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Abstract 

The University of Washington's Eden Project was funded in September 1980 by the first award in the National 
Science Foundation's Coordinated Experimental Research Program. This is the final report of that project 

Eden, like most CER projects, had two objectives. The first objective was technical: to cany out a specific 
experimental research project concerned with designing, building and using an "integrated distributed" computing 
system. (Eden was considerably more focused in this regard than most of its successors.) The second objective was 
environmental: to strengthen Washington's Computer Science department, and to transform it into one where 
experimental techniques are routinely employed. 

The structure of this report reflects this duality. After an introduction, we provide an overview of the system: its 
architecture, its implementation, its programming environment, its applications, and a technical assessment Then in 
two brief sections we outline the project's technical impact and its influence on the environment. 

'Ihis work was supported in part by the National Science Foundation under Grants MCS-8004111 and DCR-8420945. Computing equipment was 
provided in part under a cooperative research agreement with Digital Equipment Corporation. 





Introduction 

The University of Washington's Eden Project was funded in September 1980 as the first award in the National 
Science Foundation's Coordinated Experimental Research Program. 

Eden, first and foremost, was a five year experiment in designing, building and using an "integrated distributed" 
computing system [7,16,19,36]. Eden attempted to combine the benefits of integration with those of distribution by 
supporting an object-based style of programming across a local area network. The system was integrated because 
operations could be performed on any object anywhere in the network, without any need to know the location of the 
object. The hypothesis of Eden was that this environment would be conducive to building distributed applications. 

To test this hypothesis, a prototype Eden system (actually, a series of three different prototypes) and a variety of 
distributed applications were constructed. Roughly 100 different Eden object types existed at the official close of 
the project, comprising some 300,000 lines of Eden Programming Language code; more object types have been 
written subsequently. In addition to this work on the Eden system itself, the project proved to be the catalyst for a 
great deal of other experimental research in distributed systems. Some of this work, such as research on load 
sharing in distributed systems [9,22,23,351 and on replication, transactions and concurrency control [32,45- 
48,5 1,521, used the Eden system as a laboratory and could not have taken place without its presence. Other work, 
such as the Emerald language [18,20,29,34] and a variety of theoretical studies on distributed systems [24-26,411, 
was motivated by the experience of designing, building and using Eden, and would not have happened without that 
context. 

Although Eden differed £rom most subsequent CER grants in that its emphasis was on supporting a focused 
research effort rather than on providing general departmental infrastructure, to a large extent it succeeded in doing 
both. Eden represented a collective decision by certain members of the department to pursue a new, more 
experimental research direction, and an important effect of the project has been to substantially increase the 
experimental focus and capabilities of the department. 

The structure of this report reflects the multiple facets of the project. Section 2 is a technical overview of the 
Eden system and some of its applications. Section 3 discusses the technical impact of the project; substantial 
contributions to the field have been made by the Eden system, the Eden Programming Language and various Eden 
applications, as well as by various research projects that used Eden as an experimental laboratory. Section 4 
highlights the effect of the Eden project on the general research environment at the University of Washington. 





System Overview 

The Eden system attempts to combine the benefits of integration and distribution by supporting an object-based style 
of on a number of "node machines" interconnected by a local network. We believed that this 
environment would simplify the task of building distributed applications. At the scientific level, the goal of the 
project was to test this belief experimentally; to do so involved building a prototype Eden system and implementing 
a variety of applications on it. This section of the report presents a technical overview of the Eden system and 
glimpses of some of the applications. It also describes some of our experiences as builders of a large distributed 
system. A more complete but less current introduction to the structure of Eden will be found in reference 7. 

2.1. The Eden Distributed System 

Eden represents a merging of three distinct threads in operating system design. First, Eden is a state-of-the-art 
object-oriented system. Viewed in this way, Eden is a descendant of Hydra [70]. Second, Eden is a complete 
distributed operating system. In this sense it is rather like the Apollo DOMAIN [63] system or UCLA's LOCUS 
system 1691. Third, Eden includes a full-scale implementation of Remote Procedure Call (RPC). In this sense it is 
rather like the RPC system pioneered by Xerox [61.]. Eden thus has something in common with a number of the 
advanced operating system projects of the last few years. However, in combining the advances of these systems, 
Eden provides a unique set of facilities. It is distinguished from systems such as LOCUS in being based on a 
contemporary object-oriented model. It is distinguished from the contemporary implementation of the Apollo 
DOMAIN system by having a notion of object that is definable and extensible by the user. It is distinguished from 
the Xerox system by the fact that objects are mobile and that the binding of a client to a server is performed upon 
every invocation rather than just once. And of course it is a significant advance over the Hydra system in that 
distribution is an integral part of Eden. 

It is important to observe that Eden is not a collection of facilities provided on top of an existing operating 
system in an attempt to add distribution to a conventional style of computing. This is true despite the fact that the 
current prototype implementation of Eden is built using the facilities of urn.@ U r n  is merely an implementation 
vehicle; Eden itself provides the user with a complete, advanced environment for the development and execution of 
distributed applications. 

Eden objects, the basic building blocks of distributed applications in Eden, exhibit the following characteristics: 
- Invocation is the means whereby one object obtains service from another. It may be thought of as a request 

message followed some time later by a response message. 
- Invocation is location independent; one object does not need to know the location of another object in order to 

invoke it. 
- Objects are addressed by capabilities. Capabilities are not addresses. Rather, each object has an unique 

identifier. A capability consists of that unique identifier and a set of rights. The problem of locating an object 
given only its capability is handled by the system itself. Capabilities are protected from forgery by the system. 

- Objects are mobile. 
- Objects are autonomous. Each object has one or more processes within i t  This stands in contrast to Smalltalk 

objects, where threads of control enter an object when a request is made but leave it when the response is 
completed. Eden objects can perform activities on their own behalf, as well as in response to invocations. 

This section is a revision of an invited paper presented at the European U r n  system Usen Group Conference. Manchester, England [19]. 

