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Hardware and software heterogeneity arises in many 
computing environments for many reasons. In our own 
environment-an academic department with a signifi- 
cant experimental research component-heterogeneity 
arises because experimental computer research is often 
best conducted on a high-level test bed (e.g., Lisp and 
Smalltalk machines, multiprocessor workstations), and 
because such research often produces unique hard- 
ware/software architectures (e.g., prototype distributed 
systems, special-purpose image analysis hardware). Our 
environment currently includes more than 15 signifi- 
cantly different hardware/software systems. 

Today’s very loose interconnection of heterogeneous 
computer systems (HCS-see Table I for a list of acro- 

TABLE I. Glossary 

BIND 
HCS 
HMS 
HNS 
HFPC 
101. 
MSM 
NSM 
RPC 
THERE 
TPL 

Berkeley Internet Domain Server 
Heterogefleous computer systems 
HCS mail service 

i HCS name service 
HCS femote procedure call 
Interface description language 
Mail semantic manager 
Name semantic manager 
Remote procedure call 
The HCS environment for remwe exeoution 
THERE programming language 
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nyms used in this article) poses several significant prob- 
lems. One problem is inconvenience. An individual 
must either use multiple systems or else accept the 
consequences of isolation from parts of the environ- 
ment. Isolation is generally unacceptable, so many 
users regularly work with several systems, through rel- 
atively crude techniques such as multiple terminals/ 
workstations or Telnet/FTP. A second problem is ex- 
pense. The hardware and software of the environment 
are not effectively amortized, making it unnecessarily 
costly to conduct a specific project on the system to 
which it is best suited. One must acquire not only the 
system directly required to support the project, but also 
the peripheral hardware and software necessary to al- 
low that system to function as a largely independent 
entity. A third problem is diminished effectiveness. On 
many projects, substantial effort must be diverted to 
address the problems of heterogeneity; time-consuming 
hacks by scientists and engineers who should be doing 
other work are the rule, rather than the exception. 

The widespread availability of communication proto- 
cols such as TCP does not solve these problems, be- 
cause constructing new services and applications on 
top of such protocols is too difficult. File transfer and 
remote terminal programs also are insufficient, since 
their users must explicitly manage multiple machines. 

Our particular approach to accommodating heteroge- 
neity [lo] is motivated by several widespread (though 
certainly not universal) characteristics of our environ- 
ment. We have a large number of system types, but 
only a small number of instances of some of these sys- 
tem types. New system types are added relatively often. 
System types are acquired precisely because of their 
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FIGURE 1. Relationship of HCS Facilities and Services 

ability to support specific projects, without regard for 
whether heterogeneity is increased. Thus, it must be 
possible to incorporate a new system type into the envi- 
ronment at low cost and without masking the unique 
properties for which that system was obtained. This 
leads to an approach that we refer to as “loose integra- 
tion through shared network services.” As illustrated in 
Figure 1, two underlying facilities-remote procedure 
call (RPC) and naming-support a set of key network 
services that are adapted to the demands of a hetero- 
geneous environment: remote computation, mail, and 
filing. Our approach can be characterized in a bit more 
detail as follows: 

l We provide a set of network services that are made 
available to a heterogeneous collection of client sys- 
tems through the use of our RPC and naming facili- 
ties. The services we have selected are those funda- 
mental to cooperation and sharing. 

l In both the services and underlying facilities, we 
attempt not to legislate standards, but rather to 
accommodate multiple standards. This allows the 
integration of unmodified or minimally modified sys- 
tems. 

l We do not attempt to provide existing programs with 
transparent access to services. The primary reason is 
that we have too many system types to permit cost- 
effective development and maintenance of the modi- 
fications necessary for transparency. A secondary 
reason is that transparency is impossible for systems 
in which the source code is unavailable. Transpar- 
ency can be provided for specific system types if suf- 
ficient use exists to warrant the investment and if 
the required source code is available. 

l We focus on system heterogeneity rather than lan- 
guage heterogeneity. Just as we cannot generally jus- 
tify the effort to support transparent access to ser- 
vices, we cannot commit to providing complete inte- 
gration of programs written in different languages. 
Existing solutions to the “easy 80 percent” of the 
language heterogeneity problems will suffice for our 
purposes. 

