--a code segment that
defines the invocation procedures supported by that Eject.
For example, if msg is a capability for an Eject of Edentype
MailMessage, and if Ejects of this Edentype support an invoca-
tion procedure named Deliver, then another Eject can make
the invocation msg. Deliver(<parameter list>). Edentypes are
conceptually similar to the collection of methods that make
up a Smalltalk Class [1].

o Each Eject has a data part that defines its state, both long
term (the values maintained between invocations) and short
term (information such as the local variables and parameters of
invocations).

s Ejects areactive. Each Eject typically consists of a number
of processes which communicate with one another via monitors.
When a process in one Eject invokes another Eject, that process
blocks until the invocation completes, but other processes
within the invoking Eject can continue to run. In addition to
processes that respond to invocations and processes that make
invocations, an Eject may contain processes that perform
internal housekeeping operations. This contrasts with Small-
talk, where sending a message transfers control to the receiver,
and replying to a message causes the receiver to quiesce.

e An Eject may perform a Checkpoint operation, which
creates a passive representation a data structure designed to
endure system crashes. The data in a passive representation
should be sufficient to enable the Eject to reconstruct its long
term state. The Checkpoint primitive is the only mechanism
provided by the Eden kernel whereby an Eject can access
permanent storage.

e In practice, Ejects are not always active, either because
they (or their computers) have crashed, or because they have
explicitly deactivated themselves in order to economize on the
use of system resources. If a passive checkpointed Eject is
sent an invocation, it will be activated automatically by the
Eden kernel. An Eject activated in this way will read its passive
representation and put its internal data structures in the state
that existed at the time of the Checkpoint operation.

Building a distributed application in Eden involves defining
appropriate Edentypes, using the £den Programming lLanguage
(EPL). The characteristics of Ejects noted in the preceding
paragraphs have the following implications.

e Modularity at the system level allows applications to be
built from independent components. While the programmer
sees a world of active Ejects, code is written for one Edentype
at a time, not for the whole world.

e The internal structure of each Eject is the concern of its
programmer alone., For example, choices concerning the
number of processes used, the ways in which they interact,
and whether the Eject suspends itself awaiting the reply to an
invocation or continues with other tasks, are left to the
programmer.

e The only way the “outside world” can act upon an Eject
is by invocation, so the information released to the outside
world is completely at the control of the programmer.

e Eden does not insulate the programmer from crashes, but
provides certain primitives (e.g., Checkpoint) that can be used
to build robust applications.

B. History

The Eden project began in September 1980, as the first grant
under the National Science Foundation’s Coordinated Experi-
mental Research Program. This paper is written after three
years of the project’s five year lifetime.

During the first year of the project we refined the notion of
Eject, wrote a partial specification of Eden, and designed and
implemented prototype node machines based on Intel’s iAPX
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432 processor and Ethernet. We were attracted to the 432
architecture because of the flexible support that it provided
for processes, interprocess communication, and address spaces.

During the next six months of the project we built a single-
node prototype of Eden, called Newark, on top of a VAX
system running VMS. This experience taught us a number of
important technical lessons concerning interfaces: between
Eden and existing computing environments, between the Eden
kernel and Ejects, and between the Eden programmer and
Ejects. It also taught us that, in our choice of the 432 as the
eventual host for Eden, we had underestimated the importance
of factors such as stability, quality of development environ-
ment, and diversity of existing software.

Based on our Newark experiences, we devoted the next six
months to revising our specifications, to designing an imple-.
mentation of distributed Eden on top of a collection of VAX
systems running Berkeley UNIX™ ' and to designing a
programming language providing proper support for Eden
programmers.

The most recent year of the project has been devoted to the
implementation of this version of the kernel and EPL, and to
the construction of a small set of applications.

C. Status

Version 1.0 of the Eden kernel is now operational on a col-
lection of VAX/UNIX™ systems interconnected by Ethernet.
Eden coexists with UNIX™ . in the sense that an individual
can make simultaneous use of UNIX™ and Eden services.
This coexistence is crucial in minimizing the software effort
required to make Eden usable.

The kernel is written in C. On each node it consists of a
single UNIX™ process; the code size of this process is approx-
imately 90 kbytes. Inaddition,a UNIX™ processisassociated
with each Eject.

The Eden Programming Language gives the programmer the
illusion of multiple threads of control within each Eject, and
also makes invocation look like a procedure call. EPL is based
on the Concurrent Euclid language [2], [3].

We have built several demonstration applications. One of
the most interesting is a locally distributed mail system which
consists of two principal Edentypes: MailBox and MailMessage.
A MailMessage is composed through a mail system interface,
and is delivered by invoking (in a location independent manner)
the MaitBox of the intended recipient. Of particular interest
are the simplicity of the design and the ease of implementation
afforded by Eden. Other applications include a transput (1/0)
facility, a file system, and an appointment calendar system.
The first and second of these are examples of facilities that
would be part of the “operating system” in a more traditional
environment. The second and third are examples in which
transactions are supported at the application level, using primi-
tives provided by the Eden kernel. We also have programmed
certain numerical algorithms designed to exploit the parallelism
possible within the system.

D. Context

Eden is a system for building distributed applications.
Through the kerne! and EPL, Eden provides high-level support
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for the sharing of information and processing capacity in a
locally distributed system.

[t is important to realize that although Eden is presently
implemented on top of UNIX™ | Eden is not an attempt to
build a “distributed UNIX™* (e.g., UCLA’s LOCUS project
[4]). UNIX™ for us is an implementation vehicle and a
source of software utilities.

The objectives of Eden are similar to those of M.1.T.’s Argus
project, and Ejects resemble in many ways Guardians in Argus
[S]. It probably is fair to say that Argus began as a program-
ming language effort that viewed its kernel as run-time support,
while Eden began as an operating systems effort that viewed
EPL as important syntactic sugar. Both Ejects and Guardians
are large, compared, say, to Smalltalk objects. A directory or
a mailbox is a reasonable granularity for an Eject, while a
Guardian corresponds most closely to a “logical node machine.”
The Clouds project at the Georgia Institute of Technology also
is closely related to our work, although, like Argus and in con-
trast to Eden, Clouds provides explicit support for atomic
actions [6].

Eden does not attempt to be a minimal cost IPC or RPC sys-
tem. Our motivation for exploring an object based approach is
our belief that building distributed applications is substantially
more complex than building centralized applications, and that
the assistance provided by such an approach in mastering this
complexity warrants the additional run-time expense.

{l. SUPPORTING EDEN

This section discusses the implementation of the Eden 1.0
system and the evolution of various aspects of this implemen-
tation over the course of the project. We feel that each of these
subjects has relevance well beyond Eden or Eden-like systems,
and thus will be of interest to the general systems community.

Table I summarizes many of the points that we will discuss.
On the left are nine aspects of the Eden architecture. Across
the top are three major stages in the evolution of our system.
The entries in the table summarize how each aspect of the
architecture was supported in each evolutionary stage. We
suggest that Table I be reviewed both before and after reading
this section.

A. Support for Concurrency within Ejects

In the present implementation of Eden, the underlying sys-
tem is Berkeley UNIX™ running on VAX’s. The interprocess
communication mechanism used is the Accent IPC package
[7]. The addition of the IPC package, an Ethernet driver, and
a simple module to compute timestamps are the only changes
we have made to the UNIX™ kernel.