@ UNIX is a registered trademark of AT&T. 
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- Each object has a concrete Edentype, which may be regarded as a description of the state machine that defines 
the behavior of the object, i.e., those invocations that it will accept and what their effect will be. In 
implementation terms the concrete Edentype is a piece of code in the Eden Programming Language. 

- Each object has a data part, which includes long-term state representing the data encapsulated by the object and 
short-term state consisting of the local data of invocations currently in progress, hints, caches, and so on. 

- An object may checkpoint. This is an atomic way of writing its state to stable storage. The data is written under 
the control of the concrete Edentype of the object. Typically all of the long-term state will be written, and as 
much of the short-term state as is necessary to achieve the reliability specification of the object. 

- Finally, objects are activated automatically when they are invoked, if this proves to be necessary. Conceptually 
we wish to regard objects as active at all times. Should they fail or be passivated to conserve resources, 
activation will take place from the checkpointed representation. 

These characteristics of Eden objects lend the following unique characteristics to the Eden system as a whole: 
- First, it is an integrated system with a single uniform system-wide namespace. Its space of objects is managed 

by the system, in the sense that the system takes care of obtaining resources for the creation of a new object and 
for garbage collecting objects when they are no longer accessible. 

- Eden supports the notion of abstract Edentypes. Several different pieces of concrete code can implement 
services that at some level of abstraction may be considered as identical. For example, there may be two 
concrete directory types which support the same set of operations but which exhibit different reliability and 
performance characteristics. When invoking a directory the invoker need not be concerned with which concrete 
type is actually used. This simple idea permits us to support multiple inheritance hierarchies in the sense of 
Smalltalk and the asymmetric stream concept, and is discussed further in section 1.5. 

- The third consequence is that data encapsulation (information hiding) is supported and enforced by the system. 
The only code that accesses the representation of an object is the code that makes up that object's concrete 
Edentype. If the object's data structure is found to violate its invariants then only the object's own code need be 
examined to find out why. Similarly, if a change in use requires that a data structure be modified, all the code 
that needs to be modified is within the object itself. 

- Fourthly, objects are secure. The system ensures that only through possession of a capability can an object be 
accessed. The system also ensures that capabilities cannot be forged. The access rights in a capability enable us 
to provide fine-grained restrictions on access. 

- Another consequence of our design is that Eden does not offer automatic insulation from crashes. A general- 
purpose atomic action system is not one of the primitives that Eden provides. We do provide the atomic 
checkpoint primitive, whereby programmers who so desire can build robust and secure applications. This is a 
different approach from that taken by, for example, the Argus system [64,65] and the Clouds system [59], where 
atomic actions are among the basic building blocks provided at the system level. In Eden, it is possible to 
experiment with different approaches to providing transactions [51]. 

2.2. Implementation 

The Eden system has been operating on a collection of VAX systems since April 1983 and on a collection of Sun 
workstations since September 1984. The Eden implementation is in two parts: the Eden Programming Language, 
and the Eden kernel. Eden coexists with UNIX, in the sense that an individual can make simultaneous use of UNIX 
and Eden services. This coexistence was crucial in minimizing the software effort required to make Eden usable, 
and was the main motivation for our choice of prototyping environment. 

The set of UNIX facilities that Eden uses is small: processes and address spaces, a minimal flat file system, and 
the ability to load code into those address spaces from a file. We attempted to minimize the changes made to the 
UNIX kernel. Starting with 4.1 bsd U r n ,  we added an Ethernet driver and an inter-process communication 
mechanism, and decreased the granularity of the timer, other changes were limited to system parameters. 

Each Eden object is implemented as a U r n  process. The Eden kernel operates as an additional UNM p e s s  on 
each node; this process is called an Eden host. Both the host and the object processes operate in "user-mode", and 
do not require any special privileges. The r61e of the host is to create object processes, to maintain part of an 
object's state, to maintain caches of object locations, passive representations and code, and of course to implement 
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the set of system calls that characterize Eden, including the calls that send an invocation, create an object, and 
checkpoint a passive representation. 

In addition to the host, every node with a disk runs a second kernel process called a POD, for Permanent Object 
Database. The POD'S function is to manage the passive representations of those objects that have checkpointed 
onto its disk. When a checkpoint occurs, the POD arranges that the old passive representation is replaced 
atomically by the new data; this may involve communicating with other PODS if the checksite has moved. The 
POD also manages the executable code that makes up an Edentype: this code is simply the passive representation of 
another object of type Typestore. 

When one object wishes to invoke another, it calls the kernel-provided Asynchlnvoke primitive, passing the 
capability of the target object and the appropriate data as parameters. If the target object happens to be located on 
the same node as the invoker, the kernel will discover this by examining its tables, and will deliver the invocation 
message directly. To reply to the invocation, the target makes the ReplyMsg kernel call, and the kernel routes the 
reply message to the invoker. If the information in the kernel's location tables indicate that the target object is on 
another node, the kernel will send the invocation message to the kernel process on that node, which will deliver it to 
the target object. If there is no entry in the kernel's tables for the target object, the kernel engages in a multi-layered 
location protocol, which will eventually return with either the location of the active form of the target object, or 
with an indication that the object is not active but that its passive form is located on a particular POD. In the latter 
case, the object is automatically activated on an appropriate host, to which the POD makes the executable code and 
the passive representation available. Once the target object is actived, invocation proceeds as normal. 

2.3. The Eden Programming Language 

A major achievement of the Eden project has been the design and implementation of the Eden Programming 
Language. EPL is based on Concurrent Euclid, a Pascal extension providing processes, modules and monitors; it 
provides direct support for the fundamental absuactions of Eden, that is, capabilities and invocation. Capabilities 
are first-class citizens, even to the extent of having source-language denotations. Syntax exists both for sending and 
receiving invocations, making invocations as easy to use as conventional procedure calls. We feel that this has been 
a key factor contributing to the ease of use of Eden. 