Each of the individual facilities and services reflects 
this approach. 

The HCS RPC (HRPC) facility utilizes a modular de- 
sign that, by appropriate selection of implementations 
at run time, can be made to emulate a wide variety 
of existing RPC facilities. Thus, the central core of 
HCS-those systems on which the HRPC facility has 
been implemented-can easily be adapted to commu- 
nicate with a new system type. 
The HCS name service (HNS) creates a global name 
space that accesses names and data from existing 
name services. By using data in existing name ser- 
vices, rather than reregistering data into an entirely 
new name service, existing clients can work with 
their name services without change, and new clients 
of HNS need not make changes when a new under- 
lying name service is introduced. 
The HCS remote computation service provides a 
generic mechanism by which services can be exe- 
cuted remotely. Each remote service includes a de- 
scription of its required inputs and outputs, the steps 
needed to process the information, and the steps re- 
quired to create an environment in which to execute 
the service. These descriptions are processed by in- 
terpreters that are responsible for passing information 
between nodes and for performing any necessary 
translation of file names, options, etc. 
The HCS mail service (HMS) attempts to improve the 
quality of most existing mail services while integrat- 
ing services that are based on diverse models. The 
mail service is structured like the Xerox Grapevine 
mail service [g], but also integrates mail systems such 
as UNIX’s@’ sendmail [l]. Abstract mail retrieval 
and submission interfaces are defined and imple- 
mented in multiple ways, facilitating the integration 
of new mail systems. 
The HCS filing service is represented by two distinct 
efforts: The first approach defines a centralized filing 
service that stores files in multiple representations 
(based on those used in the HRPC facility). The sec- 
ond approach is based on that of the naming facility, 
where existing local file systems are used to store 
data, and neither the files themselves nor information 
about them (such as the file type) need be reregis- 
tered. 

The role of our work has been to devise approaches, 
produce designs embodying those approaches, and test 
these designs through prototype implementations. This 
article does not represent a “quick packaged universal 
solution” to every person’s heterogeneity problems. 
On the other hand, the ideas presented here represent 
more than “academic speculation,” since implementa- 
tions exist in each area, some of which have stood the 
test of production use by nonsympathetic audiences. 

In related work, other styles of heterogeneity de- 
mand somewhat different solutions. MIT’s Project 
Athena [4] and Carnegie-Mellon’s Information Tech- 
nology Center (ITC) project [31] are two highly visible 
efforts. Each seeks to accommodate heterogeneity 

UNIX is a registered trademark of AT&T Bell Laboratories. 

March 1988 Volume 31 Number 3 Communications of the ACM 259 



Special Section 

through coherence: enforcing high-level uniformity in 
software while permitting implementation on diverse 
hardware. Both projects rely primarily on UNIX. Proj- 
ect Athena is standardizing on an applications inter- 
face, and ITC on a centralized file service. 

Another major effort is the MIT Laboratory of Com- 
puter Science (LCS) Mercury project, which attempts to 
share programs written in substantially different lan- 
guages such as Lisp and CLU. The LCS group hopes to 
provide a “semantic bridge” between these languages. 

The UCLA Distributed Systems Laboratory is con- 
cerned with integrating computational resources with a 
high degree of transparency. In one approach, they de- 
veloped LOCUS [45], a single distributed operating sys- 
tem that runs on multiple, heterogeneous machines, 
including VAXes, IBM 43OOs, and IBM PC-ATs. In an 
alternative approach, they are developing transparent 
operating systems bridges [20] with the goal of integrat- 
ing m.achines with dissimilar operating systems. 

