
The Eden Project: A Final Report

Andrew P. Black, Edward D. Lazowska,
Jerre D. Noe and Jan Sanislo

, Department of Computer Science
University of Washington

Seattle, WA 98195

Technical Report 86- 1 1-01
A

The Eden Project: A Final Report

Andrew P. Black, Edward D. Lazowska,
Jerre D. Noe and Jan Sanislo

Department of Computer Science
University of Washington

Seattle, WA 98195

Technical Report 86-1 1-01

The Eden Project: A Final Report

Andrew P. Black, Edward D. Lazowska,
Jerre D. Noe and Jan Sanislo

Department of Computer Science
University of Washington

Seattle, WA 98195

Abstract

The University of Washington's Eden Project was funded in September 1980 by the first award in the National
Science Foundation's Coordinated Experimental Research Program. This is the final report of that project

Eden, like most CER projects, had two objectives. The first objective was technical: to cany out a specific
experimental research project concerned with designing, building and using an "integrated distributed" computing
system. (Eden was considerably more focused in this regard than most of its successors.) The second objective was
environmental: to strengthen Washington's Computer Science department, and to transform it into one where
experimental techniques are routinely employed.

The structure of this report reflects this duality. After an introduction, we provide an overview of the system: its
architecture, its implementation, its programming environment, its applications, and a technical assessment Then in
two brief sections we outline the project's technical impact and its influence on the environment.

'Ihis work was supported in part by the National Science Foundation under Grants MCS-8004111 and DCR-8420945. Computing equipment was
provided in part under a cooperative research agreement with Digital Equipment Corporation.

Introduction

The University of Washington's Eden Project was funded in September 1980 as the first award in the National
Science Foundation's Coordinated Experimental Research Program.

Eden, first and foremost, was a five year experiment in designing, building and using an "integrated distributed"
computing system [7,16,19,36]. Eden attempted to combine the benefits of integration with those of distribution by
supporting an object-based style of programming across a local area network. The system was integrated because
operations could be performed on any object anywhere in the network, without any need to know the location of the
object. The hypothesis of Eden was that this environment would be conducive to building distributed applications.

To test this hypothesis, a prototype Eden system (actually, a series of three different prototypes) and a variety of
distributed applications were constructed. Roughly 100 different Eden object types existed at the official close of
the project, comprising some 300,000 lines of Eden Programming Language code; more object types have been
written subsequently. In addition to this work on the Eden system itself, the project proved to be the catalyst for a
great deal of other experimental research in distributed systems. Some of this work, such as research on load
sharing in distributed systems [9,22,23,351 and on replication, transactions and concurrency control [32,45-
48,5 1,521, used the Eden system as a laboratory and could not have taken place without its presence. Other work,
such as the Emerald language [18,20,29,34] and a variety of theoretical studies on distributed systems [24-26,411,
was motivated by the experience of designing, building and using Eden, and would not have happened without that
context.

Although Eden differed £rom most subsequent CER grants in that its emphasis was on supporting a focused
research effort rather than on providing general departmental infrastructure, to a large extent it succeeded in doing
both. Eden represented a collective decision by certain members of the department to pursue a new, more
experimental research direction, and an important effect of the project has been to substantially increase the
experimental focus and capabilities of the department.

The structure of this report reflects the multiple facets of the project. Section 2 is a technical overview of the
Eden system and some of its applications. Section 3 discusses the technical impact of the project; substantial
contributions to the field have been made by the Eden system, the Eden Programming Language and various Eden
applications, as well as by various research projects that used Eden as an experimental laboratory. Section 4
highlights the effect of the Eden project on the general research environment at the University of Washington.

System Overview

The Eden system attempts to combine the benefits of integration and distribution by supporting an object-based style
of on a number of "node machines" interconnected by a local network. We believed that this
environment would simplify the task of building distributed applications. At the scientific level, the goal of the
project was to test this belief experimentally; to do so involved building a prototype Eden system and implementing
a variety of applications on it. This section of the report presents a technical overview of the Eden system and
glimpses of some of the applications. It also describes some of our experiences as builders of a large distributed
system. A more complete but less current introduction to the structure of Eden will be found in reference 7.

2.1. The Eden Distributed System

Eden represents a merging of three distinct threads in operating system design. First, Eden is a state-of-the-art
object-oriented system. Viewed in this way, Eden is a descendant of Hydra [70]. Second, Eden is a complete
distributed operating system. In this sense it is rather like the Apollo DOMAIN [63] system or UCLA's LOCUS
system 1691. Third, Eden includes a full-scale implementation of Remote Procedure Call (RPC). In this sense it is
rather like the RPC system pioneered by Xerox [61.]. Eden thus has something in common with a number of the
advanced operating system projects of the last few years. However, in combining the advances of these systems,
Eden provides a unique set of facilities. It is distinguished from systems such as LOCUS in being based on a
contemporary object-oriented model. It is distinguished from the contemporary implementation of the Apollo
DOMAIN system by having a notion of object that is definable and extensible by the user. It is distinguished from
the Xerox system by the fact that objects are mobile and that the binding of a client to a server is performed upon
every invocation rather than just once. And of course it is a significant advance over the Hydra system in that
distribution is an integral part of Eden.

It is important to observe that Eden is not a collection of facilities provided on top of an existing operating
system in an attempt to add distribution to a conventional style of computing. This is true despite the fact that the
current prototype implementation of Eden is built using the facilities of urn.@ U r n is merely an implementation
vehicle; Eden itself provides the user with a complete, advanced environment for the development and execution of
distributed applications.

Eden objects, the basic building blocks of distributed applications in Eden, exhibit the following characteristics:
- Invocation is the means whereby one object obtains service from another. It may be thought of as a request

message followed some time later by a response message.
- Invocation is location independent; one object does not need to know the location of another object in order to

invoke it.
- Objects are addressed by capabilities. Capabilities are not addresses. Rather, each object has an unique

identifier. A capability consists of that unique identifier and a set of rights. The problem of locating an object
given only its capability is handled by the system itself. Capabilities are protected from forgery by the system.

- Objects are mobile.
- Objects are autonomous. Each object has one or more processes within i t This stands in contrast to Smalltalk

objects, where threads of control enter an object when a request is made but leave it when the response is
completed. Eden objects can perform activities on their own behalf, as well as in response to invocations.

This section is a revision of an invited paper presented at the European U r n system Usen Group Conference. Manchester, England [19].

@ UNIX is a registered trademark of AT&T.

6 The Eden Project: A Final Report

- Each object has a concrete Edentype, which may be regarded as a description of the state machine that defines
the behavior of the object, i.e., those invocations that it will accept and what their effect will be. In
implementation terms the concrete Edentype is a piece of code in the Eden Programming Language.

- Each object has a data part, which includes long-term state representing the data encapsulated by the object and
short-term state consisting of the local data of invocations currently in progress, hints, caches, and so on.

- An object may checkpoint. This is an atomic way of writing its state to stable storage. The data is written under
the control of the concrete Edentype of the object. Typically all of the long-term state will be written, and as
much of the short-term state as is necessary to achieve the reliability specification of the object.

- Finally, objects are activated automatically when they are invoked, if this proves to be necessary. Conceptually
we wish to regard objects as active at all times. Should they fail or be passivated to conserve resources,
activation will take place from the checkpointed representation.

These characteristics of Eden objects lend the following unique characteristics to the Eden system as a whole:
- First, it is an integrated system with a single uniform system-wide namespace. Its space of objects is managed

by the system, in the sense that the system takes care of obtaining resources for the creation of a new object and
for garbage collecting objects when they are no longer accessible.