In Eden 1.0, each active Eject executes within a separate
UNIX™ process with its own address space. The Eden kernel
manages this process using UNEX™ facilities, and communi-
cates with the Eject via the IPC mechanism. This design iso-
lates Ejects from each other during execution, and provides
the firewalls necessary to prevent a bug in one Eject from caus-
ing a fault in another. Also, it allows the kernel to add new
Edentypes and Ejects while the system is running. Since the
Eden kernel knows about only one UNIX™ process for each
Eject, the kernel design is considerably simplified.
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TABLE 1
e EvoruTion oF EDEN
Initial Newark Eden 1 0
Host Machine Intel IAPX 432 Digital YAX Digital VAX
Undarlying System iMAX vMS UNIX™
User Language Extended Ada Pascal EPL
W%h&:::z::: Kernel / System Kernel / System Language
Synchronization Architeclure System IPC Language
Within an Eject (Ports) {Mailboxes) {Monilors)
Ubrary and
Synchronous Invocation Kernel Kernel Langusge
Allocating Processes . Library and
to incoming fnvecalions Kernel Library User Code
Packing /Unpacking User; £PL Preprocessor.,
Parameter Lists poticcnsidered Pascal Records Esci
ma ‘ecl '!iﬁ.:i Architecture 7 Kernel none Kernel
Transmission of State . Aulomalic, Explicit,
in Checkpointing ot considered Single Segment  Multiple Data Items
implementalion of Protected calls System IPC to System IFC to
the Kernel to Roulines Kernel Process Kernel Process
Interface to ey VMS Programs Ejects
Non-Eden Programs invoke Ejecls Use Giix¥ i

Eden 1.0 supports concurrency within Ejects by using the
facilities of the Eden Programming Language (EPL) [8]. EPL
is derived from Concurrent Euclid, a dialect of Toronto Euclid
that provides multiple processes and Hoare monitors. Because
they are implemented by the language, EPL’s processes and
monitors are extremely lightweight tools when compared to
the process and IPC mechanisms provided by UNIX™

B. The EPL Translator’s Role in [nvocation

Many remote procedure call systems employ language pro-
cessors to enhance their usability (e.g., [9]). In Eden, EPL
provides translator support to ease the task of declaring and
using invocation procedures. For example, suppose that the
programmer of Edentype Login wants to perform a Lookup
operation on RootDirectory, an Eject of Edentype Directory,
in order to obtain a capability for LoginDirectory, a particular
user’s login directory. The following piece of EPL code might
be used.

const RootDirectory: Capability for Directory
:= Eject “RootDirectory”™

var LoginDirectory: Capability for Directory

var Status: IdenStatus

var UserName: String

RootDirectory. Lookup{UserName, LoginDirectory, Status)

The programmer of Edentype Directory will have declared a
special procedure for handling this operation.

invocation porcedure Lookup(
CallersRights: EdenRights,
SearchKey: String,
var Result: Capability,
var Status: EdenStatus)=
begin

end Lookup
(EPL requires the CallersRights parameter in the declaration of

this invocation procedure, to allow the invoked Eject to check
the invoker’s access rights.)

These two code fragments appear in different Ejects; it is the
job of EPL to ensure that the RootDirectory.Lookup procedure
call in the Login Edentype does eventually activate the Lookup
invocation procedure in RootDirectory. There are three essen-
tial functions involved: parameter packaging, stub generation
for the invoked Eject, and stub generation for the invoking
Eject. We discuss these in turn.

o Parameter Packaging: The ESCII facility (an acronym for
Eden Standard Code for Information Interchange) allows
operation names and parameter lists to be packaged into self-
describing data structures. For example, the ESCH structure
that packages the operation name and value parameters of the
call

RootDirectory. Lookup{UserName, LoginDirectory, Status)

enables the target to determine that it contains 1) the string
“Lookup,” 2) the single string argument UserName, and 3) an
indication that a single capability result is expected in the
reply. This allows a great deal of type checking to be done at
run-time. In comparison to similar facilities in other systems,
ESCH is conservative in the variety of types it includes: a
small number of base types and arrays of them are the most
important.

o Stub Generation for the Invoked Eject: When the Directory
Edentype is compiled, the translator builds a version of
CalllnvocationProcedure tailored to the invocation procedures
it defines. CalllnvocationProcedure is usually called directly
by the Edentype programmer; its function will be discussed in
Section II-C, but one of its tasks is to unpackage incoming
ESCII’s.

o Stub Generation for the Invoking Eject: At the same time,
the translator generates a stub for each invocation procedure
exported by Directory; these stubs are included in the EPL
code of Login, and of any other Edentypes that invoke Direc-
tory. The stubs include calls to the ESCI packing routines
and also to Synchinvoke, a lower-level invocation support
routine that assists in handling outgoing invocation messages.
Synchinvoke will be discussed in Section II-C.

Fig. 1 shows how these pieces of code fit together, in addi-
tion to illustrating certain aspects of the lower-level support
for invocation that will be discussed in Section iI-C.

The design of EPL is very conservative: it represents a mini-
mal set of extensions to Concurrent Euclid. This conservatism
works to EPL’s advantage: it enabled the implementation to
be constructed within our limited resources, and it allows any
programmer familiar with Pascal and the concept of modularity
to absorb EPL with little difficulty.

C. Lower-Level Support for Invocation

EPL provides the highest of three levels of support for
invocation. In this section we describe the other two. The
arrangement of functions among these levels had to satisfy the
following criteria.

e Each of the EPL processes within an Eject must be able to
do (synchronous) invocations without blocking other processes.

o Similarly, the Eject needs to be able to wait for invocation
requests and, when they arrive, to allocate them to a process
for service.
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proceas LoginUser

const RootDirectory: Capability for Directory

<

RootDirectory. Lookup
(UserName, LoginDirectory, Status)

mci Log'in User

Login Eject
Login/Prog. epl
Directory/Defs.e*
var Direciory : module
procedure Lookup(Target_Fject: Capability
n ng,

\end module § Directory

var C: Capability,
var s: EdenStatus) =

Pack n and C into the ESCII Values.
Dispatcher. Synchinvoke
(Target_Eject, Values, Resuits, s,
Unpack the reply Capability from )\
Results, and assign it to C.
end Lookup

&

/

Directory Eject

/

Directory /Prog. epl /

Directory /CIP.¢ * I

invoczation procedure Lookup(
Callers Rights: EdenRights,
n: String,

var C: Capability,

var s: EdenStatus) =

search tables for n, make

procedure Call/nvocationProcedure
{I: nvocationHandle) = |

Fetch values ESCII from 1;
unpack OperationName from it.

Unpack string argument ESCII

process Reader?2
begin
var [ 'nvocationHandle
loop
Dispatcher. Receive Specific
(’, "lﬂokup")@

invacations of other directories,
etc. Whenn is resolved to

& capability, assign it to C.
ead Lookup

end “Lookup"

end case

Lookup( . . ..)‘ ca

Pack Capability resuit into CellnvocationProcedure (1)
ESCII Resuits

Dispatcher. ReplyMsg(l, Results)

end CallinvocationProcedure

nd loop
end Reader?

This figure illustrates the RootDirectory. Lookup invocation referred to in Sections II-B and II-C. The upper part of the
figure represents the Login Eject that initiates the invocation. The call RootDirectory. Lookup (UserName,. . .) within Login

is shorthand for Directory. Lookup(RootDirectory, UserName,

module Directory.

The lower box represents the Directory Eject named by Login’s RootDirectory capability.

...}, i.e., is a call on the stub procedure Lookup in the

It contains the process

Reader2 which receives the invocation request and calls the EPL-generated procedure CallinvocationProcedure. This in
turn calls the invocation procedure Lookup, which finally accomplishes the task at hand.

The boxes marked * represent code that is generated automatically when the directory Edentype is compiled. The solid
lines represent procedure calls/returns within Ejects. The hashed lines represent invocations/replies between Ejects.

[Fig. 1. Invoking a Directory Eject.

o The programmer of an Edentype must be able to allocate
these processes in an intelligent way so that deadlock can be
avoided.

¢ The sending and receiving of invocations must be easy for
the EPL programmer.

e The kernel should be as simple as possible.

o Invocation should be as efficient as possible,

Immediately below the EPL level is the synchronous invoca-
tion level, provided by a procedure library within each Eject.
The essential contribution of this level is to use the lower
asynchronous invocation level, together with EPL processes
and monitors, to provide invocation facilities that can block
a single process at the EPL level. There are three major
procedures.

o Synchinvoke is used within the stubs generated by EPL.

It invokes an Eject denoted by a “target” capability, and waits
for the reply to arrive. Only the calling EPL process blocks
during the call.

e ReceiveOperation is used directly by the programmer. it
is called by an EPL process in order to wait for an incoming
invocation request. Only this process blocks during the call.
ReceiveOperation takes a set of operations as an argument; it
returns only when a request for one of these operations is
present. ReceiveAny and ReceiveSpecific operations also are
provided for use when universal or singleton sets are desired.

o CallinvocationProcedure also is used directly by the pro-
grammer. It is called by an EPL process that has received an
incoming request and wishes to call the appropriate invocation
procedure. CallinvocationProcedure unpacks the parameters
from the invocation request message, checks them for compat-
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ibility with the invocation procedure, makes the call, and finally
executes a ReplyMsg (supported by the asynchronous invoca-
tion level).