General Motors’ MAP (manufacturing automation 
protocol) [3, 271 is an industrial effort to achieve coher- 
ence through standardization. MAP is based on the 
seven.-level IS0 standard and specifies protocols from 
the physical interconnect level to the application level. 
At the physical level, a MAP network is based on a 
10 Mbit/s, broadband, token-based, coaxial cable. 
Device-to-device communications may require con- 
formance to lower layers only, while application-to- 
application communication will typically require all 
seven levels. MAP’s goal is to encourage vendors to 
supply hardware and software using MAP protocols. 
Thus, MAP attempts to solve the problem of heteroge- 
neity by enforcing homogeneity of communication. 

REMOTE PROCEDURE CALL 
Network communication is the sine qua non of our 
work. Although some form of networking capability 
is possessed by all systems of interest to us, no single 
protocol is shared by all of them. Even among each 
subset of systems that share a protocol, the precise 
function of and interface to network operations can 
differ substantially. This absence of protocol standard- 
ization is one serious impediment to accommodating 
heterogeneity. 

A second, equally serious problem is that, until re- 
cently, commercially available network implementa- 
tions provided only low-level services. Higher level 
functions are generally encapsulated in application pro- 
grams such as Telnet, FTP, and NSChat. The absence of 
low-level protocol standardization, however, makes it 
particularly important that application code be insu- 
lated from this layer. Furthermore, building applica- 
tions on top of low-level services is beyond the capabil- 
ities of most programmers. 

One attractive approach to this problem is RPC [a]. 
An RPC facility provides a user-level mechanism across 
the communication network that, as much as possible, 
has the same syntax and semantics as local procedure 
calls within the application program’s high-level lan- 

guage. Hence, RPC supports communication among 
application programs while relieving programmers from 
concern with data encoding, transport protocol details, 
etc. The run time system of an RPC facility is responsi- 
ble for mapping the language’s calls and high-level type 
system into the facilities provided by the low-level net- 
work protocols. Although most RPC implementations 
exhibit limitations when measured against the demands 
of a heterogeneous environment, the RPC model itself 
has various characteristics that make it an ideal vehicle. 
One of the few areas of consensus at the 1985 “ACM 
SIGOPS Workshop on Accommodating Heterogeneity” 
was the appropriateness of RPC in a heterogeneous 
environment [32]. 

To a first approximation, an RPC facility works in 
the following way: The client (caller) and server (callee) 
modules are programmed as if they were intended to be 
linked together. A description of the server interface, 
that is, the names of the procedures and the types of 
arguments the server implements, is processed, yielding 
two stubs. The client stub is linked with the client; to 
the client this stub looks like the server. The server 
stub is linked with the server; to the server this stub 
looks like the client. The stubs shield the client and 
server from the details of communication. 

The construction and use of an RPC-based distrib- 
uted application can be divided into three phases: com- 
pile time, bind time, and call time. Compile time involves 
the production of stubs, which ideally is done mechan- 
ically by a stub generator that processes an explicit 
definition of the interface, written in an interface de- 
scription language (IDL). Bind time involves the server 
making its availability known by exporting itself, and 
the client associating itself with a specific server by 
making an import call to this mechanism. Call time 
involves the transport protocol, control protocol, and data 
representation. The transport protocol is used by the 
stubs to convey arguments and results reliably between 
client and server. The control protocol consists of infor- 
mation included by the RPC facility in each transport 
packet to track the state of the call, which may require 
multiple transport messages. The data representation is 
a convention for ensuring data compatibility between 
client and server (e.g., byte ordering or record layout). 

Existing RPC facilities make significantly different 
choices in each of these five areas: compile time sup- 
port (including the programming language, the IDL, and 
the stub generator), the bind time protocol, and the 
three call time protocols-transport, control, and data 
representation. Although in principle these choices are 
orthogonal to one another, in practice they are inter- 
twined in each implementation. As a result, the various 
existing RPC facilities not only are incapable of com- 
municating with one another, but are also difficult to 
modify to make such communication possible. 