- Eden supports the notion of abstract Edentypes. Several different pieces of concrete code can implement
services that at some level of abstraction may be considered as identical. For example, there may be two
concrete directory types which support the same set of operations but which exhibit different reliability and
performance characteristics. When invoking a directory the invoker need not be concerned with which concrete
type is actually used. This simple idea permits us to support multiple inheritance hierarchies in the sense of
Smalltalk and the asymmetric stream concept, and is discussed further in section 1.5.

- The third consequence is that data encapsulation (information hiding) is supported and enforced by the system.
The only code that accesses the representation of an object is the code that makes up that object's concrete
Edentype. If the object's data structure is found to violate its invariants then only the object's own code need be
examined to find out why. Similarly, if a change in use requires that a data structure be modified, all the code
that needs to be modified is within the object itself.

- Fourthly, objects are secure. The system ensures that only through possession of a capability can an object be
accessed. The system also ensures that capabilities cannot be forged. The access rights in a capability enable us
to provide fine-grained restrictions on access.

- Another consequence of our design is that Eden does not offer automatic insulation from crashes. A general-
purpose atomic action system is not one of the primitives that Eden provides. We do provide the atomic
checkpoint primitive, whereby programmers who so desire can build robust and secure applications. This is a
different approach from that taken by, for example, the Argus system [64,65] and the Clouds system [59], where
atomic actions are among the basic building blocks provided at the system level. In Eden, it is possible to
experiment with different approaches to providing transactions [51].

2.2. Implementation

The Eden system has been operating on a collection of VAX systems since April 1983 and on a collection of Sun
workstations since September 1984. The Eden implementation is in two parts: the Eden Programming Language,
and the Eden kernel. Eden coexists with UNIX, in the sense that an individual can make simultaneous use of UNIX
and Eden services. This coexistence was crucial in minimizing the software effort required to make Eden usable,
and was the main motivation for our choice of prototyping environment.

The set of UNIX facilities that Eden uses is small: processes and address spaces, a minimal flat file system, and
the ability to load code into those address spaces from a file. We attempted to minimize the changes made to the
UNIX kernel. Starting with 4.1 bsd U r n , we added an Ethernet driver and an inter-process communication
mechanism, and decreased the granularity of the timer, other changes were limited to system parameters.

Each Eden object is implemented as a U r n process. The Eden kernel operates as an additional UNM p e s s on
each node; this process is called an Eden host. Both the host and the object processes operate in "user-mode", and
do not require any special privileges. The r61e of the host is to create object processes, to maintain part of an
object's state, to maintain caches of object locations, passive representations and code, and of course to implement

2 1 System Overview ~ - 7

the set of system calls that characterize Eden, including the calls that send an invocation, create an object, and
checkpoint a passive representation.

In addition to the host, every node with a disk runs a second kernel process called a POD, for Permanent Object
Database. The POD'S function is to manage the passive representations of those objects that have checkpointed
onto its disk. When a checkpoint occurs, the POD arranges that the old passive representation is replaced
atomically by the new data; this may involve communicating with other PODS if the checksite has moved. The
POD also manages the executable code that makes up an Edentype: this code is simply the passive representation of
another object of type Typestore.

When one object wishes to invoke another, it calls the kernel-provided Asynchlnvoke primitive, passing the
capability of the target object and the appropriate data as parameters. If the target object happens to be located on
the same node as the invoker, the kernel will discover this by examining its tables, and will deliver the invocation
message directly. To reply to the invocation, the target makes the ReplyMsg kernel call, and the kernel routes the
reply message to the invoker. If the information in the kernel's location tables indicate that the target object is on
another node, the kernel will send the invocation message to the kernel process on that node, which will deliver it to
the target object. If there is no entry in the kernel's tables for the target object, the kernel engages in a multi-layered
location protocol, which will eventually return with either the location of the active form of the target object, or
with an indication that the object is not active but that its passive form is located on a particular POD. In the latter
case, the object is automatically activated on an appropriate host, to which the POD makes the executable code and
the passive representation available. Once the target object is actived, invocation proceeds as normal.

2.3. The Eden Programming Language

A major achievement of the Eden project has been the design and implementation of the Eden Programming
Language. EPL is based on Concurrent Euclid, a Pascal extension providing processes, modules and monitors; it
provides direct support for the fundamental absuactions of Eden, that is, capabilities and invocation. Capabilities
are first-class citizens, even to the extent of having source-language denotations. Syntax exists both for sending and
receiving invocations, making invocations as easy to use as conventional procedure calls. We feel that this has been
a key factor contributing to the ease of use of Eden.

Directory Stub Procedure

procedure Lookup(...)
RootDirectory .Lookup(

{Pack arguments into ESCIIJ

Dispatcher.Synchlnvoke(. . .
{unpack results)

end
Invocation

Figure 2.1: Sending a Lookup Invocation

The signiiicance of EPL is not that it extends the state of the art of language design, but that there is a careful
match between the concepts of Eden and the structures of EPL. The Eden invocation is simple in concept; the
challenge was to make its realization in EPL equally simple. On the invoking side, the programmer sees an ordinary
procedure call with an additional status parameter (see Figure 2.1). On the invoked side, the programmer writes a
procedure body, again quite ordinary except that it is designated an invocation procedure and certain parameters
must be present. In addition, some process on the invoked side must receive the invocation and call the invocation

8 The Eden Project: A Final Report

Directory Code

invocation procedure Lookup(...) =

begin

{code to search the directory

Md find the requested key]

end Lookup

Figure 2.2: Receiving a Lookup Invocation

DispatcherReceiveOperations

CallInvocationProcedure(I)

procedure. The declaration of the invocation procedure is a way of stating that the object is willing to handle a
particular invocation; it also defines the parameter list for that invocation, and thus provides the information needed
to perform type-checking.

CIP for Directory

procedure CallInvocationProcedure
(I: InvocatwnHandle) =

begin
{Fetch values from ESCII.
if OperationName is "Lookup" then]

Directovbokup(...)
{Pack results into reply ESCII]

DispatcherReplyMsg(1, Results)

The figures illustrate how invocation support is implemented. The invoking routine actually calls a stub
procedure (in the rectangular box, Figure 2.1), which has been generated by a program from a description of the
invocation interface. The receipt of an invocation is shown in Figure 2.2. The invocation is received by a user-
written process (in the circle in Figure 2.2), but typically the only action of this process is to call the automatically
generated CalUnvocationProcedure which unpacks the arguments, calls the appropriate procedure in the target
object, and packages up and sends the results.

The other main contribution of EPL is the provision of intra-object concurrency. A run-time kernel provides
multiple light-weight processes and monitors within the UNIX process that supports the object. Thus, when a client
process makes a remote invocation, it is possible to suspend just that process pending the receipt of a response; other
client processes are free to continue. It is therefore possible to write a library module that implements the
abstraction of synchronous communication, using the Asynchlnvoke kernel call and EPL processes and monitors.
One such module, the Dispatcher, is the standard way of sending and receiving invocations in Eden; programmers
prefer not to use the asynchronous primitives, even though they are available. The matter of synchronous vs.
asynchronous communication and the availability of concurrency is discussed in greater depth in reference 16.

invocation

2 1 System Overview 9

2.4. Some Eden Applications

Each application that has been built in Eden has three objectives, although the relative emphasis on these objectives
differs among the applications:

- to evaluate the system

The value of the Eden architecture, i.e., the hospitability of the system for distributed applications, can only be
assessed through use.