The Eden kernel itself provides the asynchronous invocation
level. Note that there are two “sending” primitives (one for
making requests and the other for replies) but that there is
exactly one “receiving” primitive.

o Asynchinvoke sends an invocation request message to the
target Eject. It does not wait for a reply, but rather returns an
InvocationHandle to the caller so that the caller can recognize
the reply when it comes via a future call on ReceiveMsg.

o ReplyMsg sends an invocation reply message back to the
invoking Eject.

e ReceiveMsg receives the next invocation request or reply
message. 1f no message is present, the call returns immediately.
UNIX™ software interrupts are used to notify the user of the
arrival of messages. (An EPL process can block until the arrival
of such an interrupt.)

We now will walk through an invocation, first from the
invoker's point of view, then from the target’s. Reference to
IFig. 1 will assist in following the presentation. Consider again
the Lookup invocation shown previously.

RootDirectory. Lookup{UserName, LoginDirectory, Status)

When the EPL program is translated, the capability variable
RoatDirectory will be identified as one that refers to an Eject
that supports the operations of the Directory Edentype. This
allows EPL to locate the appropriate procedure header for the
Lookup invocation procedure. (There is no implication, how-
ever, that a translation- or run-time check is made that Root-
Directory rtefers to an Eject of concrete Edentype Directory;
neither capability variables nor capabilities are typed. We
elaborate on this point in Section III-G.) EPL identifies
RootDirectory as the target of the invocation and the string
UserName as the single argument value. The operation name
Lookup and the argument are packaged into an ESCII and the
call

Svuchinvoke({RootDirectory, ValueESCIH, Result ESCII,
Status)

is made. This call on the Eden library results in two actions.
First, the call

Asynchinvoke{RootDirectory, Valuel:SCII, OutHandle,
Status)

is made to send the invocation request message to the target.
The QutHandle parameter is provided by the kernel to allow
the invoker to identify the reply to this Asynchinvoke when it
comes. Second, the calling EPL process waits on a condition
variable.

At some later time, the Dispatcher, a separate EPL process
provided by the Eden library, receives the invocation reply
message via

ReceiveMsg(WasPresent, NewHandle, Result ESCII,
NewStatus)

Noticing that WasPresent is true and that NewHandle matches
the QuiHandle of an EPL process currently blocked within
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Synchinvoke, the Dispatcher process calls a monitor entry to
store ResultESCII and signal the condition for which the user
process is waiting. The user process, still executing within
library code, now completes its Synchinvoke call, unpack-
ages its LoginDirectory result parameter from ResultESCIl,
completes the original Lookup call, and returns to the user’s
program.

We now will walk through the same call, this time from the
perspective of the target. Recall that within the target’s EPL
program was the declaration

Invocation procedure Lookup(
CallersRights: EdenRights,
SearchKey: String,
var Result: Capability,
var Status: EdenStatus) =

begin

end Lookup
The user must also explicitly provide an EPL process to execute

the invocation. It does this by using two facilities of the
synchronous level.

process Reader2
begin
var MyHandle: InvocationHandle
loop
ReceiveSpecific{MyHandle, “Lookup”)
CallinvocationProcedure(MyHandle)
end loop
end Reader2

The call to ReceiveSpecific enters a monitor to record the
operation that the process is willing to serve, and then awaits
on a condition variable until a request for this operation
(Lookup) arrives. Recall that within each Eject there is a
special EPL process, the Dispatcher, which executes

ReceiveMsg( WasPresent, NewHandle, ArgumentESCII,
NewStatus)

Noticing this time that WasPresent is again true, but that
NewHandle is an invocation request (handles are tagged with
the function of the message), the Dispatcher enters the monitor
to store the NewHandle and Argument£ZSCIH. Finding Reader2
blocked waiting for a Lookup, the Dispatcher unblocks this
process, which returns from ReceiveSpecific and calls Callin-
vocationProcedure. This procedure is especially constructed
by the EPL translator to retrieve Argument£SCI, unpackage
the operation name and value parameters from it, check them
for agreement with the invocation procedure header, and make
an ordinary call on the invocation procedure Lookup. Upon
return  from Lookup, CallinvocationProcedure packages
LoginDirectory into an ESCIH, say ResultESCII, and executes

ReplyMsg(MyHandle, ResultESCII, Status)

This completes the call to CallinvocationProcedure; Reader2
now is ready to receive another invocation request.

This division of labor between kernel, library, and translator
support has achieved our goals. The key ideas are to use aclean
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asynchronous facility provided by the kernel together with the
process and monitor facilities that EPL inherited from Concur-
rent Euclid to provide synchronous facilities for use by EPL
processes. This is only practical, however, because translator
support reduces tedium.

D. History of Process and {nvocation Support

During the course of the Eden project, several of our imple-
mentation ideas have changed. In this section we focus on the
progression of these ideas for multiple processes within Ejects
and for synchronous invocation. This progression has had two
driving forces.

e Qur early use of Intel’s iAPX 432 and iMAX as our under-
lying system gave way to the use of the more conventional
VAX/UNIX™ combination. This change of context rendered
many of our initial implementation ideas inappropriate.

¢ Equally important was a shift in our attitude toward the
nature of our kernel. Initially, the kernel provided both the
interface to be used by Edentype programmers and the inter-
face to be enforced at run-time. We have found that splitting
these two allowed for a smaller kernel and more flexibility for
programmers outside the kernel.

Our initial plans called for multiple processes within Ejects.
and for these processes to use synchronous invocation [10].
We felt that it was unreasonable for a system of the 1980’s to
restrict its programmers to a sequential programming language,
and that the most straightforward way to achieve concurrency
was to use explicit multiple processes, rather than a single
process and asynchronous invocation. Any implementation
ideas were very sketchy.

At a very early point in the project, we decided to build Eden
on an underlying system consisting of Intel iAPX 432’s and
iMAX. The 432 is an unusual system in many respects. Among
them is that there is great coherence between the architecture,
language, and system notions of process, synchronization, and
address space. Thus, in providing multiple processes within an
Eject, there was no issue of whether they would be language-
or system-level processes—these were the same things. Our
implementation plans at this stage of the project emphasized
direct kernel support for the functionality seen by the Eden-
type programmer. Thus, for example, the function of allocat-
ing processes to incoming invocation requests was to be pro-
vided directly by the kernel. There was some disagreement
among us about whether the kernel would provide an asyn-
chronous invocation mechanism at all, since it would be easy
to provide synchronous invocation directly.

With the Newark system, built on a VAX/VMS substrate,
and with the current Eden 1.0 system, builtona VAX/UNIX™
substrate, we had to face many new technical issues. We knew
that any process or interprocess communication facility sup-
ported by the VAX architecture would be more cumbersome
than those possible with the 432. There was considerable
temptation, in fact, to drop our ideas of multiple processes
and synchronous invocation. The decision in Newark, how-
ever, was to provide each Eject with multiple processes sup-
ported directly by VMS, and to use the VMS notion of Mail-
boxes for interprocess communication both between Ejects
and among processes within an Eject. However, while syn-
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chronous invocation was supported directly by the kernel,
the allocation of processes to invocation requests was per-
formed by libraries of user-level code. Performing the dis-
patcher function at this level simplified the design of the
Newark kernel, and also allowed us to experiment with several
different dispatching techniques. Edentypes were programmed
in Pascal and programmers had to build invocation messages
“by hand” using Pascal records, which proved extremely
tedious. Our limited experience using Newark convinced us
that muitiple processes and synchronousinvocation were worth
retaining, but that we would have to find better implementa-
tions for them.

As we evaluated the Newark experiment in preparation for
the design of Eden 1.0, we became aware of the Concurrent
Euclid language and decided to try to use both CE processes
and UNIX™ processes in our new design. Our experience in
performing the dispatcher function at the user level in Newark
made this possibility a natural one to consider, and the obvious
advantages in reduced overhead vis-a-vis the uniform use of
VMS processes in Newark were clear. The essential outline of
the techniques described earlier came quickly. We were deter-
mined to make the invocation mechanism easier to use than it
had been in Newark, so the EPL effort was given equal impor-
tance with the implementation of the kernel. The Eden 1.0
kernel and EPL translator both were available for use during the
spring of 1983. The simplified kernel design made possible by
providing only asynchronous support at that level eased the
kernel implementation effort; also, since the work needed to
implement synchronous invocation was spread between the
kernel processes and the kernel library, we were able to ap-
proach these tasks separately. The presence of EPL greatly
eased the task of programming Edentypes.

In summary, we were driven in the same direction by the
technical implications of using a conventional substrate and by
a shift in attitude towards having the kernel provide only nec-
essary primitives rather than the complete user-visible interface.
We believe that the current design is sound in our current
VAX/UNIX™ environment and that it would work well in a
variety of other conventional environments.