This need not be the case. As one example, an RPC 
facility implemented at the DEC Systems Research 
Center is able to employ different transport protocols 
between different pairs of systems (personal communi- 
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cation by A. D. Birrell, 1984). This was accomplished by 
two steps: First, a clean interface, consisting of three 
procedures, was defined between the stubs and the 
transport mechanism; these procedures could be imple- 
mented in several different ways by placing a thin 
veneer over common transport mechanisms. Second, 
binding was augmented to include a mechanism for 
determining which transport protocol should be used 
between a specific client and server, and to return the 
correct three procedure implementations to the stubs. 
Thus, the same mechanically generated stub could em- 
ploy a variety of transport protocols, with the choice 
delayed until bind time. 

Inspired by this modularization, in our HRPC facility 
[7] we have specified clean interfaces among all RPC 
components. An HRPC client or server and its associ- 
ated stub can view each of the remaining components 
as “black boxes” that can be mixed and matched. The 
set of protocols actually used is determined dynami- 
cally at bind time-long after the client or server has 
been written, the stub has been generated, and the two 
have been linked. This design meets two key objec- 
tives: We are able to emulate existing RPC facilities by 
providing appropriate implementations of the underly- 
ing abstractions, thus allowing unmodified native RPC 
systems to communicate with our core HRPC systems; 
and we are able to employ existing software (e.g., trans- 
port protocols) easily in building an RPC facility for a 
new system that does not have a native facility. 

Two examples illustrate our approach. The first is 
the Face-Finger Service (f f inger), a relative of the 
Berkeley UNIX finger program. The finger pro- 
gram returns textual information (full name, phone 
number, etc.) about a given user on a given machine. 
The f f inger program provides a heterogeneous, dis- 
tributed, department-wide service that provides pic- 
tures of each user. When a user f f ingers another 
user, a window pops up on the screen with the picture, 
full name, office phone, and so on, in a “bubble-gum 
baseball card” format (see Figure 2). 

The server for f f inger runs on a single machine 
and is implemented using HRPC. Clients who call the 
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server and display the baseball cards have been imple- 
mented for workstations including VAXes, SUNS, Xerox 
D-machines, Tektronix 4404/4405s, and IBM RT/PCs. 
Each of these clients uses its own native RPC facility 
and windowing system; each believes it is communi- 
cating with a server written using the same native 
RPC facility. HRPC creates this illusion and allows the 
server to deal simultaneously with a variety of clients. 

The second example illustrates the case of a single 
client using multiple servers. We designed a server 
that returns a list of users logged in to the machine on 
which it resides. We implemented this server on three 
different systems: on Xerox computers using the stan- 
dard Xerox RPC (i.e., the XNS protocol for transport 
and the Courier protocols for binding, data represen- 
tation, and control) [46], on SUN computers using the 
standard SUN RPC with UDP data grams (i.e., the UDP 
protocol for transport, the XDR data representation 
standard, and the SUN protocols for binding and con- 
trol) [41, 421, and on VAX computers using the standard 
SUN RPC with TCP (i.e., the TCP protocol for transport, 
the XDR data representation standard, and the SUN 
protocols for binding and control). We then imple- 
mented an HRPC client of this service. This single 
client can bind to each server using that server’s own 
native binding protocol and communicate with each 
server using that server’s own native RPC; the same 
client can make a sequence of calls to different servers, 
each call emulating a different native RPC. 

The Call Time Organization of HRPC 
In traditional RPC facilities, all decisions regarding 
implementation of the various components are made 
when the RPC facility is designed. Making these 
choices early simplifies the work done at run time. For 
instance, in such systems the only information needed 
by a client to access a server is the location of that 
server; no other decisions concerning details of commu- 
nication between client and server need be made. 

Acquiring this location information is the process of 
binding. Executing the HRPC binding protocol yields a 
Binding, a data structure containing information de- 

FIGURE 2. Display from the Face-Finger Program 
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scribing the logical connection to a server. A Binding 
typically is held by the client and passed to the stub as 
an explicit parameter of each call. 