Directory Stub Procedure 

procedure Lookup( ...) 
RootDirectory .Lookup( 

{Pack arguments into ESCIIJ 

Dispatcher.Synchlnvoke(. . . 
{unpack results) 

end 
Invocation 

Figure 2.1: Sending a Lookup Invocation 

The signiiicance of EPL is not that it extends the state of the art of language design, but that there is a careful 
match between the concepts of Eden and the structures of EPL. The Eden invocation is simple in concept; the 
challenge was to make its realization in EPL equally simple. On the invoking side, the programmer sees an ordinary 
procedure call with an additional status parameter (see Figure 2.1). On the invoked side, the programmer writes a 
procedure body, again quite ordinary except that it is designated an invocation procedure and certain parameters 
must be present. In addition, some process on the invoked side must receive the invocation and call the invocation 
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Directory Code 

invocation procedure Lookup( ... ) = 

begin 

{code to search the directory 

Md find the requested key] 

end Lookup 

Figure 2.2: Receiving a Lookup Invocation 

DispatcherReceiveOperations 

CallInvocationProcedure(I) 

procedure. The declaration of the invocation procedure is a way of stating that the object is willing to handle a 
particular invocation; it also defines the parameter list for that invocation, and thus provides the information needed 
to perform type-checking. 

CIP for Directory 

procedure CallInvocationProcedure 
(I: InvocatwnHandle) = 

begin 
{Fetch values from ESCII. 
if OperationName is "Lookup" then] 

Directovbokup( ... ) 
{Pack results into reply ESCII] 

DispatcherReplyMsg(1, Results) 

The figures illustrate how invocation support is implemented. The invoking routine actually calls a stub 
procedure (in the rectangular box, Figure 2.1), which has been generated by a program from a description of the 
invocation interface. The receipt of an invocation is shown in Figure 2.2. The invocation is received by a user- 
written process (in the circle in Figure 2.2), but typically the only action of this process is to call the automatically 
generated CalUnvocationProcedure which unpacks the arguments, calls the appropriate procedure in the target 
object, and packages up and sends the results. 

The other main contribution of EPL is the provision of intra-object concurrency. A run-time kernel provides 
multiple light-weight processes and monitors within the UNIX process that supports the object. Thus, when a client 
process makes a remote invocation, it is possible to suspend just that process pending the receipt of a response; other 
client processes are free to continue. It is therefore possible to write a library module that implements the 
abstraction of synchronous communication, using the Asynchlnvoke kernel call and EPL processes and monitors. 
One such module, the Dispatcher, is the standard way of sending and receiving invocations in Eden; programmers 
prefer not to use the asynchronous primitives, even though they are available. The matter of synchronous vs. 
asynchronous communication and the availability of concurrency is discussed in greater depth in reference 16. 

invocation 
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2.4. Some Eden Applications 

Each application that has been built in Eden has three objectives, although the relative emphasis on these objectives 
differs among the applications: 

- to evaluate the system 

The value of the Eden architecture, i.e., the hospitability of the system for distributed applications, can only be 
assessed through use. 

- to make Eden a "complete" system rather than a "kernel" 

In their evaluation of Cal-TSS, Lampson and Sturgis note that a kernel constitutes perhaps ten per cent of an 
operating system [62]. A key advantage of the object-based approach used by Eden is that many traditional 
operating system components can be built as applications. 

- to conduct research into the applications themselves 

The Eden system provides a laboratory for exploring the design and structure of distributed applications. 

To consider a few examples: the Eden Mail System (Edmas) [6], our first application, was written largely with the 
first objective in mind - testing the support that the Eden system provides for programming distributed applications. 
It was not the intention to interconnect Edmas with other mail systems to provide a general mail utility, nor was it 
the intention to study mail systems in general (although considerably more has been learned about this than was 
anticipated). The same is true of the basic file system (a subset of the system described in reference 32). 

The reader may be surprised to see us refer to the file system as an application, but conventional sequential files 
are not part of the Eden kernel. A sequential file is simply an object that allows its contents to be read and written 
using the Eden transput (input/output) system. The Checkpoint facility allows such an object to maintain its state on 
the disk, and thus to exist permanently. However, sequential files are not the only form of long-term storage in 
Eden. All objects, once checkpointed, are equally permanent. A means is required for keeping capabilities for 
them; the Edentype Directory does just this. A Capability for any object can be associated with a mnemonic string 
and stored in a directory, and can later be retrieved by performing a Lookup operation on the directory with the 
string as argument. Since Directories can be entered into other directories, an arbitrary directed graph of Directories 
can be built up from a single root. 

The Eden Calendar System [27] was written largely with the first and third objectives in mind: to further 
evaluate the Eden system's hospitability, and to explore the use of transactions in multi-user calendar systems. The 
Eden Terminal Handler and the Eden Command Language Interpreter were built primarily because they were 
necessary for the use of the system - the second objective. Finally, moving the translator for the Eden 
Programming Language into Eden contributed to all three objectives: the translator exercises virtually every aspect 
of the system, while exploiting the Eden architecture to solve specific practical problems. 

Eden has been and continues to be used as a basis for research in distribution, replication, and concurrency 
control. An experimental version of Eden provides replicated passive representations, and used a voting scheme to 
keep them consistent in the face of failures [45,48]. Crash-resistant resources have been implemented on top of the 
normal Eden system by using multiple objects to represent a single logical resource; to update the resource despite 
some of the copies being unavailable, we regenerate the inaccessible copies elsewhere in the network [52]. We 
have also implemented a general purpose nested transaction mechanism out of Eden objects; each transaction is 
characterized by its own transaction manager object that is responsible for the concurrency control and crash 
recovery of its sub-transactions [5 11. 

To give the flavor of the way applications are constructed in Eden, we will briefly review the design of the Eden 
Calendar System. More details can be found in reference 27. The Calendar system is designed to serve both as a 
personal appointment book, in which one can schedule, list and cancel appointments, and as a shared calendar 
system that assists in scheduling events with one or more other users, while guaranteeing consistency of the 
calendars and detecting conflicts. We will first discuss some design considerations, and then the implementation in 
terms of objects. The way that the objects interact to achieve atomicity will then be described; although this is 
atypical of Eden applications (most do not have very stringent atomicity requirements), it is interesting to see how 
transactions can be built that take advantage of the semantics of the particular operations available on the objects 
concerned. 