E. Support for Saving and Restoring State

[deally, an Eject is an active entity with permanent state. In
reality, an Eject has two manifestations: an active form (with
its system-level process) and a passive form (consisting primarily
of a disk file). All invocations are implemented by the active
form, but only the passive form can survive a crash. This sec-
tion discusses how the use of a passive form allows the Eject to
approach the ideal mentioned above. Fig. 2 shows how an
Eject acquires and loses active and passive forms.

When an Eject is created, only an active form exists. It can
therefore execute and engage in invocations, but has no state
on permanent store. [f it were to Deactivate, or if it (or its
computer) were to crash, it would vanish, and could never be
invoked again. If another Eject with a capability for this
vanished Eject were subsequently to attempt to invoke it, the
invocation would fail. (However, the kernel does not make
any attempt to remove such “dangling” capabilities.)

An active Eject can exccute a checkpoint sequence. in which
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Fig. 2. Transitions involving active and passive forms.

it opens a passive form, writes its state in a series of PutData
calls, and then completes the passive form with a Checkpoint
call. Once the Eject has written its passive form, it has identity
and state on permanent store. If it subsequently Deactivates
or crashes, its active form will vanish, but the passive form will
remain.

If an Eject hasa passive form but no active form, and another
Eject invokes it, the Eden kernel will reactivate it, i.e., will
construct a new active form which will receive the invocation.
This new active form can query the kernel to discover why it
was activated. On finding that it is a reincarnation, it can
reinitialize its state by executing a restore sequence, in which
it opens its passive form for reading, reads its state in a series
of GetData calls, and then closes the passive form.

Once an Eject has a passive form, it will be deallocated only
by an Eject garbage collector, which runs periodically to dis-
cover Ejects that are not reachable by any path. Currently our
garbage collection algorithm is sequential and runs only when
no Ejects are active. Future work will consider distributed
garbage collection algorithms that can execute concurrently
with active Ejects.

The Eden kernel attempts to implement Checkpoint atom-
ically using the UNIX™ sy call to indivisibly change an entry
in the UNIX™ directory of passive forms, Unfortunately, the
presence of the UNIX™ disk cache makes this inefficient and,
in the final analysis, impossible.

F. Kernel Implementation

The Eden kernel on cach machine is implemented as a
UNIX™ process which communicates with Ejects via 1PC.
The kernel process has several functions.

o [t creates and manages the UNIX'™™ processes used to
implement Eject active forms.

o It maintains certain parts of each Eject’s state that must
be protected against misuse or error by the Edentype program-
mer. (An important example is the table of capabilities owned
by the Eject.)

o [t also maintains a cache of the locations of remote Ejects
and of the status of other Eden machines to aid in the mapping
of capabilities into physical locations,

o It implements a set ot operations used by Ejects. including

the asynchronous invocation facilities, Eject creation, and
checkpointing.

In addition to the kernel process there is a kernel library-a
set of (unprotected) procedures that is linked within each Eject.
This library makes kernel operations available via a procedural
interface. It also performs many operations directly, when
their implementation does not require access to the tables
maintained in the kernel process. For example, the CapaFqual
operation compares two capabilities for equality, and does not
require that these capabilities be validated by the kernel process.
Operations implemented within this library obviously can be
accessed with much less overhead than those implemented
within the kernel process, but this comes at the cost of making
the kernel library quite large, thus swelling the size of Edentype
executable images.

One novel aspect of the Eden kernel is its technique for stor-
ing and protecting capabilitics. Most object oriented systems
store C-lists (vectors of capabilities) in the kernel’s address
space and allow the user to denote capabilities only by indexes
into the C-list [11]. We considered this approach,and rejected
it for several reasons.

e It would require the overhead of communication with the
kernel to examine the fields of the capability (e.g., its access
right field).

e It creates confusion about the notion of a value of type
Capability in EPL. Would two such values be equal only if
they were the same C-list index, or also if they refer to equal
capabilities in different indexes?

¢ Similarly, when making a copy of an EPL variable of type
Capability, should the programmer copy the capability into a
different index, or simply copy the index value?

Our approach is to let each Eject keep capabilities in its own
address space, but to have the kernel maintain a (protected)
table containing copies of these capabilities. Entries are added,
for example, when a new capability arrives as an invocation
parameter or when the Eject creates a new Eject. Any capabil-
ities used by the Eject (for example, in an invocation) are
checked for existence in the table. To simplify matters, only
one entry is kept for each capability within the Eject’s state
(no matter how many copies the Eject may have), and the
union of the access rights of known capabilities is stored with
this entry. The problem of ever deallocating entries in the
table remains; this is solved by allowing the Eject to occasion-
ally enumerate the capabilities known to it. This enumeration
could in principie be automated by the marking phase of an
EPL garbage collector. Evenin the absence of such a collector,
however, we find this enumeration less of a burden than keep-
ing track of C-list indexes would be.

The high overhead of communication between Ejects and
the kernel process severely limits Eden’s performance. This
clearly is one of the disadvantages of building on top of an
existing system. On the other hand, implementing the kernel
by modifying the UNIX"™ kernel would have been both more
difficult and less portable.

The Eden kernel processes on the various machines commu-
nicate via a simple datagram protocol implemented on the
Ethernet.  Higher ievel TCP/IP protocols are used only to
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move executable Edentype image files and passive representa-
tions from machine to machine.

G. Interfacing Eden to the Outside World

So far we have described how Ejects are invoked by other
Ejects, but have said nothing about how a user sitting at a
terminal can make an invocation or create an Eject. These
facilities initially were provided by escaping to the underlying
operating system, and have been incorporated into Eden only
recently. This evolution illustrates the way in which we have
taken advantage of the presence of UNIX'™ to limit the
amount of Eden software which had to exist before Eden could
begin to be used.

Since Ejects are implemented as UNI processes, they
can use UNIX™ services to communicate with non-Eden files
and programs. We take no steps to prevent this in the current
prototype. Each of our early applications contains one or
more “bridge Ejects” which communicate with the user’s
terminal using UNIX™ 1/0 and an application-specific com-
mand language, and which communicate with the application
proper using invocation. This still leaves the problem of
arranging for an Eject to communicate with the standard input
and output files available in the UNIX™ environment. This
facility is provided by becomej, a UNIX™ program that creates
an Eject as its own child process rather than as a child process
of the Eden kernel. Some examples of bridge Ejects will be
found in Section LH-A. It should be emphasized that very few
of our Ejects actually use UNIX™ in this way.

More recently, two Ejects have been constructed that encap-
sulate the functions of these bridge Ejects. The first is a Term-
inalHandler Edentype, which should eventually be the only
Eject run with becomej. The TerminalHandler allows Ejects to
open windows on the screen and to use them to fetch input
from and to perform output to the user; all communication
between the client Ejects and the TerminalHandler is via
invocation. Using the terminal handler, a number of Ejects
can share the resources of a single terminal in a way that is
very natural in an object oriented environment.

The second Eject is the Eshell, which implements a command
language for Eden based on a subset of the Eden Programming
Language. The Eshell runs as one of the TerminalHandler’s
clients and allows a user sitting at a terminal to make arbitrary
invocations of any Eject for which a capability is possessed.
The generality of the Eshell makes it invaluable for testing,
debugging, and other systems work, but inappropriate for
interfacing with apphcations that need a user-friendly interface.
It therefore seems likely that particular applications may con-
tinue to have special-purpose interfaces that will be started
from the Eshell and will communicate with the user via the
TerminalHandler.

XTM

11, BUILDING APPLICATIONS IN EDEN

The previous sections of this paper described the facilities
that Eden provides for the applications programmer. This
section illustrates the utility of these facilities by showing how
they help in the construction of distributed applications. We
will survey four applications and then use them to provide
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insight into why some of our design choices seem to have been
good, and why others may need to be reconsidered.

A. Four Distributed Applications

Fdmas - The Eden Distributed Mail System: Edmas was one
of our first applications and thus is one of the most mature. It
is hardly surprising, therefore, that many of our early opinions
of Eden are based on experience with Edmas. The description
below is deliberately superficial; a more complete one appears
in [12}.

Edmas is constructed from two principal Edentypes, the
MailBox and the MailMessage. The user interface is imple-
mented using two further Edentypes and some UNIX™
utilities. ~ One pre-existing Edentype, the Directory, was
reused. Subsequent work involved adding the DistributionList
Edentype.