The basis of the HRPC factorization is an abstract 
model of how any RPC facility works, expressed 
through a procedural abstraction of the call time com- 
ponents (transport, control, and data representation). 
E:ach HRPC stub is written in terms of these abstract 
interfaces. During binding these interfaces are bound 
to implementations, selecting a specific combination of 
control protocol, data representation, and transport pro- 
tocol components. In addition to the location informa- 
tion, a Binding explicitly represents the choices for 
these three components as separate sets of procedure 
pointers. At call time, references to the component rou- 
tines #are made indirectly via these procedure pointers. 
The interaction between these entities is depicted in 
Figure 3, where the direction of the arrows indicates 
the direction of calls during the call portion of an RPC. 
Returns are made in a reverse manner, with messages 
containing results passed back from the server to the 
client. 

The Eind Time Organization of HRPC 
The first step in binding is nnming: the process of trans- 
lating the client-specified server name into the network 
addre.ss of the host on which the server resides. The 
second step is activation: Some RPC designs assume the 
server is already active; others require that a server 
process be created dynamically. The third step is port 
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determination: The network address produced during 
naming does not generally suffice for addressing the 
server, since multiple servers may be running on a sin- 
gle host. So, each server is typically allocated its own 
communications port, which, together with the net- 
work address, uniquely identifies the server. 

The naming and port information constitute the loca- 
tion of the service. The client’s outgoing messages can 
use this location information, and the server can reply 
using information passed up to it from the transport 
level upon receipt of an incoming call. 

Consider the case of an HRPC client importing a 
server written using some existing RPC. The client 
specifies a two-part string name containing the type 
(e.g., FileService) and instance (e.g., a host name) 
of the service it wishes to import. To honor this re- 
quest, the HRPC binding subsystem first queries the 
name service (described under “Naming”), retrieving a 
BindingDescriptor.EachBindingDescriptor 
contains a machine-independent description of the in- 
formation needed to construct the machine-specific and 
address-space-specific Binding. In particular, a Bind - 
ing Descriptor consists of a designator indicating 
which control component, data representation compo- 
nent, and transport component the service uses, a net- 
work address, a program number, a port number, and a 
flag indicating whether the binding protocol for this 
particular server involves indirection through a binding 
agent. The remainder of the Binding must now be 
completed in accordance with the information in the 
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Binding Descriptor. To do this the procedure ing RPC facility, the implementation of any one combi- 
pointer parts of Binding are set to point to the rou- nation of the components emulated by HRPC will make 
tines to handle the particular control protocol, data rep- communication possible. HRPC has been in active use 
resentation, and transport protocol understood by the for several years and represents a proven approach to 
server. the problems it addresses. 

The HRPC Stub Generator 
Stubs insulate the code that actually implements the 
functions of the RPC client and server from the details 
and complexity of the RPC run time system. To facili- 
tate this the IDL specification of an RPC service is pro- 
cessed by a stub generator. The generator consumes the 
specification, which consists of procedure names and 
the data types of their arguments and results, and pro- 
duces appropriate stubs in a designated programming 
language. These stubs are compiled and linked with the 
actual client and server code. 

The HRPC system uses a stub generator for an ex- 
tended version of the Courier IDL [46], based on the 
generator written at Cornell [24]. The “code generator” 
portion of the stub generator was heavily modified to 
support the HRPC interface. The stub routines are gen- 
erated in the C programming language. Our major addi- 
tion to the Courier IDL is an escape mechanism known 
as USERPROC, which allows users to provide their own 
marshaling routines for complicated data types, such as 
those containing pointer references. 