A fundamental feature of such a system is that information about appointments needs to be shared by all of the 
participants. There are two obvious ways of doing this: centralising the information in one place, and letting each 
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Representation 

Start Time: Monday, 22nd Sept 1986 at 13:30 
End Time: Monday, 22nd Sept 1986 at 15:00 
Description: EUUG Conference Session 
Event Status: Definitely Scheduled 
Participants: Black <capability> ; Donner <capability> ; 

Harper<capability> 

Operations 
AppendParticipantO 
CancelEventO 
ConhnEventO 
GetNextParticipantO 
LookupParticipantO 
RejectEvent() 
ScheduleEventO 
SetDescriptionO 
Show() 

Figure 23: An Event Object 

participant refer to it, or replicating the data so that each participant has a copy. Centralisation has the advantage 
that consistency is assured, but performance and availability may suffer. Replication of the data means that one has 
to take special care to ensure consistency; this also impacts performance, and may also adversely affect availability, 
depending on the techniques used. The compromise reached in the calendar system is partial replication. The 
system contains two basic types of Eden objects: Events and Calendars. Events are the repositories of the true 
information about an engagement; Calendars contain hints and caches to improve performance, and use a 
transaction mechanism to ensure consistency where necessary. 

Figures 2.3 and 2.4 illustrate typical Event and Calendar objects. They may be thought of as abstract machines 
that encapsulate the relevant data representation and provides access to it through a set of operations. The 
representation of the event is a record structure containing the relevant data; note that the list of participants is 
represented as a list of capabilities for their calendars. The given operations can be applied to the event to add 
participants, interrogate the data, and so on. The ScheduleEvent operation provides automatic scheduling; it takes as 
arguments an interval of time and a duration, and attempts to find a free slot on all of the participants' calendars of 
the required duration within the interval. The calendar object (Figure 2.4) has a similar structure; the appointments 
field is represented as a list of events. As well as Capabilities for event objects, some of the information about each 
event is replicated in each participant's calendar. 

Scheduling an engagement is a human-time operation that may take days or weeks: it cannot be completed until 
the last participant has examined his calendar and agreed to the tentatively scheduled meeting - and that person may 
be on holiday. Because most transaction techniques work well only when locks are held for brief time-spans, 
scheduling is broken into two parts. First the event is tentatively scheduled, which is done at machine speed, 
confirmations are then obtained from each participant. 

The event object itself serves as the commit record for the scheduling transaction. The Event object first locks 
the calendars of all the participants, finds an appropriate time slot, and then enters itself on all of the calendars in 
that time slot. A two-phase commit is used to ensure that the event is entered on all of the calendars, or is aborted; 
the locks can then be released. Each calendar replicates the data concerning the time span covered by the evenc this 
is to enable searches for free times to proceed without the need to invoke every Event object. Since the timing 
information does not change, its consistency is not an issue. The calendar also keeps information about the status of 
the event. Initially, the event is tentative; when the calendar's owner agrees to the engagement, the status becomes 
confirmed. Again, a two-phase commit is used to ensure that the Event object and the confirming calendar agree. 
When the last participant agrees to the engagement, the Event object attempts to notify all of the participants that the 



2 1 System Overview 11 

I Representation 
Owner's Name: Andrew P. Black 
Last Read: Monday, 8th September 1986 at 09:30 
Last Updated: Monday, 8th September 1986 at 0905 
Appointments: 

Start Time: 22 ix 1986 13:30 23 ix 1985 1200 
End Time: 22 ix 1986 1500 23 ix 1985 13:OO 
Status: definite tentative 
Owner Action: accepted no action 
Capability: <Figure 2.3> clunch event> 

History: 
Cancelled and past events 

Operations 
AddEveno, Remove() 
Confirm() 
FindFreeBlockO 
GetLockO, FreeLockO 
ListNextO 
SetNameO 
Setstatus() 
Show(), S howEventTotalsO 

Figure 2.4: A Calendar Object 

appointment is now definitely scheduled. However, this information is relayed to the calendars on a "best effort" 
basis; transaction techniques are not used. This is done so that the last user is not prevented from confirming an 
engagement just because another participant's calendar is unavailable (perhaps because a machine is down). The 
"confirmed" status in a calendar is thus a hint that needs to be checked against the truth held in the Event object; it 
is possible that the event is in fact scheduled, but that the calendar object has not been informed. The process of 
scheduling an event is shown in Figure 2.5. 

2.5. A Technical Assessment 

The Eden system can be assessed in two frames of reference. First, considered as an architecture for supporting 
distributed applications, one can take specific features of Eden and see how they contribute to that goal. A recent 
SOSP paper [16] attempts this task; in this forum we will merely mention some of the more significant findings. 
Secondly, one can assess the current implementation of Eden as an artifact in its own right: how good a job did we 
do in building it, and in what ways did our substrate system (Urn) help us or hinder us. 

Considered as an architecture, Eden provides good support for applications. This is of course the finding we 
hoped for, but it is certainly not just experimental bias. The fact that two students could undertake the building of a 
distributed mail system as a six week project for the graduate operating systems course - and complete the task on a 
kernel system that was still being actively debugged - was surprising even to us. The credit must go not only to the 
system design itself, but also to the programming language support that was provided, almost as an afterthought. 
EPL's provision of syntactic support for invocation receipt and dispatch, and the combination of synchronous 
invocation and lightweight processes, seem to be tools that are accessible to the ordinary programmer. Those of us 
deeply involved in the mystique of the innards of Eden were at first alarmed when programmers who had 
constructed substantial applications asked questions that displayed what was to us an amazing ignorance of the way 
the system worked. But of course, that is exactly as it should be: the programming language itself should present a 
coherent model of computation, and programmers should not need to delve below that level. 