Imagine that a user wishes to send a message using Edmas.
First, the text of the message is composed using the Emacs
editor. When the user is satisfied that the message is complete,
the send key is pressed on the terminal, causing the message
text to be passed to a MailSendinterface Eject. This bridge
Eject is started by becomej; it communicates with Emacs by
using UNIX™ 1/O facilities, and with Edmas by invocation.
Another function of the MailSendInterface is to translate the
addresses typed by the user at the keyboard (character strings)
into capabilities for addressees’ MailBoxes; this is accomplished
by performing Lookup invocations on a Directory Eject. The
MailSendInterface then creates a new MailMessage Eject, and
by a series of invocations’ initializes the various fields of the
MailMessage. Among these is the From field, which contains a
capability for the sender’s own MailBox and is used by the
Reply facility. When the MailMessage is completely composed,
the MailSendInterface makes a Deliver invocation on the Mail-
Message. This has two effects: the MailMessage becomes
Sfrozen, meaning that it will reject subsequent modifying opera-
tions, and the MailMessage delivers itself to the addressees.
The work of the MailSendInterface for this message now is com-
plete; it may be deactivated or used to send further messages.

Mail delivery is accomplished by the MailMessage Eject per-
forming a Deliver invocation on each addressee. i.e., on each
capability on its To list. The capability for the MailMessage
itself is passed as a parameter to the Deliver invocation. If
the addressee is actually a MailBox Eject, the effect of this
invocation is simply to enqueue the capability of the Mail-
Message in the MailBox. The owner of the MailBox can
interrogate it for unread mail using Eimacs and a bridge Eject
of Edentype MailReceivelnterface.

The addressce also may be a DistributionList Eject. In this
case the effect of the MailMessage’s Deliver invocation is to
cause the DistributionList to deliver the message to each of the
addresses on the list, which may be either MailBoxes or other
DistributionLists. If they happen to be DistributionLists on
different nodes, then there is true parallelism in the delivery.
Since delivery to a large list may take some time, the Distribu-
tionList replies to the instial Deliver invocation before starting
to deliver the message.

The Lden Transput Svstem. One of the interesting aspects of
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Eden is that facilities that would have to be “built in” to con-
ventional systems need not be part of the Eden kernel, but can
be added as applications. Two interrelated examples of such
facilities are the Transput (input and output) System and the
Eden File System (EFS).

In a modern operating system, an application will wish to
perform transput both to physical devices, such as printers and
terminals, and to other applications, such as printer spoolers
and screen managers. In fact, when an application is written,
it is often not known whether it will be used with a terminal
or screen manager; to achieve device independence, both kinds
of transput should be done in the same way. In UNIX™ for
example, output is performed using the write system call. This
is true both when the data are sent to another program and
when they are sent to a file; only the program that makes the
initial connections has to know which case obtains. It is the
job of the operating system nucleus to either write the file, ot
to buffer the output until the receiving program does a read.

Although Ejects may use all the richness of invocation for
their communication, at least in some circumstances a simple
byte-stream transput system is required; reading from hard-
ware devices is an obvious example. In Eden such devices will
be represented by standard Ejects, and the Eden kernel is not
required to be a party to their use. It would be pleasant if ail
devices accepted the same set of invocations, as this would
allow device independent transput. In practice, the character-
istics of devices vary, but we feel that the interface presented
by all devices should include a basic byte-stream protocol
whenever this is reasonable.

This idea is naturally extended to Ejects that are not device
drivers, but which nevertheless produce output, accept input,
or do both. It is then possible to construct pipelines of Ejects
that act as filters, using the terms in the UNIX™ sense.

One naive approach to constructing a transput protocol
would be to define both Read and Write invocations. The
difficulty is that this provides no simple way for an Eject
performing a Read invocation to obtain data from another
Eject performing a Wrire invocation. It is necessary to inter-
pose an Eject between them whose function is to accept Write
invocations, store the data in a buffer, and service Read invoca-
tions using the buffer. These buffer Ejects have a cost, but
serve no real function. One way of eliminating them is to use
Read invocations but no Write invocations: an Eject wishing
to perform output simply waits for another Eject to perform a
Read on it.

This idea is discussed in more detail in [13]). We have con.
structed a transput library for EPL which provides the user
with conventional Ger and Put primitives for basic data types,
while maintaining the “read only™ protocol between Ejects.
We also have written two Edentypes, UnixFile and UnixFileS,
which together constitute a “device driver” for UNIX™ files,
Le.. they allow other Ejects to access UNIX'™ files by means
of invocation. The TerminalHandler Edentype mentioned in
Section II-G provides a similar interface to a user’s display.

The I:'den File System: Conventional sequential files are not
part of the Eden kernel; a sequential file is simply an Eject
that allows its contents to be read and written using the Eden
Transput System. The Checkpoint facility allows such an
Eject to maintain its contents on stable storage.

However, in the same way that stream transput is not the

only communication mechanism within Eden, sequential files
are not the only form of long-term storage. All Ejects, once
Checkpointed, are equally permanent. A means is required
for keeping capabilities for them. The Edentype Directory
does just this. A capability for any Eject can be associated
with a mnemonic string and stored in a Directory, and can later
be retrieved by performing a Lookup invocation on the Direc-
tory with the string as argument. Since Directories can be
entered into (other) Directories, an arbitrary directed graph of
Directories can be built up from a single root.

The design of the Eden File System (EFS) is described more
fully in {14}. Two facilities that it provides for the user of the
sequential file are versions and transactions. If a user wishes to
keep several versions of a document, rather then entering sev-
eral files in a directory, he enters asingle VersionManager Eject
therein. When a client Eject opens an output stream to the
VersionManager, a new sequential file is created that reads
from the client Eject. When the file is completed it becomes
the latest version known to the VersionManager. Opening a
VersionManager for reading will normally provide a stream
from the latest version of the file.

If the client wishes to update several files atomically, it first
creates a TransactionManager Eject. It then asks the Transac-
tionManager to open each of the VersionManagers that are to
participate in the transaction. When the new files are closed,
they are not immediately installed as new versions; instead
their capabilities are passed to the TransactionManager. If the
client asks the TransactionManager to abort the transaction, it
simply Deactivates itself: nothing in the file system has yet
been changed. If the transaction is to be committed, the Trans-
actionManager performs a two-phase commit with the Version-
Managers. In effect, the TransactionManager acts as the com-
mit record for the transaction.

An initial use of Eden sequential files is to provide a location
independent file system for users of UNIX™, A special-pur-
pose interface permits the contents of Eden files to be moved
to UNIX™ files and vice versa.

The Eden Appointment Calendar System: Prompted by our
experiences with Edmas, we have begun work on a distributed
appointment calendar. One of the facilities offered by the
calendar is to find a time when several people are free, and to
tentatively schedule a meeting among them. The meeting is
confirmed only when all participants have agreed to the sug-
gested time.

The scheduling of a meeting may be viewed as a transaction,
which may commit or abort depending on the responses of the
people involved. These transactions may potentially be long-
lived, and locking the whole of each calendar until a tentative
meeting is confirmed or canceled is unacceptable. Instead the
Calendar System uses onc Eject to represent each event, in
addition to an Eject for each calendar. The Calendar Edentype
is basically a list of capabilities for Event Edentypes, together
with hints as to the times of the Events and whether they are
tentative or definite. Considering the scheduling of an Event
as a transaction, the Event Eject acts asits own commit record.

B. Ejects as an Abstraction Tool

Having sketched four early applications built in Eden, we
now begin our discussion of how these and other applications
make use of the Eden architecture.



ALMES eral: THE EDEN SYSTEM

Because of the object oriented nature of Eden, the funda-
mental abstractions of the application can be represented
directly in the implementation. For example, we felt that the
natural abstractions to use when designing Edmas were mail
boxes and mail messages, and we were able to implement these
abstractions as Ejects; in more conventional systems we would
have had to simulate them using files or segments of files.
There is also a clear separation between the interface part of
Edmas and the transport and storage part; again, this is realized
by using separate Ejects to encapsulate the interfaces.

One of the questions that worried us when designing Eden
was the overhead inherent in our notion of Eject. Although
both Ejects and the abstract data types of a programming lan-
guage can be used for encapsulation, Ejects would clearly be
orders of magnitude more expensive. Would this difference in
cost mitigate against their use? It seemed clear that, unlike
Smalltalk objects, Ejects would not subsume programming
language data types, and there would therefore be an alternative
abstraction facility in Eden. However, we felt that when data
were inherently shared, or had to be protected against failures,
Ejects would be invaluable. These feelings have been confirmed
by our experiences so far. MailMessages are not large, but rep-
resenting them as Ejects allows them to be accessed in a loca-
tion independent manner and to be shared among their ad-
dressees. Calendar Events are even smaller--just the size of a
typical EPL record—but because they are inherently shared, it
is still convenient for them to be separate Ejects. There is a
world of difference between a group of people attending a
meeting, and each person attending separate meetings that
happen to occur at the same time; the sharing of Events cap-
tures the difference very nicely.