In related work, a variety of RPC facilities support 
differing degrees of heterogeneity. SUN RPC [41] sup- 
ports the two common byte orderings of integers and 
two transport protocols. Matchmaker [25, 261 is based 
on a single operating system that may run on different 
machines. Messages are tagged to tell the recipient 
what source-machine representation is used in the 
message body. Several programming languages are also 
supported. Horus [18] supports a single RPC mecha- 
nism, but for multiple languages. Differences among 
source languages and machine-specific data representa- 
tions are embodied in specifications that together with 
the interface description are inputs to the Horus stub 
generator. Mixed-language programming (MLP) [22] 
focuses on the construction of programs with proce- 
dures written in different programming languages. MLP 
is concerned, in part, with accommodating existing pro- 
grams without requiring that interface specifications be 
given. 

Although not a primary objective of our work, multi- 
language support has been provided by integrating 
HRPC with the Franz Lisp system [19] running on 
VAXes and with the Smalltalk- system running on 
Tektronix workstations. Other aspects of HRPC include 
a lightweight process mechanism and a mechanism by 
which servers can make calls back to clients. 

HRPC’s unique hypothesis is that the most effective 
way to provide basic communication with a diverse 
set of systems is to emulate the native RPC facilities of 
these systems. The major intellectual task in HRPC was 
defining the interfaces between the various RPC com- 
ponents that make this emulation feasible. The result- 
ing modularization has the added benefit of making a 
subset of HRPC an excellent candidate for porting to a 
new system that lacks a native RPC, since any existing 
building blocks can be employed. 

Perhaps most related is the Apollo Network Com- 
puter System (NCS) [16], an effort to define a multiven- 
dor communications architecture for network services. 
The basis of NCS is an RPC system similar in several 
ways to HRPC. NCS/RPC supports both data represen- 
tation and transport heterogeneity. RPC messages are 
self-defining, containing information about the types of 
the data being sent; stubs are independent of any spe- 
cific format. Stubs are defined in terms of a socket-style 
transport interface, which can be implemented in sev- 
eral ways; currently, UDP/IP and Apollo Domain trans- 
ports are supported. NCS/RPC does not handle differ- 
ent control protocols; specifically, NCS/RPC talks only 
to other implementations of NCS/RPC implemented on 
a heterogeneous set of systems. 

NAMING 

A natural concern is that the widespread use of indi- 
rection within HRPC might significantly increase exe- 
cution time. Our benchmarks show, however, that the 
performance of HRPC is competitive with that of the 
native RPC facilities being emulated. The reason is that 
these native RPC facilities use a large number of inter- 
nal procedure calls for reasons of software structuring: 
They pay the same price as HRPC without gaining any 
run time flexibility for it. Of course, these native sys- 
tems could be streamlined (a few research RPC systems 
have been), whereas HRPC could not. 

HRPC can be viewed as an easy-to-satisfy standard. 
Given a new system with an existing RPC facility, the 
addition of new modules to HRPC will make communi- 
cation possible. Given a new system without an exist- 

Name services [29, 33, 441 provide the run time map- 
ping of names into data. For the most part, a name is 
simply a character string that conveniently allows a 
human to identify a resource. For instance, samar . 
cs. Washington. edu is an ARPA domain-style name 
[34] for a VAXstation-II host. The data associated with a 
name can be almost anything, but most often involves 
information that is likely to change infrequently. The 
most common use of name services is to obtain ad- 
dresses. For example, the Berkeley Internet Domain 
Server (BIND) name service [44], which supports 
domain-style names, contains a mapping from 
samar. cs . Washington. edu to the IP address 
128.95.1.32. Hosts wishing to communicate with 
samar . cs . Washington. edu obtain its address 
dynamically by querying BIND. This run time determi- 
nation of addresses simplifies the management of dis- 
tributed systems, since each host may be administered 
individually, including changes to its location. All that 
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is required for continuing operation is that any location 
change be registered with the name service when it 
occurs. 

In a heterogeneous system, it is necessary to manage 
a global name space, that is, a set of names whose associ- 
ated data can be accessed from anywhere in the envi- 
ronment. This global name space allows sharing of 
names among clients on different systems and is crucial 
in supporting location-independent execution. It is also 
necessary for convenient use of the system by human 
users, as it permits the exchange of names across sys- 
tem boundaries. 