- to make Eden a "complete" system rather than a "kernel"

In their evaluation of Cal-TSS, Lampson and Sturgis note that a kernel constitutes perhaps ten per cent of an
operating system [62]. A key advantage of the object-based approach used by Eden is that many traditional
operating system components can be built as applications.

- to conduct research into the applications themselves

The Eden system provides a laboratory for exploring the design and structure of distributed applications.

To consider a few examples: the Eden Mail System (Edmas) [6], our first application, was written largely with the
first objective in mind - testing the support that the Eden system provides for programming distributed applications.
It was not the intention to interconnect Edmas with other mail systems to provide a general mail utility, nor was it
the intention to study mail systems in general (although considerably more has been learned about this than was
anticipated). The same is true of the basic file system (a subset of the system described in reference 32).

The reader may be surprised to see us refer to the file system as an application, but conventional sequential files
are not part of the Eden kernel. A sequential file is simply an object that allows its contents to be read and written
using the Eden transput (input/output) system. The Checkpoint facility allows such an object to maintain its state on
the disk, and thus to exist permanently. However, sequential files are not the only form of long-term storage in
Eden. All objects, once checkpointed, are equally permanent. A means is required for keeping capabilities for
them; the Edentype Directory does just this. A Capability for any object can be associated with a mnemonic string
and stored in a directory, and can later be retrieved by performing a Lookup operation on the directory with the
string as argument. Since Directories can be entered into other directories, an arbitrary directed graph of Directories
can be built up from a single root.

The Eden Calendar System [27] was written largely with the first and third objectives in mind: to further
evaluate the Eden system's hospitability, and to explore the use of transactions in multi-user calendar systems. The
Eden Terminal Handler and the Eden Command Language Interpreter were built primarily because they were
necessary for the use of the system - the second objective. Finally, moving the translator for the Eden
Programming Language into Eden contributed to all three objectives: the translator exercises virtually every aspect
of the system, while exploiting the Eden architecture to solve specific practical problems.

Eden has been and continues to be used as a basis for research in distribution, replication, and concurrency
control. An experimental version of Eden provides replicated passive representations, and used a voting scheme to
keep them consistent in the face of failures [45,48]. Crash-resistant resources have been implemented on top of the
normal Eden system by using multiple objects to represent a single logical resource; to update the resource despite
some of the copies being unavailable, we regenerate the inaccessible copies elsewhere in the network [52]. We
have also implemented a general purpose nested transaction mechanism out of Eden objects; each transaction is
characterized by its own transaction manager object that is responsible for the concurrency control and crash
recovery of its sub-transactions [5 11.

To give the flavor of the way applications are constructed in Eden, we will briefly review the design of the Eden
Calendar System. More details can be found in reference 27. The Calendar system is designed to serve both as a
personal appointment book, in which one can schedule, list and cancel appointments, and as a shared calendar
system that assists in scheduling events with one or more other users, while guaranteeing consistency of the
calendars and detecting conflicts. We will first discuss some design considerations, and then the implementation in
terms of objects. The way that the objects interact to achieve atomicity will then be described; although this is
atypical of Eden applications (most do not have very stringent atomicity requirements), it is interesting to see how
transactions can be built that take advantage of the semantics of the particular operations available on the objects
concerned.

A fundamental feature of such a system is that information about appointments needs to be shared by all of the
participants. There are two obvious ways of doing this: centralising the information in one place, and letting each

10 The Eden Project: A Final Report

Representation

Start Time: Monday, 22nd Sept 1986 at 13:30
End Time: Monday, 22nd Sept 1986 at 15:00
Description: EUUG Conference Session
Event Status: Definitely Scheduled
Participants: Black <capability> ; Donner <capability> ;

Harper<capability>

Operations
AppendParticipantO
CancelEventO
ConhnEventO
GetNextParticipantO
LookupParticipantO
RejectEvent()
ScheduleEventO
SetDescriptionO
Show()

Figure 23: An Event Object

participant refer to it, or replicating the data so that each participant has a copy. Centralisation has the advantage
that consistency is assured, but performance and availability may suffer. Replication of the data means that one has
to take special care to ensure consistency; this also impacts performance, and may also adversely affect availability,
depending on the techniques used. The compromise reached in the calendar system is partial replication. The
system contains two basic types of Eden objects: Events and Calendars. Events are the repositories of the true
information about an engagement; Calendars contain hints and caches to improve performance, and use a
transaction mechanism to ensure consistency where necessary.

Figures 2.3 and 2.4 illustrate typical Event and Calendar objects. They may be thought of as abstract machines
that encapsulate the relevant data representation and provides access to it through a set of operations. The
representation of the event is a record structure containing the relevant data; note that the list of participants is
represented as a list of capabilities for their calendars. The given operations can be applied to the event to add
participants, interrogate the data, and so on. The ScheduleEvent operation provides automatic scheduling; it takes as
arguments an interval of time and a duration, and attempts to find a free slot on all of the participants' calendars of
the required duration within the interval. The calendar object (Figure 2.4) has a similar structure; the appointments
field is represented as a list of events. As well as Capabilities for event objects, some of the information about each
event is replicated in each participant's calendar.

Scheduling an engagement is a human-time operation that may take days or weeks: it cannot be completed until
the last participant has examined his calendar and agreed to the tentatively scheduled meeting - and that person may
be on holiday. Because most transaction techniques work well only when locks are held for brief time-spans,
scheduling is broken into two parts. First the event is tentatively scheduled, which is done at machine speed,
confirmations are then obtained from each participant.

The event object itself serves as the commit record for the scheduling transaction. The Event object first locks
the calendars of all the participants, finds an appropriate time slot, and then enters itself on all of the calendars in
that time slot. A two-phase commit is used to ensure that the event is entered on all of the calendars, or is aborted;
the locks can then be released. Each calendar replicates the data concerning the time span covered by the evenc this
is to enable searches for free times to proceed without the need to invoke every Event object. Since the timing
information does not change, its consistency is not an issue. The calendar also keeps information about the status of
the event. Initially, the event is tentative; when the calendar's owner agrees to the engagement, the status becomes
confirmed. Again, a two-phase commit is used to ensure that the Event object and the confirming calendar agree.
When the last participant agrees to the engagement, the Event object attempts to notify all of the participants that the

2 1 System Overview 11

I Representation
Owner's Name: Andrew P. Black
Last Read: Monday, 8th September 1986 at 09:30
Last Updated: Monday, 8th September 1986 at 0905
Appointments:

Start Time: 22 ix 1986 13:30 23 ix 1985 1200
End Time: 22 ix 1986 1500 23 ix 1985 13:OO
Status: definite tentative
Owner Action: accepted no action
Capability: <Figure 2.3> clunch event>

History:
Cancelled and past events

Operations
AddEveno, Remove()
Confirm()
FindFreeBlockO
GetLockO, FreeLockO
ListNextO
SetNameO
Setstatus()
Show(), S howEventTotalsO

Figure 2.4: A Calendar Object

appointment is now definitely scheduled. However, this information is relayed to the calendars on a "best effort"
basis; transaction techniques are not used. This is done so that the last user is not prevented from confirming an
engagement just because another participant's calendar is unavailable (perhaps because a machine is down). The
"confirmed" status in a calendar is thus a hint that needs to be checked against the truth held in the Event object; it
is possible that the event is in fact scheduled, but that the calendar object has not been informed. The process of
scheduling an event is shown in Figure 2.5.