C. The Programmability of Eden

One of the most remarkable things about Edmas is the rapid-
ity with which it was constructed, even though the debugging
of the first Eden kernel proceeded in parallel with the testing
of Edmas. The system was designed and specified in a week,
and demonstrated to an external visitor after six weeks of
work by two graduate students who were also taking a full
class load. We attribute this speed to two factors. The obvious
one is that the most complicated part of conventional mail
systems, the transport layer, does not exist in Edmas as far as
the applications programmer is concerned. Because the facil-
ities of the Eden kernel allow MailMessages and MailBoxes to
be addressed in a location independent way, most of the distri-
bution aspects simply disappear. (In this respect a maif system
may be an unfairly favorable application, although this only
occurred to us in retrospect.) The second factor is that even
before the Eden kernel was running, a prototype implementa-
tion of the Eden Programming Language (EPL) was available.

The significance of EPL is not that it extends the state of
the art of language design, but that there is a careful matching
between the concepts of Eden and the structures of EPL. Eden
invocation is a simple concept; the challenge was to make its
realization in EPL equally simple. On the invoking side, the
programmer sees an ordinary procedure call with an additional
Status parameter. On the invoked side, the programmer writes
a procedure body, again quite ordinary except that it is desig-
nated as an invocation procedure and that certain parameters
must be present. For example, the following code appears

s3

in the MailBox Edentype, associated with the invocation that
gives a MailBox a printable name.

invocation procedure SetName(
CallersRights: EdenRights,
Appellation: String,
var Status: EdenStatus) =
Imports ({modules} StatusDefs,
{monitors}  var PrintName,
{procedures} PerformCheckpoint)
begin
if {AdministratorRts not in CallersRights) then
Status = StatusDefs, EPLInsufficientRights
else
PrintName.SetName(Appellation )
PerformCheckpoint
end if
end SetName

Its action is fairly obvious. Notice that access rights are
checked by the Eject itself, not by the Eden kernel. PrintName
is a monitor which protects the appropriate field of the Mail-
Box from conflicting processes. Once the name has been set,
it is necessary to Checkpoint the MailBox, so that the new
name survives crashes.

That the automatic packaging and type-checking of invoca-
tion parameters is a significant aid becomes apparent only
when the facilities of EPL are inadequate, as they were in one
place within Edmas. The Eden kernel defines a Timestamp
data type to represent moments in history. When a MailMessage
is asked (via invocation) for the date and time of its composi-
tion, the reply to the invocation naturally contains a Timestamp.
Unfortunately, when the mail system was first written EPL did
not permit Timestamps as parameters, so programmers were
forced to convert them into raw bytes and back again. The
inconvenience of this, together with the risk of error, stood in
sharp contrast to the ease with which parameters of the sup-
ported types were passed and type-checked.

D. Multiple Processes in Edmas

Another feature of Eden that paid dividends within Edmas is
the provision within an Edentype of multiple processes and
synchronous invocation rather than a single process and asyn-
chronous invocation. The latter would have been easier to
implement, but we felt that the most straightforward way of
achieving parallelism was to use explicit multiple processes.
Additionally, we felt that it was unreasonable for a system of
the 1980’s to restrict its programmers to a sequential program-
ming language.

Typically, even the simplest Eject (such as a MailMessage)
has three processes: one that handles incoming invocations,
one that Deactivates the Eject after it has been idle for a certain
amount of time, and the Dispatcher process described in Sec-
tion HI-C. Even in this simple case, it sometimes is possible to
increase throughput simply by providing two (identical) invoca-
tion handling processes.

DistributionList Ejects use a more complicated process
structure.  Since DistributionLists may refer, directly or
indirectly, to themselves, some care is necessary to ensure
termination and avoid deadlock. The former problem is solved
by the use of “hop counts.” a well-known notion in graph
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traversal [15], and is optimized by the use of a cache. Dead-
lock can occur if in handling a particular invocation an Eject
makes another invocation, possibly of itself. The programmer
must then ensure that there is a process available to deal with
the new invocation, even though the invoking process is sus-
pended. Sometimes this can be achieved by partitioning the
set of invocations into two classes, those whose handling re-
quires external invocations and those whose handling does not,
and using a separate process for each class. Sometimes this
particular partitioning is inadequate. For example, the code for
handling Deliver invocations within a DistributionList may
itself make Deliver invocations on DistributionLists. 1f one of
these invocations is (directly or indirectly) recursive, having a
single process deal with all Deliver invocations will lead to
deadlock. The solution adopted in this case is to divide the
work between two processes. One services an (unbounded)
queue of outgoing Deliver invocations, while the other handles
incoming Deliver invocations by placing requests on the queue.
When proving freedom from deadlock, the existence of several
process classes is crucial, although the number of processes in
each class is not (provided that there is at least one).

F. Checkpointing and Recovery

The Checkpoint mechanism, while simple, is quite satisfactory
for Edmas. MailMessages Checkpoint once: when their com-
position is complete, but before they begin to deliver them-
selves to their addressees. MailBoxes Checkpoint whenever a
message is delivered to them and whenever a message is removed.
Since the state of a MailBox is just a set of capabilities, the
data that must be transferred to disk during these Checkpoint
operations is small-a few hundred bytes for a MailBox with
20 unread messages. If a MailBox chances to crash after the
MailReceivelnterface has picked up a message, but before that
message is removed, the user will see the message twice. We
did not think this a serious shortcoming; had we, it could have
been overcome using atomicity techniques (discussed in a sub-
sequent paragraph).

An inherent limitation of Checkpoint becomes evident when
an Eject with a lot of state needs to make a small change.
For example. suppose that the editor that is used to compose
the text of a MailMessage were an Eject rather than a UNIX™
program. To prevent loss of data in a crash, the editor ought
to Checkpoint its buffers frequently. Using the current primi-
tive, this would involve writing alf of the editor’s state to disk
at frequent intervals. which would be prohibitively expensive.
What is needed is a facility that inexpensively allows small
changes in the Eject’s state to be made permanent. There are
various ways in which this might be achieved, including muitiple
Checkpoint images for each Eject, a logging facility, or the
recording of the invocation history [16], [17]. We aim to
design such a mechanism in the future. At present, the only
way to contain the cost of Checkpoint is to use more than one
Eject. For example, one could introduce a separate Eject to
represent each of the buffers in an editor. While this might be
an appropriate way to structure an editor, it is unsatisfactory
to be forced into such an arrangement just because of the
inadequacy of Checkpoint.

Another problem with Checkpoint as a crash recovery primi-

tive is exposed when one considers a pair of Ejects that must
be synchronized. As an illustration, consider an Eject repre-
senting a sequential file, and a client Eject that has opened a
stream to Read from the File. Within the File Eject there
must be a counter indicating how far the client has progressed.
Consider what happens if this counter is not checkpointed on
each Read. If the File Eject crashes but the client does not,
the next time the client performs a Read invocation the File
will be reactivated but the counter will be wrong. Not only is
checkpointing on each Read expensive (because it involves
writing the whole of the file to disk, as well as the counters),
it is by itself insufficient to maintain synchronization. This is
because a reply message can be lost, and the client thereby
persuaded to repeat the invocation. (This problem can be
overcome by augmenting the invocation protocol between
file and client so that Read requests contain sequence num-
bers, or so that Read invocations alternate with Acknowledg-
ment invocations.)

A significant difference between Eden and some comtempo-
rary designs is that Eden does not build *“‘atomic actions™ into
the system kernel. The synchronization problem mentioned
above can be solved in both Argus [S] and Clouds [6] by use
of system-provided atomicity. In Eden, we have taken the view
that applications requiring atomic transactions must build
them out of Ejects and invocation. EFS and the transactions
associated with Calendar System Events are examples of such
applications. (Note that they have greatly differing transac-
tion granularity.) We plan to investigate this area more. At
the very least, Eden seems to be a good vchicle for experi-
menting with different techniques for implementing transac-
tions. By embedding atomicity in the kernel we would have
stifled this experimentation.