Our environment places three specific demands on a 
name service: First, existing applications must continue 
to run unaltered. Second, new applications written to 
use the global service must have access to the naming 
information contained in newly integrated systems, 
without requiring recompilation or relinking. Third, 
the incorporation of new systems must have relatively 
low development cost. 

To some extent these goals conflict with one another. 
Continued execution of existing applications requires 
that names be accessible in the existing name services 
local to the individual systems. Graceful integration of 
new systems into the global name space might most 
naturally be accomplished by reregistering the data 
conta:ined in the local name services in a global service, 
which carries with it the difficult problem of maintain- 
ing consistency between local and global copies. Addi- 
tional problems that arise due to heterogeneity concern 
name syntax and name conflicts. Name syntax is a prob- 
lem because the separate systems that comprise the 
heterogeneous environment are likely to have conflict- 
ing name syntaxes, so it is not possible to impose a 
single syntax for the global name space that would be 
“natural” on all systems. Name conflicts arise because 
several systems may have identical names that are un- 
ambiguous when issued in an environment consisting 
of only one system, but ambiguous when the systems 
are combined. 

The HCS name service (HNS) is the global name 
service we have constructed to address these problems 
[37, 381. Primarily because of problems of consistency, 
we have chosen not to perform reregistration in HNS, 
but to use the local name services directly to store the 
data associated with the global name space. 

STRUCTURE OF THE HNS 
The HNS provides a global name space accessible in a 
uniform manner throughout the heterogeneous envi- 
ronment, and a facility to associate data with those 
names. Rather than directly storing the data associated 
with a global name, the data are maintained in an 
existing name service, where they are associated with 
some name local to that name service. Viewed at the 
highest level, the HNS provides mappings between the 
global. name for an object and the name of that object 
in its local system, while the local name service per- 
forms the final name-to-data mappings. 

Each HNS name contains two parts, a context and an 
individual name. The context portion of an HNS name 
determines the specific name service used to store data 
associated with that name. The individual name com- 
ponent determines the corresponding local name with 
which the data are associated in that service. In the 
simplest case, the individual name is simply equal to 
the local name, although more sophisticated schemes 
are allowed. The HNS name for an ArpaNet host might 
have a context BIND - hosts and an individual name 
samar.cs.washington.edu. 

Although the HNS does not impose any restrictions 
on the syntax of individual names, it is required that 
there be an invertible mapping between individual 
names within a context and the names of objects in the 
local name service. This ensures that HNS names are 
conflict-free. Because the HNS guarantees that only 
a single name service maintains information on objects 
in any one context, it is not possible for distinct name 
services to create name conflicts in the HNS. 

Another problem that arises is that local name ser- 
vices may store equivalent data in different formats or 
store similar but not identical information of a particu- 
lar type. For instance, BIND and Clearinghouse [33] 
servers both contain host machine name-to-address 
mappings, but accessing and decoding this information 
are done differently in each case. 

Ideally the HNS should insulate the client program 
from this semantic heterogeneity. In particular, it 
would be unmanageable to require every client program 
accessing the HNS to understand the semantics of each 
underlying name service. If this were the ca.se, every 
client would have to be modified and recompiled when- 
ever a new system type was added to the environment. 

The HNS cannot relieve client programs of the 
burden of understanding the interfaces, formats, and 
data semantics of the local name services without 
having some name-service-specific code to support this. 
In the HNS this code is encapsulated in a sei of HRPC- 
accessible routines called name semantics mlanagers 
(NSMs). Each type of HNS query is supported by a set of 
NSMs with identical interfaces, with one NSM for each 
local name service. (Figure 4 contains a diagram of the 
logical structure of the HNS.) Because they are remote 
procedures, NSMs can be added to the system dynam- 
ically, without recompilation of any existing code. 
When a new system is added to the HNS, we construct 
NSMs for that system and register these NSMs with the 
HNS; the data stored in them become available through 
the HNS. Individual data records in the name services 
are not registered explicitly with the HNS. 