2.5. A Technical Assessment

The Eden system can be assessed in two frames of reference. First, considered as an architecture for supporting
distributed applications, one can take specific features of Eden and see how they contribute to that goal. A recent
SOSP paper [16] attempts this task; in this forum we will merely mention some of the more significant findings.
Secondly, one can assess the current implementation of Eden as an artifact in its own right: how good a job did we
do in building it, and in what ways did our substrate system (Urn) help us or hinder us.

Considered as an architecture, Eden provides good support for applications. This is of course the finding we
hoped for, but it is certainly not just experimental bias. The fact that two students could undertake the building of a
distributed mail system as a six week project for the graduate operating systems course - and complete the task on a
kernel system that was still being actively debugged - was surprising even to us. The credit must go not only to the
system design itself, but also to the programming language support that was provided, almost as an afterthought.
EPL's provision of syntactic support for invocation receipt and dispatch, and the combination of synchronous
invocation and lightweight processes, seem to be tools that are accessible to the ordinary programmer. Those of us
deeply involved in the mystique of the innards of Eden were at first alarmed when programmers who had
constructed substantial applications asked questions that displayed what was to us an amazing ignorance of the way
the system worked. But of course, that is exactly as it should be: the programming language itself should present a
coherent model of computation, and programmers should not need to delve below that level.

One concept that has proved to be very important is the Abstract Edentype. While a concrete Edentype is a
particular piece of code that defines the interface and behavior of a real object, an Abstract Edentype is an
abstraction of this: the specification of an interface and a behavior. This specification may be satisfied by many

12 The Eden Project: A Final Report

Event I Har::."lkndar

tentative

Tentatively Scheduled by Harper:

Confirmed by Harper:
I

I

confirmed
Warper)

pre-tentative

Confirmed by Black:

confirmed
(Black)

tentative

pre-confirmed

confirmed

pre-tentative

tentative

pre-confirmed

confirmed

Figure 2.5: Stages in Scheduling an Event

When all participants have confirmed ...

concrete Edentypes or by none. A given concrete Edentype may implement several abstractions. The most obvious
application of this idea is in device-independent transput. The abstraction of a readable Stream is implemented by
several concrete Edentypes, in particular by sequential files and by the terminal handler. The implementation of the
transfer and close operations is obviously very different in each case, but an invoking object need not be concerned
with this, provided that data is available when transfer is called. Once recognized, Abstract Edentypes crop up in
all sorts of applications; for example, the extended version of Edmas [51 uses an internal abstraction Mailsink, as
well as sharing an abstract Edentype with the file system. Three different concrete types in the transaction-manager
tree [51] implement a lock manager interface; in this case, they also share the same implementation module.

scheduled

Eden allows the use of Abstract Edentypes, but does not offer any explicit support for them. Because
capabilities are not typed, a client that claims to be reading from a stream object will have no problem reading from
a sequential file, provided that the file supports the right interface. Explicit support for abstract types is one of the
design goals of a new distributed object-oriented language currently being implemented [18,20].

One of the less successful features of Eden is Checkpoint. In its favor is simplicity of concept and universality:
any desired updating of the passive representation can be achieved by using multiple checkpoints. However, in
practice this is of little use, because the cost of checkpointing is too high to make it a useful primitive. It may take
as long as a second to perform a checkpoint operation - if the amount of data is small (less than a few kilobytes),
this time is more or less independent of the size of the data. The reason is that most of the time is occupied by UNIX
overhead in updating the disk atomically. This is not something for which the Urn file system is particularly well
adapted. Indeed, in our initial implementation under Berkeley 4.1 Urn, it was impossible. Berkeley 4.2 Urn
provides an atomic rename system call and an operation that flushes the disk cache for a particular file; these enable
us to achieve atomicity, but it remains very expensive. Over seventy five per cent of the CPU time used by an
object in checkpointing a kilobyte is consumed by link, unlink, open, creat, and access; write uses seven per cent of
the CPU time. Similarly, over seventy per cent of the time spent by the kernel process at the checksite is consumed
by link, unlink, and open.

scheduled
scheduled

2 1 System Overview 13

One way of avoiding the inefficiencies of the UNIX file system would have been to use the raw disk interface
instead. The problem with this is that we would no longer be able to use exec to load the code of an object into a
new address space. Instead we would have to write our own loader, and execute out of data space. This in turn
would have prevented us from sharing code between objects of the same Edentype that happen to be on the same
machine. Since object code is large (usually over 150 kbytes, much of it in the form of common libraries) this
would have significantly increased swapping and paging.

Another way of looking at the deficiencies of our checkpoint operation is to say that it hides the power of the
disk. Object programmers know that disks are capable of random access, and they resent being forced to treat the
disk as if it were a magnetic tape. If the file is organized as a list of pages, then a small atomic change can be made
simply by creating replacements for a few pages in the file and changing some of the page references in the index.
In other words, the disk is capable of atomically changing a small part of a large file, but we do not take advantage
of it. In fact, the paging hardware is equipped with dirty bits that could do an efficient job of recording exactly
which pages have been changed since the last checkpoint - but of course the UNIX abstraction of address space does
not allow one to access that level of the implementation.

Another place where UNIX hides power is discussed at length elsewhere [16]: the Berkeley 4.2 inter-process
communication primitives, which omit to report if an IPC message has been dropped, even in the local case. But it
is easy to criticize Urn, and to forget its benefits. Apart from the availability of source code and the relative ease
with which it could be modified, the chief reason for our choice of Urn as a prototyping environment was that it
provided a path whereby users could be migrated gradually onto Eden. It also provided an environment in which it
was possible to use Urn tools to accomplish Eden tasks. As an example, at a time when there were no Eden
facilities for input from and output to the terminal, it was possible to demonstrate the Eden mail system by using the
Emacs editor and a filter process to compose a mail message [6]. Similarly, we have an interface that allows one to
use Emacs to edit Eden files as easily as UNIX files.

Another advantage of building Eden on top of Urn is that the two systems can coexist. Eden is currently
running on sixteen Sun workstations, including the one on which we are composing and formatting this report.
When Eden activity is low, Eden does not intrude on the Urn user, yet the constant availability of Eden makes it a
more suitable laboratory than if the workstation cluster had to be rebooted with the Eden system for each
experimental use.

In the final analysis, we think that we made an appropriate choice in picking Urn as a prototyping environment.
The main cost is performance, and Eden has been criticized on these grounds. In fact, performance of invocation
has improved substantially since our first messages were exchanged, and now approaches the limit of what one can
expect from a system that requires four cross-address space calls for each invocation and reply. It is adequate for a
wide range of experiments. Checkpointing and activation are limited by the speed and structure of the file system,
and are more of a bottleneck in some applications. We believe that further significant performance gains can come
only from a major reimplementation, in which the use of Urn processes is severely restricted As an illustration,
the current prototype of the Emerald distributed programming system implements all the objects on a given node
inside one Urn address space. Local invocations can therefore be made without incurring the cost of Urn context
switches; as a result, the most general form of local invocation is only fifty per cent. slower than an ordinary
procedure call. Only when accessing the network is it necessary to call the Urn kernel. Nevertheless, the Emerald
workstations can still run Urn, which is an aid to debugging and provides a suitable environment for the Emerald
compiler.

2.6. Summary

Eden is an implementation of an advanced object-oriented distributed programming environment. It is supported by
its own programming language, which provided an early implementation of what has come to be known as Remote
Procedure call: including full stub generation for both the invoker and invokee. Over three hundred thousand lines
of EPL application code have been written, comprising about a hundred different Edentypes. Significant
experimental research projects in transactions, concurrency control, replication, and loadsharing, as well as many
more minor studies, have been carried out on top of Eden; none of this would have been possible without the

t In the context of Eden the name is unfortunate: it is fundamental to the system that the invoker does not need to know whether the target is
remote, and that the called entity is an object rather than a procedure.