One concept that has proved to be very important is the Abstract Edentype. While a concrete Edentype is a 
particular piece of code that defines the interface and behavior of a real object, an Abstract Edentype is an 
abstraction of this: the specification of an interface and a behavior. This specification may be satisfied by many 
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Event I Har::."lkndar 

tentative 

Tentatively Scheduled by Harper: 

Confirmed by Harper: 
I 

I 

confirmed 
Warper) 

pre-tentative 

Confirmed by Black: 

confirmed 
(Black) 

tentative 

pre-confirmed 

confirmed 

pre-tentative 

tentative 

pre-confirmed 

confirmed 

Figure 2.5: Stages in Scheduling an Event 

When all participants have confirmed ... 

concrete Edentypes or by none. A given concrete Edentype may implement several abstractions. The most obvious 
application of this idea is in device-independent transput. The abstraction of a readable Stream is implemented by 
several concrete Edentypes, in particular by sequential files and by the terminal handler. The implementation of the 
transfer and close operations is obviously very different in each case, but an invoking object need not be concerned 
with this, provided that data is available when transfer is called. Once recognized, Abstract Edentypes crop up in 
all sorts of applications; for example, the extended version of Edmas [51 uses an internal abstraction Mailsink, as 
well as sharing an abstract Edentype with the file system. Three different concrete types in the transaction-manager 
tree [51] implement a lock manager interface; in this case, they also share the same implementation module. 

scheduled 

Eden allows the use of Abstract Edentypes, but does not offer any explicit support for them. Because 
capabilities are not typed, a client that claims to be reading from a stream object will have no problem reading from 
a sequential file, provided that the file supports the right interface. Explicit support for abstract types is one of the 
design goals of a new distributed object-oriented language currently being implemented [18,20]. 

One of the less successful features of Eden is Checkpoint. In its favor is simplicity of concept and universality: 
any desired updating of the passive representation can be achieved by using multiple checkpoints. However, in 
practice this is of little use, because the cost of checkpointing is too high to make it a useful primitive. It may take 
as long as a second to perform a checkpoint operation - if the amount of data is small (less than a few kilobytes), 
this time is more or less independent of the size of the data. The reason is that most of the time is occupied by UNIX 
overhead in updating the disk atomically. This is not something for which the Urn file system is particularly well 
adapted. Indeed, in our initial implementation under Berkeley 4.1 Urn, it was impossible. Berkeley 4.2 Urn 
provides an atomic rename system call and an operation that flushes the disk cache for a particular file; these enable 
us to achieve atomicity, but it remains very expensive. Over seventy five per cent of the CPU time used by an 
object in checkpointing a kilobyte is consumed by link, unlink, open, creat, and access; write uses seven per cent of 
the CPU time. Similarly, over seventy per cent of the time spent by the kernel process at the checksite is consumed 
by link, unlink, and open. 

scheduled 
scheduled 
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One way of avoiding the inefficiencies of the UNIX file system would have been to use the raw disk interface 
instead. The problem with this is that we would no longer be able to use exec to load the code of an object into a 
new address space. Instead we would have to write our own loader, and execute out of data space. This in turn 
would have prevented us from sharing code between objects of the same Edentype that happen to be on the same 
machine. Since object code is large (usually over 150 kbytes, much of it in the form of common libraries) this 
would have significantly increased swapping and paging. 

Another way of looking at the deficiencies of our checkpoint operation is to say that it hides the power of the 
disk. Object programmers know that disks are capable of random access, and they resent being forced to treat the 
disk as if it were a magnetic tape. If the file is organized as a list of pages, then a small atomic change can be made 
simply by creating replacements for a few pages in the file and changing some of the page references in the index. 
In other words, the disk is capable of atomically changing a small part of a large file, but we do not take advantage 
of it. In fact, the paging hardware is equipped with dirty bits that could do an efficient job of recording exactly 
which pages have been changed since the last checkpoint - but of course the UNIX abstraction of address space does 
not allow one to access that level of the implementation. 

Another place where UNIX hides power is discussed at length elsewhere [16]: the Berkeley 4.2 inter-process 
communication primitives, which omit to report if an IPC message has been dropped, even in the local case. But it 
is easy to criticize Urn, and to forget its benefits. Apart from the availability of source code and the relative ease 
with which it could be modified, the chief reason for our choice of Urn as a prototyping environment was that it 
provided a path whereby users could be migrated gradually onto Eden. It also provided an environment in which it 
was possible to use Urn tools to accomplish Eden tasks. As an example, at a time when there were no Eden 
facilities for input from and output to the terminal, it was possible to demonstrate the Eden mail system by using the 
Emacs editor and a filter process to compose a mail message [6]. Similarly, we have an interface that allows one to 
use Emacs to edit Eden files as easily as UNIX files. 

Another advantage of building Eden on top of Urn is that the two systems can coexist. Eden is currently 
running on sixteen Sun workstations, including the one on which we are composing and formatting this report. 
When Eden activity is low, Eden does not intrude on the Urn user, yet the constant availability of Eden makes it a 
more suitable laboratory than if the workstation cluster had to be rebooted with the Eden system for each 
experimental use. 

In the final analysis, we think that we made an appropriate choice in picking Urn as a prototyping environment. 
The main cost is performance, and Eden has been criticized on these grounds. In fact, performance of invocation 
has improved substantially since our first messages were exchanged, and now approaches the limit of what one can 
expect from a system that requires four cross-address space calls for each invocation and reply. It is adequate for a 
wide range of experiments. Checkpointing and activation are limited by the speed and structure of the file system, 
and are more of a bottleneck in some applications. We believe that further significant performance gains can come 
only from a major reimplementation, in which the use of Urn processes is severely restricted As an illustration, 
the current prototype of the Emerald distributed programming system implements all the objects on a given node 
inside one Urn address space. Local invocations can therefore be made without incurring the cost of Urn context 
switches; as a result, the most general form of local invocation is only fifty per cent. slower than an ordinary 
procedure call. Only when accessing the network is it necessary to call the Urn kernel. Nevertheless, the Emerald 
workstations can still run Urn, which is an aid to debugging and provides a suitable environment for the Emerald 
compiler. 