F. Storage Management in Lden

The problem of storage management appears in Eden in two
different contexts. The EPL run-time system manages a heap
used by the EPL data structures that are allocated with the
TypeNanie. New primitive. The Eden kernel manages a heap
used by Ejects themselves when they are created using the
Kernel. Create primitive. Currently, the storage is reclaimed
from the first heap by means of explicit deallocation. and
from the second heap via garbage collection.

The conflict between these two management techiiques is
an old one. Garbage collection is more convenient for the
programmer; explicit deallocation for the implementor. It is
also argued that garbage collection ts unnecessarily expensive
because the garbage collector must determine by exhaustive
search information that the programmer knew: which objects
may be freed.

It is our contention that any object oriented system must
provide garbage collection if it is to support the construction
of a wide range of applications. In Eden there is no notion of
ownership of Ejects, and it ts hard to see how one can be
introduced. Without such a notion, who should perform the
explicit deallocation? A MailMessage, for example. is created
by the MailSendInterface, and delivered to the (several) Mail-
Boxes of the addresseces. When the addressees read the muail
they may wish to file it away in some folder. send a reply
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message that refers to the original message, or forget about
the message completely. Who should be responsible for deal-
locating the MailMessage? Who can know when the last refer-
ence to it has been lost? The complexity of trying to keep ref-
erence counts correctly even for this single application is an
indication of why we consider garbage collection to be essential,
In effect, Edmas uses Ejects as a system-wide database of mes-
sages, and relies on the system to return a message correspond-
ing to a given capability. Without Eject garbage collection, the
designers of Edmas probably would have had to build their
own database, and to invent their own message identifiers.
Not only would this have required substantial effort, but it
would have severely limited the flexibility with which other
Ejects could refer to MailMessages.

Even within the more restricted world of a single Eject, the
lack of garbage collection within EPL is proving to be a problem.
Often the programmer.does not know when data structures are
no longer needed. One of the reasons for this is the heavy use
of layering within the code of an Edentype. As an example,
consider the CallinvocationProcedure routine described in
Sections 1I-B and C. If one of the arguments to the invocation
is of a data type represented on the heap (e.g., a string), Call-
InvocationProcedure must allocate a new structure and initial-
ize it with the data from the invocation message. Unfortunately,
CallinvocationProcedure cannot deallocate this structure
because the code of the invocation procedure, written by the
Edentype programmer, may have linked it into some global
data structure. Of course, one could make rules that forbid
the Edentype programmer from doing such a thing, or require
that all (and only) those structures that are not referred to
from a more global context be explicitly deallocated by the
invocation procedure. But doing this would negate many
of the advantages of information hiding and data abstrac-
tion. The Edentype programmer would immediately have
to know which data types are represented on the heap, which
assignments cause copying and which sharing, and a host of
other such details that are (or should be) secrets of the
implementation.

The simplest solution from the point of view of the program.
mer is to implement a full garbage collector for EPL. At pre-
sent we simply allow Ejects to grow slowly in size, knowing
that eventually they will Deactivate themselves and the kernel
will reclaim all of their address space. This arrangement is
tolerable since garbage does not find its way into an Eject’s
Checkpoint image.

G. Types and Type Checking in I-den

There are several notions of type in Eden. Within an Eject
there is the notion of type supported by EPL: both values and
variables are typed, type equivalence is required for most
operations, and new encapsulated types can be created using
the module construct. Two types are equivalent only if they
can be traced to the same definition in a common module:
mere textual identity is insufficient. This rather conventional
notion of type raises difficulties when one considers the prob-
lem of passing typed values from one Eject to another, i.e.,
from one EPL program to another. One would like to require
that both the sender and receiver of a value agree on its type.
But the existing concept of type cannot be applied because the
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same module cannot exist in different Edentypes. Of course, a
copy of the module can appear in each Eject, but that does
not imply equivalence of the EPL types they export.

The alternatives are either to define a new notion of abstract
type equivalence at the system level, perhaps by using the sys-
tem-wide name space of Eden, or to use a weaker notion of
type-checking for invocations, such as structural or textual
equivalence. So far we have avoided this problem by permitting
only a small set of system-defined types to be passed across
invocations.

At the inter-Eject level, broader notions of type exist. The
piece of EPL code that is executed by a particular Eject is called
its concrete Edentype, or often just its Edentype. Many Ejects
of the same Edentype may exist at one time;for example, there
may be many MailBoxes, all of which have the same concrete
Edentype (indeed, all the MailBoxes on a particular node
machine share the same code). From the outside, i.e., to some
invoking Eject, the concrete Edentype of another Eject is
irrelevant. It is the behavior of an Eject that is important to
its users. Each Eject may be thought of as an abstract machine.
The type-code of the Eject defines the transitions of the ma-
chine; the inputs are the invocations it receives, and the outputs
are the replies to those invocations, Since this pattern of
invocation and reply is all that other entities can observe about
the Eject, all Ejects with equivalent state machines provide the
same functionality. Because many pieces of EPL code can de-
fine the same transitions, it is quite possible for several distinct
concrete Edentypes to behave in the same way. In such a case
the Edentypes provide alternative implementations of the same
abstract machine. If they accept the same set of operations
and react in the same way, they are said to be of the same ab-
stract Edentype. So, if some type programmer were to write a
piece of code that defines the same behavior as the existing
MailBox code, but is more efficient in some circumstances,
one might like to have both the new and old concrete MailBox
Edentypes coexisting in the system, and providing two dis-
tinct implementations of the same abstract Edentype. One
important application of this idea is the provision of a version
to the type with enhanced debugging or monitoring facilities.

Muitipie implementations can exist in Eden because there is
no checking of concrete Edentypes. Capabilities are not typed
at compile time, and it is not possible for one Eject to enquire
of the concrete Edentype of another (when performing an
invocation, or at any other time). In contrast, the Hydra sys-
tem {11] did check types at the corresponding places, and
thus prohibited multiple implementations of this kind. In
Eden, if the invoked Eject does not support the requested
operation, or supports an operation with the same name but
with a different set of parameters, the invoker receives a reply
(generated by EPL) describing what has happened. In other
cases, the invocation proceeds.

So far this approach has not hurt us, and has permitted the
notion of behavioral compatibility to be further extended. If
a client Eject M assumes that some server Eject behaves as the
abstract Edentype £, then not only will M be satisfied by any
implementation of £, but also by any implementation of £,
where I’ is a superset of £. In other words, provided that
I” contains all the operations of / and that their semantics are
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the same, it does not matter to M that £ contains other opera-
tions as well.

One place where we took specific advantage of this fact was
in adding DistributionLists to Edmas. When a MailMessage
Delivers itself, there is no check that the destination is actually
a MailBox. So, provided that the destination accepts a Deliver
invocation and ‘“does the right thing” with the message, all
should be well. The fact that Delivery to a DistributionList
triggers a complicated sequence of further Deliveries is of no
concern to the MailMessage, or indeed to any part of the sys-
tem other than DistributionLists themselves. Both MailBoxes
and DistributionLists implement a superset of the abstract
MailSink Edentype, for which there is no corresponding
concrete Edentype at all.

A similar thing happens within the Eden Transput System.
The Transput System relies on the abstract Stream Edentype.
However, there is no concrete Edentype that is just a Stream,
there are streams from sequential files, and streams from termi-
nals, and streams from filter Ejects, all of which conform to
the Stream abstraction but which provide other services in
addition.

Having several Edentypes provide the same operations is
reminiscent of the type hierarchy of Simula or Smalltalk. In
fact, some of our applications use multiple type inheritance in
the sense of [18]. However, whereas Simula and Smalltatk
automate inheritance in the language processor or run-time
system, Eden implements it by convention; the association of
abstract with concrete Edentypes is not directly supported by
EPL or the Eden kernel.

It remains to be seen whether these conventions will prove
inadequate as the number and variety of Edentypes and
Edentype programmers grow. If they do, there are various
schemes that would enable a programmer to enquire about the
abstract Edentype of another Eject. One such scheme that can
be implemented entirely outside of the Eden kernel is to create
a “specification Eject” for each abstract Edentype, and to have
cach concrete Edentype tell its invokers its abstract Edentype.
The specification Ejects can be connected in a directed graph,
the cdges of which indicate that one abstract Edentype is a
subset of another. An invocation would be type-correct if the
abstract Edentype expected by the invoker could be reached
by following the edges of the Edentype graph starting at the
abstract Edentype of the invokee.