14 The Eden Project: A Final Report

existence of the Eden system.

Having reviewed these successes, it is only fair to point out that not a l l of the original technical objectives of
Eden were fully achieved. Partly this is due to some naive objectives; for example, the 1979 proposal anticipated
the Eden system becoming the general department computing utility. Partly this is due to some naive choices in the
early years of the project; for example, an initial decision to base the implementation on the Intel iAPX-432
processor. On balance, though, we are pleased with the accomplishments of the project.

Technical Impact

In this brief section we attempt to be specific concerning the technical contributions of the Eden project. As noted at
the conclusion of the previous section, not all of the original objectives of the project were fully realized.
Nonetheless, the accomplishments of Eden are significant, both when viewed absolutely and when viewed relative
to other research projects of comparable scope.

Technical impact, of course, is quite hard to quantify. One can count refereed publications (twenty one to date).
One can count theses directly related to the Eden research (six completed Doctoral theses, with another six nearing
completion; fifteen completed Masters theses). One can observe the influence of Eden on current research in
distributed systems (for example, the ISIS project [60] the Clouds Project [59] and the Amoeba system [67]) and
even on commercial systems (the Apollo Domain System has adopted may of Eden's features, although the
implementation is radically different). Eden was recently chosen for detailed description in Tanenbaum's
"Distributed Operating Systems" paper in ACM Computing Surveys [68]. A 1985 mailing describing Eden
technical reports attracted several hundred requests for copies. Whatever metric one chooses, it is clear that the
impact of the Eden project on the technical community has been significant.

Eden's accomplishments arise from the design, implementation, and use of a series of prototype
implementations, from the collection of applications that have been implemented, from the research that has been
conducted on top of Eden, and from its substantial impact on systems research in the department. Here we briefly
list some of the more significant achievements:

Three versions of Eden were implemented: a single-node prototype built on a VAX running VMS, a distributed
version based on VAXKJNIX, and a distributed version built on SunRTMx. This last version has been in use
since 1984.
Eden is the fist complete implementation of a distributed, object-based system with location-independent
invocation of capability-addressed objects. Eden objects are active and mobile. Eden's invocation mechanism
was one of the first implementations of a complete remote procedure call facility.

A language for programming distributed applications, the Eden Programming Language (EPL) [171, was
designed, implemented, and used to build a variety of applications. Based on Concurrent Euclid, EPL provides
direct support for two of the fundamental abstractions of Eden: capabilities and invocation.

While built on top of UNIX, Eden itself provides the user with a complete, advanced environment for the
development and execution of distributed applications.

Eden papers have appeared at each of the last four ACM Symposia on Operating Systems Principles - the major
conference in the field [l , 15,16,36]. (The 1979 paper was a result of work undertaken during preparation of the
grant proposal.) Another major paper appeared in IEEE Trans. on Sofrware Engineering [7].

An adaptation of an Eden M.S. thesis has become a highly regarded monograph [401.
Within 7 years after the start of the Eden project, we expect that Eden will have spawned roughly a dozen Ph.D.s
and fifteen Master's degrees. The Master's graduates are shown in Table 3.1; Ph.D. graduates are noted in Table
4.4.
A significant number of distributed applications and services were constructed on Eden, including:

- the Eden File System [32]
- the Eden Mail System [5,6]
- the Eden Shared Calendar System [271

- the Eden terminal handler

16 The Eden Project: A Final Report

Table 3.1: Eden-Related M.S. Degrees
(See Table 4.4 for Eden-Related PLD. Degrees)

- the Eden command language interpreter

- the Eden Window System (on which the work described in reference 13 is based)

- the distributed Eden Programming Language translator

- an application-level service for replicating Eden objects [45], which led to a new technique, regeneration, for
automatically regenerating lost replicas [521

- a kernel-level service for replicating Eden objects [481

- an implementation of nested transactions [50,51]

Because of characteristics such as location independence, mobility, and remote procedure call, Eden has also
been used as a research tool in a number of projects, including:
- studies of load sharing [9,22,23,35]

- studies of graphical interfaces [lo, 131

- a study of replication policies and a comparison of replication methods [47]

- a study of the performance of time interval concurrency control techniques [46]

Issues arising directly from Eden have spawned a number of research efforts, including:
- the design and implementation of a visual, object-oriented, editing-based user interface [551

- an analysis of object finding algorithms using forwarding addresses [24,251

- The design of an algorithm for on-the-fly backup of databases [49]

- a study of garbage collection in distributed systems [57]

3 1 Technical Impact 17

- a project in language support for distributed programming [18,20,29,34]

- studies of diskless workstation performance [37] and of dynamic file usage patterns [66]
- a study to design and implement advanced architectural support for object-based distributed systems [l 11

- the design and use of a set of notational tools for the specscation and implementation of concurrent
programs [431

- a study of the way in which transaction mechanisms can take advantage of object semantics to increase
concurrency [30]

Over Eden's lifetime, roughly 40 graduate students, 6 faculty members, and 8 staff members have participated
directly in the project; many others have benefited from its existence. A 1985 NSF site visitor stated:

Viewed as a research project rather than as product development, I would rate Eden as a great
success; something to be very proud of.

Influence on the Environment

Eden, like most CER projects, had two objectives. The first objective was technical: to carry out a specific
experimental research project. (Eden was considerably more focused in this regard than most of its successors in
the CER program.) The second objective was environmental: to strengthen Washington's department, and to
transform it into one where experimental techniques are routinely employed. It is the environmental aspect that is
addressed in this section.

It is difficult to assess environmental changes quantitatively, but the Eden Project has played a substantial role in
a number of key areas:
- While Washington's department still is moderate in size, we have seen substantial growth, particularly in

experimental areas. We are able to recruit excellent new faculty.
- Our orientation continues to be research and PhD. education; we have a small, highly-selective undergraduate

major program, and a minimal service obligation.
- Grant and contract revenue has increased substantially.
- State support also has increased substantially; particularly important is a large commitment of laboratory space

for both research and instruction.
- The composition of our graduate program has improved, and our production of experimentally-oriented Ph.D.

graduates has increased markedly.
- Many new industrial relationships have been formed.

These points are illustrated in tabular form in the remainder of this section.
Table 4.1 provides a statistical snapshot of the department in September 1986, as well as 1980 benchmarks for

certain key indices. These indices point not only to healthy growth, but also to an increasing experimental
orientation.

90 Ph.D. students 40 M.S. students
15% of applicants are offered admission
45% of offers are accepted

150 undergraduates (Juniors and Seniors only)
very low service teaching load

23 faculty (up from 14 in 1980)

11 technical support staff (up from 1)
14 administrative support staff

Space per faculty member: 900 square feet (up from 630)
Capitalization per faculty member $1 10,000 (up from
$42,000)

Annual budget: $4,000,000 +
55% external research

17 NSF grants (including 1 CER)
4 DoD contracts
9 industrial grants

35% instruction
1/3 undergraduate instruction
1/3 graduate instruction
1J3 graduate advising

5% internal research
5% miscellaneous
Non-CER Federal revenue up from $400,000 to
$2,000,000

1 Ranked in the top 10 in the 1982 reputational survey. (State budget up from $500,000 to $1 J00.000 1
Table 4.1: Statistical Snapshot

Table 4.2 lists the faculty. Half of the current faculty have joined the department since 1980. Of the recent
hires, Levy, Snyder, Henry, Notkin, Sloan, DeRose, Ebeling, and Schlag all exhibit a significant experimental
dimension in their research. These people have chosen to come to Washington over competing offers from the best
academic departments (e.g., Stanford) and the best industrial research laboratories (e.g., the DEC Systems Research
Center).