2.6. Summary 

Eden is an implementation of an advanced object-oriented distributed programming environment. It is supported by 
its own programming language, which provided an early implementation of what has come to be known as Remote 
Procedure call: including full stub generation for both the invoker and invokee. Over three hundred thousand lines 
of EPL application code have been written, comprising about a hundred different Edentypes. Significant 
experimental research projects in transactions, concurrency control, replication, and loadsharing, as well as many 
more minor studies, have been carried out on top of Eden; none of this would have been possible without the 

t In the context of Eden the name is unfortunate: it is fundamental to the system that the invoker does not need to know whether the target is 
remote, and that the called entity is an object rather than a procedure. 
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existence of the Eden system. 

Having reviewed these successes, it is only fair to point out that not a l l  of the original technical objectives of 
Eden were fully achieved. Partly this is due to some naive objectives; for example, the 1979 proposal anticipated 
the Eden system becoming the general department computing utility. Partly this is due to some naive choices in the 
early years of the project; for example, an initial decision to base the implementation on the Intel iAPX-432 
processor. On balance, though, we are pleased with the accomplishments of the project. 



Technical Impact 

In this brief section we attempt to be specific concerning the technical contributions of the Eden project. As noted at 
the conclusion of the previous section, not all of the original objectives of the project were fully realized. 
Nonetheless, the accomplishments of Eden are significant, both when viewed absolutely and when viewed relative 
to other research projects of comparable scope. 

Technical impact, of course, is quite hard to quantify. One can count refereed publications (twenty one to date). 
One can count theses directly related to the Eden research (six completed Doctoral theses, with another six nearing 
completion; fifteen completed Masters theses). One can observe the influence of Eden on current research in 
distributed systems (for example, the ISIS project [60] the Clouds Project [59] and the Amoeba system [67]) and 
even on commercial systems (the Apollo Domain System has adopted may of Eden's features, although the 
implementation is radically different). Eden was recently chosen for detailed description in Tanenbaum's 
"Distributed Operating Systems" paper in ACM Computing Surveys [68]. A 1985 mailing describing Eden 
technical reports attracted several hundred requests for copies. Whatever metric one chooses, it is clear that the 
impact of the Eden project on the technical community has been significant. 

Eden's accomplishments arise from the design, implementation, and use of a series of prototype 
implementations, from the collection of applications that have been implemented, from the research that has been 
conducted on top of Eden, and from its substantial impact on systems research in the department. Here we briefly 
list some of the more significant achievements: 

Three versions of Eden were implemented: a single-node prototype built on a VAX running VMS, a distributed 
version based on VAXKJNIX, and a distributed version built on SunRTMx. This last version has been in use 
since 1984. 
Eden is the fist complete implementation of a distributed, object-based system with location-independent 
invocation of capability-addressed objects. Eden objects are active and mobile. Eden's invocation mechanism 
was one of the first implementations of a complete remote procedure call facility. 

A language for programming distributed applications, the Eden Programming Language (EPL) [171, was 
designed, implemented, and used to build a variety of applications. Based on Concurrent Euclid, EPL provides 
direct support for two of the fundamental abstractions of Eden: capabilities and invocation. 

While built on top of UNIX, Eden itself provides the user with a complete, advanced environment for the 
development and execution of distributed applications. 

Eden papers have appeared at each of the last four ACM Symposia on Operating Systems Principles - the major 
conference in the field [ l ,  15,16,36]. (The 1979 paper was a result of work undertaken during preparation of the 
grant proposal.) Another major paper appeared in IEEE Trans. on Sofrware Engineering [7]. 

An adaptation of an Eden M.S. thesis has become a highly regarded monograph [401. 
Within 7 years after the start of the Eden project, we expect that Eden will have spawned roughly a dozen Ph.D.s 
and fifteen Master's degrees. The Master's graduates are shown in Table 3.1; Ph.D. graduates are noted in Table 
4.4. 
A significant number of distributed applications and services were constructed on Eden, including: 

- the Eden File System [32] 
- the Eden Mail System [5,6] 
- the Eden Shared Calendar System [271 

- the Eden terminal handler 
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Table 3.1: Eden-Related M.S. Degrees 
(See Table 4.4 for Eden-Related PLD. Degrees) 

- the Eden command language interpreter 

- the Eden Window System (on which the work described in reference 13 is based) 

- the distributed Eden Programming Language translator 

- an application-level service for replicating Eden objects [45], which led to a new technique, regeneration, for 
automatically regenerating lost replicas [521 

- a kernel-level service for replicating Eden objects [481 

- an implementation of nested transactions [50,51] 

Because of characteristics such as location independence, mobility, and remote procedure call, Eden has also 
been used as a research tool in a number of projects, including: 
- studies of load sharing [9,22,23,35] 

- studies of graphical interfaces [lo, 131 

- a study of replication policies and a comparison of replication methods [47] 

- a study of the performance of time interval concurrency control techniques [46] 

Issues arising directly from Eden have spawned a number of research efforts, including: 
- the design and implementation of a visual, object-oriented, editing-based user interface [551 

- an analysis of object finding algorithms using forwarding addresses [24,251 

- The design of an algorithm for on-the-fly backup of databases [49] 

- a study of garbage collection in distributed systems [57] 
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- a project in language support for distributed programming [18,20,29,34] 

- studies of diskless workstation performance [37] and of dynamic file usage patterns [66] 
- a study to design and implement advanced architectural support for object-based distributed systems [l 11 

- the design and use of a set of notational tools for the specscation and implementation of concurrent 
programs [431 

- a study of the way in which transaction mechanisms can take advantage of object semantics to increase 
concurrency [30] 

Over Eden's lifetime, roughly 40 graduate students, 6 faculty members, and 8 staff members have participated 
directly in the project; many others have benefited from its existence. A 1985 NSF site visitor stated: 

Viewed as a research project rather than as product development, I would rate Eden as a great 
success; something to be very proud of. 





Influence on the Environment 

Eden, like most CER projects, had two objectives. The first objective was technical: to carry out a specific 
experimental research project. (Eden was considerably more focused in this regard than most of its successors in 
the CER program.) The second objective was environmental: to strengthen Washington's department, and to 
transform it into one where experimental techniques are routinely employed. It is the environmental aspect that is 
addressed in this section. 