We have also given some thought to automating the Edentype
inheritance scheme in a way that is similar to that described
by Borning and Ingalls for Smalltalk. This would enable code
from one Edentype to be automatically inherited by another,
so that changes in the first Edentype would be reflected in the
beneficiary. Whereas Smalltalk has to deal with inheritance of
procedures and data structures only, in Eden the problem is
compounded by the need to inherit processes as well. As the
above discussion of deadlock avoidance in the mail system
should make clear, allocation of invocations among processes
is sometimes a nontrivial task, and it is difficult to see how an
automatic inheritance scheme would cope with it. Evenadding
a new process to an Edentype must be done with care because
data structures that previously were accessed by only one
process may need to be protected by monitors.

IV. EvALUATION

In earlier sections we summarized the Eden architecture,
described how this architecture is supported, and illustrated
the use of this architecture by certain applications programs.

We noted in Section I that the scientific questions we must
explore involve assessing the benefits (in terms of programma-
bility) and the costs (in terms of necessary support) of our
architecture. This assessment has just begun. In this final
section we state our preliminary results.

The presentation is divided into five parts. In the first two
parts we consider the global questions just stated: benefits
and costs. (Clearly we are not yet in a position to fully answer
either of these questions.) In the final three parts we evaluate
various specific choices that we have made. First we consider
choices that appear to have been good ones, then choices that
appear to have been bad ones, and finally areas in which we
have too little experience as yet to hazard a guess. Each of the
five parts is brief since supporting material appears in earlier
sections.

A. Benefits

We are pleased with the programmability afforded by Eden.
Applications such as Edmas have been brought up remarkably
quickly.

The object based approach has conveyed to Eden the same
benefits it brought to earlier centralized systems such as Hydra.
In addition to ease in constructing applications from scratch,
the reusability of Edentypes has already been demonstrated;
for example, in the use by Edmas of a Directory Edentype
initially developed for EFS.

The style of location independence supported by Eden also
has shown itself to be a boon in various applications, most
particularly in Edmas.

The construction of additional applications will allow us to
test the benefits of our architecture further.

B. Costs

Invocation is slow in Eden 1.0. At the highest level -a syn-
chronous invocation made from EPL using procedure call
syntax-nearly 100 ms are required on a VAX-11/750 for the
execution of a statement such as

RootDirectory. Lookup{UserName, L.oginDirectory, Status)

Clearly, no system whose kernel consists of several UNIX™
processes communicating via [PC is going to be fast. Our objec-
tive for Eden 1.0 was a prototype that we could construct fairly
quickly and that would be sufficiently performant to allow us
to conduct experiments using it. The system meets this
objective.

A key question that must be answered is the extent to which
performance problems are inherent in our architecture, rather
than being artifacts of our implementation. Assessing the
“true cost” of supporting an architecture such as Eden will
allow the benefits to be placed in perspective. This assessment
is a major effort that we are just beginning.

C. Apparently Good Choices
o The Provision of Concurrency Within Ijects: Many pro-
gramming problems are solved most naturally using cooperating
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sequential processes. Multiple processes are used in even the
simplest Ejects. Their existence allows us to make invocation
appear as a synchronous operation, a simple and familiar inter-
face. In more complex Ejects, multiple processes allow dead-
lock to be avoided even when invocations may be recursive.

o The Support of This Concurrency by Means of EPL. Be-
cause the processes and monitors seen by the EPL programmer
are implemented by the language rather than by the operating
system, the overhead is very low, and the programmer feels
free to use processes generously.

There is an interesting contrast between the world within an
Eject and the world of Eden at large, where processes (i.e.,
Ejects) enjoy the protection and overhead of separate address
spaces, and communication is by explicit message passing (i.e.,
invocation). We might hypothesize that the very kind of
independence that is essential for Ejects (in order to deal
with, for example, crashing of only part of the system), and
the kind of communication that must be used when the hard-
ware connection is a network, are inappropriate for use “in the
small.”

o The Support for Invocation Provided by EPL: One of the
principal lessons of Newark was the need for syntactic support
for invocation. In Eden 1.0 there is a careful match between
the concepts of Eden and the structures of EPL. The role of
EPL in making invocations as easy to perform as procedure
calls and in automatically packaging and type checking invoca-
tion parameters is a significant contribution to the programma-
bility of Eden.

e The Typing of Invocation Parameters But Not of Capabil-
ities: We have noted that from the outside, i.e., to some invok-
ing Eject, the concrete Edentype of an Eject is irrelevant. It is
the behavior of an Eject—the invocations it accepts and the re-
sponses it generates—that is important to its users. Thus,
although the parameters of an invocation are typed (via ESCII),
capabilities are not. This approach has allowed us, for example,
to add DistributionLists to Edmas in a straightforward manner.

D. Aparently Bad Choices

e The Semantics of Checkpoint: The Checkpoint primitive
in Eden replaces, rather than selectively updating, the passive
representation. Checkpoint shows itself to be inadequate
when a large Eject needs to make permanent a small change.
There are various ways in which this might be handled effi-
ciently; we aim to design and implement one in the future.

E. Open Questions

o One Eject, One Capability: Eden adopts the simple notion
that each Eject has one capability to which invocations can be
addressed. An alternative would have been to provide each
Eject with a set of capabilities. Each option can be simulated
using the other; simulating multiple capabilities in Eden in-
volves passing an additional integer argument to each invocation
procedure.

Unfortunately, once an invocation is specified and imple-
mented by several concrete Edentypes, adding an extra pa-
rameter is very inconvenient. To counter this, some of our
invocation protocols require the extra integer even when it is
not used. In the Transput System, for example, an Eject
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which is acting as a data source requires that it be told which
“channel” is being read in every request for data, even if it is
in fact supporting a single channel. The only way around this
problem is to split every source that may service # channels
into # separate Ejects. In general, the “‘one Eject, one capabil-
ity” rule prevents us from coalescing two Ejects into one with-
out also changing their interfaces. 1t may thus prove to be a
barrier to the smooth evolution of applications.

o The Active Nature of Ejects: The protection requirements
of Eden suggested that Ejects should enjoy the invulnerability
of separate address spaces. The idea that each Eject should
also have a separate and independent process followed because
most computer architectures combine the notions of process
and address space. However, there are alternatives. One is to
share a single system process among all Ejects of each concrete
Edentype. Another is to combine the notion of process with
that of invocation, so that a single thread of control could pass
through the protection domains of all of the Ejects involved in
a particular task.

We cannot experiment with these alternatives in Eden; our
particular choice is built into the kernel. However, wecan'e - n
something about the advantages and disadvantages of our ap-
proach. So far, we can mention that it is sometimes very con-
venient for Ejects to have “housekeeping processes™ (processes
that exist for the internal gratification of the Eject itself, rather
than to service invocations). Even the simplest Ejects use
houskeeping processes to observe how long has elapsed since
the Eject was last invoked, and to Deactivate the Eject when
that time reaches a certain limit. Another example of the use
of such processes is in the Edmas DistributionList, which de-
livers mail to members of the list after the initial Deliver
invocation has returned.

e The Utlity of Eject Mobility: The fact that Ejects are
mobile allows us to study approaches to problems such as load
balancing and availability. Some of these investigations have
begun.

e Providing Location Independence in the Kernel: Eden's
experience with location independence has been positive. In
fact, the ability of Ejects to perform/service invocations while
being ignorant of the location of their target/invoker is central
to the success of the applications cited in Section 1Il. On the
other hand, the ability of Ejects to implement robust services,
or to exploit mobility for performance reasons, has suffered
from the inability of an Eject to control its own location. We
have developed ways of allowing Ejects, when necessary, to be
explicit about the location of both active and passive forms
(for example, upon creation of a new Eject). We believe that
doing so, while retaining strict location independence for both
partners in an invocation, will achieve the proper balance.

F. A Final Comment

Since Eden differs in substantial ways from most other sys-
tems, we have not always been able to draw directly on prior
experience—-our own or others’—in making architectural and
implementational decisions.

On the one hand, decisions cannot be deferred indefinitely.
On the other hand, decisions made in the absence of experience
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often come to be regretted. Two (retrospectively obvious)
lessons that we have learned concerning experimental systems
work are the importance of building “throwaway prototypes”
and the value of using program libraries and conventions rather
than kernel code in areas of uncertainty.

For example, had we attempted to automate type inheritance
early on, we might have chosen something similar to Hydra
type-checking or Simula Classes. Having deferred automation,
we find ourselves writing applications that use a more general
notion of type inheritance.

Similarly, we did not impart “exactly once” semantics to
invocation, because we were not certain of the ways in which
invocation would be used, We did not build transactions into
the kernel because we did not know what they would be used
for. Unfortunately, we did build in a single state saving primi-
tive, and this has proven to be a mistake.
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