20 The Eden Project: A Final Report

1959 Hellmut Golde (Stanford)
1961 Theodore H. Kehl (Wisconsin)
1968 Jerre D. Noe (StanfordJS RI)
1969 Jean-Loup Baer (UCLA)
1971 Richard E. Ladner (Berkeley)

Alan C. Shaw (Stanford/Comell)
1977 Edward D. Lazowska (Toronto)

Walter L. Ruzzo (Berkeley)
Steven L. Tanimoto (Princeton/Connecticut)

1980 AlanBoming (S tanford/J%inburgh)
John Zahorjan (Toronto)

1981 Andrew P. Black (Oxford)
1983 Henry M. Levy (Washington/DEC)

Lawrence Snyder (CMU/Yale/purdue)
Paul Young (ha/S tanfordkdue)

1984 Robert Henry (Berkeley)
David Notkin (CMU)
Richard Pattis (Stanford)
Kenneth R. Sloan (Pennsylvania/Rochester/MlT)

1985 Tony DeRose (Berkeley)
1986 Richard Anderson (Stanford/MSRI)

Carl Ebeling (CMU)
Martine Schlag (UCLA)

1987 Paul Beame (Toronto/MIT)

Table 4.2: The Faculty

As indicated in Table 4.3, the department has six areas in which its reputation is particularly strong. Many
faculty span multiple areas; this is a major strength of our research programs.

Computer Architecture & VLSI Programming Environments & User Interfaces
Jean-Loup Baer Alan Boming
Carl Ebeling Richard Ladner
Ted Kehl David Notkin
Hank Levy Larry Snyder
Martine Schlag Steve Tanirnoto
Larry Snyder

Computer System Performance Analysis Image Analysis and Graphics
Jean-Loup B aer Tony DeRose
Ed Lazowska Ken Sloan
Jem Noe Steve Tanimoto
John Zahorjan

Computer Systems Theory of Computation
Andrew Black Richard Anderson
Robert Henry Paul Beame
Ed Lazowska Richard Ladner
Hank Levy Lany Ruzzo
Jerre Noe Martine Schlag
David Notkin Larry Snyder
Alan Shaw Paul Young
John Zahorjan

Table 4.3: Major Areas of Research Strength

At the graduate level, the major change has not been in the number of enrolled students (which has remained
relatively constant), but in their character. Full time students have increased from 56% of those students who
entered in the 1979-1981 biennium to 91% currently. Students whose bachelors degree was from the University of
Washington made up 22% of our intake in the 1979-1981 biennium; they now account for only 8%. These figures
reflect the transfornation of the department from one filling regional needs into one with a national reputation.

4 (Influence on the Environment 21

Finally, the number of Ph.D. graduates has increased from 7 in the 1979-1981 biennium to a realistic projection of
23 for the 1985-1987 biennium, as shown in Table 4.4.

Name Date Thesis Title Employer Advisor

E Jeffrey Scofield 10/85 Editing as a Paradigm for User In- Cedar River Soft. A. Boming
teractwn Renton, WA

E Robert J. Fowler 10/85 Decentralized Object Finding Using Univ. of Rochester R. Ladner
Forwarding Addresses Rochester, N.Y.

Sai Choi Kwan 10B5 External Sorting: I10 Analvsis and Bell Laboratories J.-L. Baer
parallel procesing ~echni~ue; Murray Hill. NJ

E Leif Nielsen 6/86 Separation of Data Manipulation and Danish Center A. Black
Control for Comp. Sci.

Robert Duisberg 6/86 Constraint-Based Animation: The Im- Tektronix A. Boming
portance of Temporal Constraints in Beaverton, OR

I Animus
CarlenB. Bennett 7/86 Use of Temporal Coherence in Com- Consultant S. Tanitnoto

puter Animation Seattle, WA
E CaltonPu 7/86 Replication in Nested TrMsactions in Columbia Univ. J. Noe

t k Eden Distributed System New York, N.Y.
Joseph Pfeiffer 8/86 Integrating Low-Level and High-Level Nh4 State Univ. S . Tanirnoto

Compufer Vision Las Cruces, Nh4
, Richard Furuta 8/86 An Integrated, but not Exact- Univ. of Maryland A. Shaw

~epresentation, Editor/Formatter College park: MD
H. Venkateswaran 8/86 Characterizations of Parallel Complex- Georgia Inst. Tech. M. Tompa

ity C h s e s ~ t l ~ t a , GA
James K. Archibald 12/86 T k Cache Coherence Problem in Mul- J.-L. Baer

tiprocessors
E Stephen Vestal 1/87 Garbage Collection: An Exercise in Honeywell Res. Ctr. E. Lazowska

Distributed Fault-Tolerant Program- Minneapolis. MN
minx

E Norman Hutchiion 1/87 Emerald: An Object-Oriented Univ. of Arizona H. Levy
Language for Distributed Program- Tucson, AZ

I ming
Ronald Blanford 6/87 Pyramid Algorithms for Computer Vi- S . Tanirnoto

(exp.) sion
E David Jacobson 6/87 TrMsactions on Abstract Data Types L. Snyder

(exp.1
E Eric Jul 6/87 Object Location and Mobility in Distri- Univ. Copenhagen H. Levy

(exp.) buied Systems ~enrnark
Philip Nelson 6/87 Paradigms for the Development of L. Snyder

(exp.) ParallelAlgorithms
E Sayed Banawan 8/87 Load Sharing in Distributed Computer J. Zahorjan

(exp.) Systems
, E John K. Bennett 8/87 Distributed Smalltalk E. Lawwska

(exp.)
E CarlBi;ldig 8/87 The Specijication and Implementation A. Shaw

(exp.) of a User Interface Toolkit
Anne Condon 8/87 Probabilistic Game Automata R. Ladner

(exp.)
E Michael Schwartz 8/87 Naming in Large Heterogeneous Sys- J. Zaho rjan

(exp.) tems
Akhilesh Tyagi 8/87 The Role of Energy in VLSI L. Snyder

(exp.)
Chyan Yang 8/87 The Multigauge Architecture L. Snyder

I
- -

(exp.)

Table 4.4: 1985-1987 (Academic Year) Ph.D. Degrees
(E denotes Eden-ReIated Ph.D. Degrees)

22 The Eden Project: A Final Report

A number of important industrial relationships have formed at least partially in response to the department's in-
volvement in the CER program. Table 4.5 displays some of these.