It is difficult to assess environmental changes quantitatively, but the Eden Project has played a substantial role in 
a number of key areas: 
- While Washington's department still is moderate in size, we have seen substantial growth, particularly in 

experimental areas. We are able to recruit excellent new faculty. 
- Our orientation continues to be research and PhD. education; we have a small, highly-selective undergraduate 

major program, and a minimal service obligation. 
- Grant and contract revenue has increased substantially. 
- State support also has increased substantially; particularly important is a large commitment of laboratory space 

for both research and instruction. 
- The composition of our graduate program has improved, and our production of experimentally-oriented Ph.D. 

graduates has increased markedly. 
- Many new industrial relationships have been formed. 

These points are illustrated in tabular form in the remainder of this section. 
Table 4.1 provides a statistical snapshot of the department in September 1986, as well as 1980 benchmarks for 

certain key indices. These indices point not only to healthy growth, but also to an increasing experimental 
orientation. 

90 Ph.D. students 40 M.S. students 
15% of applicants are offered admission 
45% of offers are accepted 

150 undergraduates (Juniors and Seniors only) 
very low service teaching load 

23 faculty (up from 14 in 1980) 

11 technical support staff (up from 1) 
14 administrative support staff 

Space per faculty member: 900 square feet (up from 630) 
Capitalization per faculty member $1 10,000 (up from 
$42,000) 

Annual budget: $4,000,000 + 
55% external research 

17 NSF grants (including 1 CER) 
4 DoD contracts 
9 industrial grants 

35% instruction 
1/3 undergraduate instruction 
1/3 graduate instruction 
1J3 graduate advising 

5% internal research 
5% miscellaneous 
Non-CER Federal revenue up from $400,000 to 
$2,000,000 

1 Ranked in the top 10 in the 1982 reputational survey. ( State budget up from $500,000 to $1 J00.000 1 
Table 4.1: Statistical Snapshot 

Table 4.2 lists the faculty. Half of the current faculty have joined the department since 1980. Of the recent 
hires, Levy, Snyder, Henry, Notkin, Sloan, DeRose, Ebeling, and Schlag all exhibit a significant experimental 
dimension in their research. These people have chosen to come to Washington over competing offers from the best 
academic departments (e.g., Stanford) and the best industrial research laboratories (e.g., the DEC Systems Research 
Center). 
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1959 Hellmut Golde (Stanford) 
1961 Theodore H. Kehl (Wisconsin) 
1968 Jerre D. Noe (StanfordJS RI) 
1969 Jean-Loup Baer (UCLA) 
1971 Richard E. Ladner (Berkeley) 

Alan C. Shaw (Stanford/Comell) 
1977 Edward D. Lazowska (Toronto) 

Walter L. Ruzzo (Berkeley) 
Steven L. Tanimoto (Princeton/Connecticut) 

1980 AlanBoming (S tanford/J%inburgh) 
John Zahorjan (Toronto) 

1981 Andrew P. Black (Oxford) 
1983 Henry M. Levy (Washington/DEC) 

Lawrence Snyder (CMU/Yale/purdue) 
Paul Young (ha/S tanfordkdue) 

1984 Robert Henry (Berkeley) 
David Notkin (CMU) 
Richard Pattis (Stanford) 
Kenneth R. Sloan (Pennsylvania/Rochester/MlT) 

1985 Tony DeRose (Berkeley) 
1986 Richard Anderson (Stanford/MSRI) 

Carl Ebeling (CMU) 
Martine Schlag (UCLA) 

1987 Paul Beame (Toronto/MIT) 

Table 4.2: The Faculty 

As indicated in Table 4.3, the department has six areas in which its reputation is particularly strong. Many 
faculty span multiple areas; this is a major strength of our research programs. 

Computer Architecture & VLSI Programming Environments & User Interfaces 
Jean-Loup Baer Alan Boming 
Carl Ebeling Richard Ladner 
Ted Kehl David Notkin 
Hank Levy Larry Snyder 
Martine Schlag Steve Tanirnoto 
Larry Snyder 

Computer System Performance Analysis Image Analysis and Graphics 
Jean-Loup B aer Tony DeRose 
Ed Lazowska Ken Sloan 
Jem Noe Steve Tanimoto 
John Zahorjan 

Computer Systems Theory of Computation 
Andrew Black Richard Anderson 
Robert Henry Paul Beame 
Ed Lazowska Richard Ladner 
Hank Levy Lany Ruzzo 
Jerre Noe Martine Schlag 
David Notkin Larry Snyder 
Alan Shaw Paul Young 
John Zahorjan 

Table 4.3: Major Areas of Research Strength 

At the graduate level, the major change has not been in the number of enrolled students (which has remained 
relatively constant), but in their character. Full time students have increased from 56% of those students who 
entered in the 1979-1981 biennium to 91% currently. Students whose bachelors degree was from the University of 
Washington made up 22% of our intake in the 1979-1981 biennium; they now account for only 8%. These figures 
reflect the transfornation of the department from one filling regional needs into one with a national reputation. 
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Finally, the number of Ph.D. graduates has increased from 7 in the 1979-1981 biennium to a realistic projection of 
23 for the 1985-1987 biennium, as shown in Table 4.4. 

Name Date Thesis Title Employer Advisor 

E Jeffrey Scofield 10/85 Editing as a Paradigm for User In- Cedar River Soft. A. Boming 
teractwn Renton, WA 

E Robert J. Fowler 10/85 Decentralized Object Finding Using Univ. of Rochester R. Ladner 
Forwarding Addresses Rochester, N.Y. 

Sai Choi Kwan 10B5 External Sorting: I10 Analvsis and Bell Laboratories J.-L. Baer 
parallel procesing ~echni~ue; Murray Hill. NJ 

E Leif Nielsen 6/86 Separation of Data Manipulation and Danish Center A. Black 
Control for Comp. Sci. 

Robert Duisberg 6/86 Constraint-Based Animation: The Im- Tektronix A. Boming 
portance of Temporal Constraints in Beaverton, OR 

I Animus 
CarlenB. Bennett 7/86 Use of Temporal Coherence in Com- Consultant S. Tanitnoto 

puter Animation Seattle, WA 
E CaltonPu 7/86 Replication in Nested TrMsactions in Columbia Univ. J. Noe 

t k  Eden Distributed System New York, N.Y. 
Joseph Pfeiffer 8/86 Integrating Low-Level and High-Level Nh4 State Univ. S . Tanirnoto 

Compufer Vision Las Cruces, Nh4 
, Richard Furuta 8/86 An Integrated, but not Exact- Univ. of Maryland A. Shaw 

~epresentation, Editor/Formatter College park: MD 
H. Venkateswaran 8/86 Characterizations of Parallel Complex- Georgia Inst. Tech. M. Tompa 

ity C h s e s  ~ t l ~ t a ,  GA 
James K. Archibald 12/86 T k  Cache Coherence Problem in Mul- J.-L. Baer 

tiprocessors 
E Stephen Vestal 1/87 Garbage Collection: An Exercise in Honeywell Res. Ctr. E. Lazowska 

Distributed Fault-Tolerant Program- Minneapolis. MN 
minx 

E Norman Hutchiion 1/87 Emerald: An Object-Oriented Univ. of Arizona H. Levy 
Language for Distributed Program- Tucson, AZ 

I ming 
Ronald Blanford 6/87 Pyramid Algorithms for Computer Vi- S . Tanirnoto 

(exp.) sion 
E David Jacobson 6/87 TrMsactions on Abstract Data Types L. Snyder 

(exp.1 
E Eric Jul 6/87 Object Location and Mobility in Distri- Univ. Copenhagen H. Levy 

(exp.) buied Systems ~enrnark  
Philip Nelson 6/87 Paradigms for the Development of L. Snyder 

(exp.) ParallelAlgorithms 
E Sayed Banawan 8/87 Load Sharing in Distributed Computer J. Zahorjan 

(exp.) Systems 
, E John K. Bennett 8/87 Distributed Smalltalk E. Lawwska 

(exp.) 
E CarlBi;ldig 8/87 The Specijication and Implementation A. Shaw 

(exp.) of a User Interface Toolkit 
Anne Condon 8/87 Probabilistic Game Automata R. Ladner 

(exp.) 
E Michael Schwartz 8/87 Naming in Large Heterogeneous Sys- J. Zaho rjan 

(exp.) tems 
Akhilesh Tyagi 8/87 The Role of Energy in VLSI L. Snyder 

(exp.) 
Chyan Yang 8/87 The Multigauge Architecture L. Snyder 

I 
- - 

(exp.) 

Table 4.4: 1985-1987 (Academic Year) Ph.D. Degrees 
(E denotes Eden-ReIated Ph.D. Degrees) 
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A number of important industrial relationships have formed at least partially in response to the department's in- 
volvement in the CER program. Table 4.5 displays some of these. 

Digital Equipment Corporation 
VAX Pascal compiler project (1978) 
Presence of Henry Levy (1981-82; 1983-) 
External Research Program support of CER projects (1981-) 

more than $650,000 in allowances in the past 12 months 
Sabbatical leaves 

Lazowska to Systems Research Center, 1984-85 
Kehl to DECwest Engineering. 1985-86 
Black to DEC-Littleton, 1986-87 

David Cutler (DECwest Engineering), Affiliate Professor, 1985- 
Faculty Development Award to DeRose 

IBM 
Research support for Ladner (DBNet), Baer (architectures for sorting) 
Faculty Development Award to Notkin 
Martin Tompa, Affiliate Associate Professor. 1985- 
$1,200,000 in instructional laboratory equipment for our department 
Two "regular" graduate fellowships 

Tektronix 
Equipment support for research and instruction 
Cooperative NSF grant with Borning 

Boeing 
Research support for Baer (parallel architectures), Shew (real-time systems), 

and the graphics lab 
Janusz Kowalik (Boeing AT Center), Affiliate Professor, 1985- 

Northwest Laboratory for Integrated Systems (formerly UW/NW VLSI Consortium) 
8 corporate members: Boeing, Eldec, John Fluke, Honeywell, Microtel, 

Seattle Silicon, Silicart, Tektronix 

Xerox 
$500,000 in equipment support for CER and other projects 

Department Industrial Affiliates Program 
10 corporate members 

Table 4.5: Industrial Relationships 

At the start of the Eden project in 1980, the University of Washington's department was regional rather than 
national in character. A 1985 NSF site visitor commented: 

By every conventional measure, this department has made great progress towards becoming a top- 
quality national resource in computer science. 



Participants 

The following individuals participated significantly in the Eden Project during its five-year lifetime: 

Faculty: 
Guy T. Alrnes 
Andrew P. Black 
Michael J. Fischer 
Hellmut Golde 
Edward D. Lazowska 
Jerre D. Noe 

Staff: 
Mark Baratta 
Cher Gunby 
Gary Mager 
Margie Ramsdell 
Jim Rees 
Blair Rice 
Jan S anislo 
Voradesh Yenbut 

External Review Committee: 
James C. Browne 
Peter Hibbard 
Jim Moms 
Jerry Saltzer 

Graduate Students: 
Agnes Andreassian 
Sayed Banawan 
Karen Beall 
John K. Bennett 
Ellen Bierman 
Carl Binding 
Jordan Brower 
Carl Bunje 
Susan J. Cady 
Ann Condon 
Isabel Domenech 
Robert J. Fowler 
Cara Holman 
Felix Hsu 
Norman Hutchinson 
David M. Jacobson 
Paul Jensen 
Warren H. Jessop 
Tod K. Johnson 
Eric Jul 

Gary Kirnura 
Thomas Knight 
Richard Korry 
Henry M. Levy 
Peter Ma 
Barry C. McCord 
Eli Messinger 
Leif S. Nielsen 
Jimmy D. Nilson 
Andrew Proudfoot 
Calton Pu 
Rajendra Raj 
Wendy Rowley 
Susan St. John 
Michael Schwartz 
Jeffrey Scofield 
H. Venkateswaren 
Steven Vestal 
Douglas Wiebe 
Thomas Yap 
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