Digital Equipment Corporation
VAX Pascal compiler project (1978)
Presence of Henry Levy (1981-82; 1983-)
External Research Program support of CER projects (1981-)

more than $650,000 in allowances in the past 12 months
Sabbatical leaves

Lazowska to Systems Research Center, 1984-85
Kehl to DECwest Engineering. 1985-86
Black to DEC-Littleton, 1986-87

David Cutler (DECwest Engineering), Affiliate Professor, 1985-
Faculty Development Award to DeRose

IBM
Research support for Ladner (DBNet), Baer (architectures for sorting)
Faculty Development Award to Notkin
Martin Tompa, Affiliate Associate Professor. 1985-
$1,200,000 in instructional laboratory equipment for our department
Two "regular" graduate fellowships

Tektronix
Equipment support for research and instruction
Cooperative NSF grant with Borning

Boeing
Research support for Baer (parallel architectures), Shew (real-time systems),

and the graphics lab
Janusz Kowalik (Boeing AT Center), Affiliate Professor, 1985-

Northwest Laboratory for Integrated Systems (formerly UW/NW VLSI Consortium)
8 corporate members: Boeing, Eldec, John Fluke, Honeywell, Microtel,

Seattle Silicon, Silicart, Tektronix

Xerox
$500,000 in equipment support for CER and other projects

Department Industrial Affiliates Program
10 corporate members

Table 4.5: Industrial Relationships

At the start of the Eden project in 1980, the University of Washington's department was regional rather than
national in character. A 1985 NSF site visitor commented:

By every conventional measure, this department has made great progress towards becoming a top-
quality national resource in computer science.

Participants

The following individuals participated significantly in the Eden Project during its five-year lifetime:

Faculty:
Guy T. Alrnes
Andrew P. Black
Michael J. Fischer
Hellmut Golde
Edward D. Lazowska
Jerre D. Noe

Staff:
Mark Baratta
Cher Gunby
Gary Mager
Margie Ramsdell
Jim Rees
Blair Rice
Jan S anislo
Voradesh Yenbut

External Review Committee:
James C. Browne
Peter Hibbard
Jim Moms
Jerry Saltzer

Graduate Students:
Agnes Andreassian
Sayed Banawan
Karen Beall
John K. Bennett
Ellen Bierman
Carl Binding
Jordan Brower
Carl Bunje
Susan J. Cady
Ann Condon
Isabel Domenech
Robert J. Fowler
Cara Holman
Felix Hsu
Norman Hutchinson
David M. Jacobson
Paul Jensen
Warren H. Jessop
Tod K. Johnson
Eric Jul

Gary Kirnura
Thomas Knight
Richard Korry
Henry M. Levy
Peter Ma
Barry C. McCord
Eli Messinger
Leif S. Nielsen
Jimmy D. Nilson
Andrew Proudfoot
Calton Pu
Rajendra Raj
Wendy Rowley
Susan St. John
Michael Schwartz
Jeffrey Scofield
H. Venkateswaren
Steven Vestal
Douglas Wiebe
Thomas Yap

Bibliography

Eden

111

-Related Literature
Almes, G.T. and Lazowska, E. D. The Behavior of Ethernet-like Computer Communication Networks. Proceedings 7th
ACM Symposium on Operating Systems Principles, December 1979, pp. 66-81.

Almes, G.T. and Lamwska, E.D. Eden: Research in Integrated Distributed Computing. Proceedings Workshop on Fun-
damental Issues in Distributed Computing, December 1980.

Almes, G.T. Objects in the Eden System. Proceedings Electro/82,32: Object Oriented Systems and Languages, May
1982.

Almes, G.T. Integration and Distribution in the Eden System. Proceedings IEEE Workshop on Computer Systems Organ-
ization, July 1982.

Almes, G.T. and Holman, C. Edmas: An Object-Oriented. Locally Distributed Mail System. Technical Report 84-08-03,
University of Washington, Department of Computer Science, August 1984.

Almes, G.T., Black, A.P., Bunje, C. and Wiebe, D. Edmas: A Locally Distributed Mail System. Proceedings 7th Interna-
tional Conference on Software Engineering, March 1984, pp. 56-66.

Almes, G.T.. Black, A.P., Lazowska, E.D. and Noe, J.D. The Eden System: A Technical Review. IEEE Transactions on
Software Engineering SE-11.1 (January 1985). pp. 43-59.

Andreassian, A. Effectiveness of Replication in Distributed Computer Systems. M.S. Thesis, University of Washington,
Department of Computer Science, June 1986.

Banawan, S. An Evaluation o f b a d Sharing in Distributed Systems. Ph.D. Thesis, University of Washington, Department
of Computer Science. Spring 1987. (In preparation).

Beall, K. Graphical Charts for Displaying Quantitative Information in the Eden System. M.S. Thesis, University of
Washington. Department of Computer Science, December 1985.

Bennett, J.K. Distributed Smalltalk. Ph.D. Thesis, University of Washington, Department of Computer Science, 1987. (In
preparation).

Bierman, E. A Comparative Study of Network-Based Object-Oriented File Systems. M.S. Thesis, University of Washing-
ton, Department of Computer Science. December 1981.
Binding, C. The Architecture of a Window Package and its Usage in Building Interface Components. Technical Report
85-08-07. University of Washington, Department of Computer Science, August 1985.

Binding, C. The Specification and Implementation of a User Interface Tookkit. Ph.D. Thesis, University of Washington,
Department of Computer Science. Summer 1987. (ln preparation).

Black, A.P. An Asymmetric Stream Communication System. Proceedings 9th ACM Symposium on Operating Systems
Principles. October 1983. pp.4-10.

Black, A.P. Supporting Distributed Applications: Experience with Eden. Proceedings 10th ACM Symposiwn on Operat-
ing Systems Principles, December 1985. pp. 181-193.

Black, A.P. The Eden Programming Language. Technical Report 85-09-01, University of Washington. Department of
Computer Science. September 1985.

Black, A.P.. Hutchinson, N.. Jul, E. and Levy, H.M. Object Structure in the Emerald System. Proceedings First Confer-
ence on Object-Oriented Programming Systems, h g u a g e s and Applications, October 1986.

Black, A.P. The Eden Project: Overview and Experiences. Proceedings European U N ~ X systems User Group Autumn '86
Conference, Manchester, UK, September 1986, pp. 177-189.

Black, A.P.. Hutchinson, N., Jul, E.. Levy. H.M. and Carter, L. Distribution and Abstract Types in Emerald. IEEE Tran-
sactions on Software Engineering SE-13.1 (January 1987).

26 The Eden Project: A Final Report

[21] Cady. S.J. DOOM: A Distributed Object-Oriented Message Module. M.S. Thesis, University of Washington, Department
of Computer Science, June 1983.

[22] Eager, D.L., Lazowska, E.D. and Zahorjan, J. Adaptive Load Sharing in Homogeneous Distributed Systems. IEEE Tran-
sactions on Software Engineering SE-12,5 (May 1986), pp. 662-675.

[23] Eager, D.L., Lazowska, E.D. and Zahorjan, J. A Comparison of Receiver-Initiated and Sender-Initiated Adaptive Load
Sharing. Performance Evaluation 6 (April 1986), pp. 53-68.

[24] Fowler, R.J. Decentralized Object Finding Using Forwarding Addresses. Ph.D. Thesis, University of Washington,
Department of Computer Science, December 1985.

[25] Fowler, R. J. The Complexity of Using Forwarding Addresses for Decentralized Object Finding. Proceedings 5th Annual
ACM Symposium Principles of Distributed Computing. August 1986.

[26] Greenberg, A.G. Efficient Algorithms for Multiple Access Channek. Ph.D. Thesis, University of Washington, Department
of Computer Science. August 1983.

[27] Holman, C. and Almes, G.T. The Eden Shared Calendar System. Technical Report 85-05-02, University of Washington,
Department of Computer Science, May 1985.

1281 Hsu, F.S. Re-Implementing Remote Procedure Call. M.S. Thesis, University of Washington, Department of Computer
Science, March 1985.

[29] Hutchinson, N. Emerald: An Object-Oriented Language for Distributed Programming. Ph.D. Thesis, University of
Washington, Department of Computer Science, January 1987.

[30] Jacobson, D.M. Transactions on Abstract Data Types. Ph.D. Thesis, University of Washington, Department of Computer
Science, Winter 1987. (In preparation).

[3 11 Jensen, P. The Eden Command Language Virtual Machine. M.S. Thesis. University of Washington, Department of Com-
puter Science, June 1983.

[32] Jessop, W.H., Jacobson, D.M., Noe, J.D., Baer. J. and Pu, C. The Eden Transaction Based File System. Proceedings2nd
Symposium on Reliability in Distributed Sofhvare and Database Systems, July 1982, pp. 163-169.

[33] Johnson, T.K. Distributed Operating Systems: A Comparison of Two Systems Emphasizing Problems of Distribution.
M.S. Thesis, University of Washington, Department of Computer Science, June 1983.

[34] Jul. E. Object Location and Mobility in Distributed Systems. Ph.D. Thesis, University of Washington, Department of
Computer Science, Winter 1987. (In preparation).

[35] Korry, R. Load Sharing in a Workstation Environment. M.S. Thesis, University of Washington. Department of Computer
Science, June 1986.

[36] Lazowska, E., Levy, H., Almes, G., Fischer, M., Fowler, R. and Vestal, S. The Architecture of the Eden System. Proceed-
ings 8th ACM Symposium on Operating Systems Principles, December 1981, pp. 148-159.

[37] Lazowska, E.D., Zahorjan, J.. Cheriton, D.R. and Zwaenepoel, W. File Access Performance of Diskless Workstations.
ACM Transactions on Computer Systems 4 .3 (August 1986). pp. 238-268.

[38] Levy. H.M. A Comparative Study of Capability-Based Computer Architectures. M.S. Thesis, University of Washington,
Department of Computer Science, December 1981.

[39] Levy, H.M. A History of Capability-Based Computer Systems. Proceedings Electrol82, 32: Object Oriented Systems
andlanguages, May 1982.

[40] Levy, H.M. Capability-Based Computer Systems. Digital Press, Bedford, MA, 1984.

[41] Manber, U. Concurrency Control for Dynamic Data Structures and Fauk Tolerance. Ph.D. Thesis, University of Wash-
ington, Department of Computer Science, August 1982.

[42] McCord, B.C. The Eden Programming Language Translator. M.S. Thesis, University of Washington, Department of
Computer Science, January 1984.

[43] Nielsen, L.S. Separation of Data Manipulation and Control. Ph.D. Thesis, University of Washington, Department of
Computer Science, July 1986.

[44] Nilson, J.D. The Eden Node Machine Virtual Terminal. M.S. Project, University of Washington, Department of Computer
Science, March 1983.

[45] Noe. J., Proudfoot, A. and Pu, C. Replication in Distributed Systems: The Eden Experience. Proceedings Fall Joint Com-
puter Conjerence, November 1986. pp. 1197-1209.

Bibliography

[46] Noe, J.D. and Wagner, D.B. Measured Performance of Time Interval Concurrency Control Techniques. Technical Report
86-08-05. University of Washington, Department of Computer Science. August 1986.

[47] Noe, J.D. and Andreassian, A. Effectiveness of Replication in Distributed Computer Networks. Technical Report 86-06-
05, University of Washington. Department of Computer Science. June 1986.

[48] Proudfoot, A.B. Replects: Data Replication in the Eden System. M.S. Thesis, University of Washington, Department of
Computer Science, October 1985.

[49] Pu, C. On-the-Fly, Incremental, Consistent Reading of Entire Databases. Proceedings Eleventh International Conference
on Very Large Data Bases, Stockholm, Sweden, August 1985.

[50] Pu, C. and Noe, J.D. Nested Transactions for General Objects: The Eden Implementation. Technical Report 85-12-03,
University of Washington, Department of Computer Science, December 1985. .

[51] Pu, C. Replication and Nested Transactions in the Eden Distributed System. Ph.D. Thesis, University of Washington,
Department of Computer Science, July 1986.

[52] Pu, C., Noe, J.D. and Proudfoot, A. Regeneration of Replicated Objects: A Technique for Increased Availability.
Proceedings Second International Conference on Data Engineering, Los Angeles, CA, February 1986, pp. 175-187.

[53] Rowley, W. A Graphics Interface for Eden. M.S. Thesis, University of Washington, Department of Computer Science,
June 1983.

[54] Schwartz, M. Naming in Large Heterogeneous Systems. Ph.D. Thesis, University of Washington, Department of Com-
puter Science, Summer 1987. (In preparation).

[55] Scofield, J. Editing as a Paradigm for User Interaction. Ph.D. Thesis. University of Washington, Department of Com-
puter Science, August 1985.

[56] St.John. S.J. The Eden Display Subsystem. M.S. Project, University of Washington. Department of Computer Science,
December 1982.

[57] Vestal, S. Garbage Collection: An Exercise in Distributed Fault-tolerant Programming. Ph.D. Thesis, University of
Washington, Department of Computer Science, January 1987.

[58] Yap, T. Concurrent Euclid Message Module. M.S. Thesis, University of Washington, Department of Computer Science,
December 1985.

Other Cited Literature

[59] Allchin, J.E. and McKendry. M.S. Synchronization and Recovery of Actions. Proceedings 2nd Annual ACM Symposium
Principles of Distributed Computing, August 1983, pp. 31-44.

[60] Birman, K.P., Abbadi, A.E., Dietrich. W., Joseph, T. and Raeuchle, T. An Overview of the Isis Project. Technical Report
84-642, Department of Computer Science, Cornell University. October 1984.

[61] Birrell, A.D. and Nelson, B.J. Implementing Remote Procedure Calls. ACM Transactions on Computer Systems 2, 1
(February 1984). pp. 39-59.

[62] Lampson, B.W. and Sturgis, H.E. Reflections on an Operating System Design. Comm. ACM 19,5 (May 1976). pp.251-
265.

[63] Leach, P. J.. Levine, P.H., Douros, B.P., Hamilton, J. A., Nelson, D.L. and Stumpf. B. L. The Architecture of an Integrated
Local Network. IEEE Journal on Selected Areas in Communications SAC-I. 5 (November 1983). pp. 842-857.

[64] Liskov, B. and Scheiffer, R. Guardians and Actions: Linguistic Support for Robust, Distributed Programs. Conference
Record of the Ninth ACM Symposium on Principles of Programming Languages. Albuquerque, NM, January 1982.

[65] Liskov, B. Overview of the Argus Language and System. Programming Methodology Group Memo 40, M.I.T., Labora-
tory for Computer Science, February 1984.

[66] Maloney, J.H. and Black, A.P. File Sessions: A Technique and its Application to the UNIX File System. Proceedings 3rd
International Conference on Data Engineering. February 1987.

[67] Mullender, S.J. and Tanenbaum, A. The Design of a Capability-Based Operating System. The Computer Journal 29 ,4 ,
pp. 289-306.

[68] Tanenbaum, A.S. and van Renesse, R. Distributed Operating Systems. ACM Computing Surveys 17,4 (December 1985),
pp. 419-470.

[691 Walker, B., Popek, G., English, R., Kline, C. and Thiel, G. The LAXUS Distributed Operating System. Proceedings 9th
ACM Symposium on Operating Systems Principles. October 1983. pp.49-70.

28 The Eden Project: A Final Report

[70] Wulf, W.A., Levin, R. and Harbison, S.P. HYDRAIC.mmp: An Experimental Computer System. McGraw-Hill, 1981.