Although the number of NSMs grows in proportion 
to the number of query and system types, it is impossi- 
ble to avoid this complexity. It is an inherent aspect of 
a heterogeneous environment that code to deal with 
each different system type must exist somewhere. We 
believe that the structure we have created, with NSMs 
separate from the HNS itself, is the most natural one in 
terms of ease of use and management. 
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FIGURE 4. HNS Query Processing 

HNS Name Lookup Procedure 
The logical structure of the HNS and the process fol- 
lowed in satisfying an HNS request has two phases (see 
Figure 4). In the first phase, the client program calls the 
HNS using HRPC. The client passes the HNS a name 
and a query type indicating the type of data desired 
about that name (e.g., mailbox or telephone number). 
The HNS uses the query type and the context portion 
of the name to determine which NSM is in charge of 
handling this query type for this context. The HNS 
then returns a Binding for the NSM to the client. 

In the second phase, the client uses the returned 
Binding to call the NSM, passing it the name and 
query type parameters as well as any query-type- 
specific parameters. The NSM then obtains the re- 
quested information, usually by interrogating the name 
service in which it is stored (although any technique, 
such as looking in a local file, may be employed). This 
information is then returned to the client. (Figure 4 
shows two ways-through BIND or through Clearing- 
house--that the second phase can be satisfied, depend- 
ing on the name passed to the HNS in the first phase.) 

Every name provided in an HNS request is fully 
qualified. Any abbreviations or nicknames must be 
transformed to fully qualified names by other utilities 
before they can be passed to the HNS. Especially in 
large or highly heterogeneous systems, the user may 
require considerable help in dealing with the global 
name space, making this separation appropriate. 

Separating the NSMs from the HNS incurs the ex- 
pense of an additional HRPC call over a scheme where 
NSMs are part of the HNS. Nevertheless, this separation 
is essential to managing long-term growth, as it sepa- 
rates the query-type-specific interfaces from the HNS 
and moves them out to the more easily managed NSMs. 

Although the above procedure indicates the logical 
process followed in satisfying HNS requests, an imple- 
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mentation need not be structured in just this manner. 
For specific query types, it is possible to trade a de- 
crease in management convenience for an increase in 
performance by making particular NSMs local to either 
the HNS or the client code. For instance, NSMs that 
support HRPC binding might be contained in the same 
address space as the HNS, permitting a client query to 
be satisfied with a single HRPC call from the client to 
the HNS and a single local procedure call from the HNS 
to the appropriate NSM. Alternatively, a particular 
client might determine that a specific query type is 
crucial to its performance. In that case copies of the 
corresponding NSMs could be placed in the client’s 
address space, so that local rather than remote calls to 
them can be made. Finally, caching can be employed to 
improve response times to requests [39,43] at the cost 
of increased code complexity. 

Prototype Implementation 
Although the HNS is logically a centralized facility, its 
implementation must be distributed and replicated for 
the usual reasons of performance and availability. Be- 
cause the implementation problems associated with 
these properties are for the most part successfully ad- 
dressed in existing name services, we choose to ease 
our implementation effort by making use of an existing 
name service in storing the HNS’s map from contexts 
and query types to NSM information. In particular, a 
modified version of BIND is used for this purpose. The 
key modification allows dynamic updates, since stan- 
dard BIND maintains only static information that is 
loaded from a file when the program is initialized. 

The prototype HNS implementation supports a lim- 
ited number of query types, including HRPC binding. 
This implementation illustrates the utility of several 
aspects of the HNS design. First, the use of existing data 
rather than reregistered data has the advantage that 
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services running in the underlying systems are gener- 
ally available to HCS clients without the need to regis- 
ter new information with the HNS. Because of this, 
client programmers can conveniently make use of other 
network services, while changes and additions to the 
underlying service registration information are auto- 
matically reflected through the HNS to HCS clients, 
alleviating problems of consistency and scalability. 

In addition to these client-perceived benefits, the 
HNS provides implementation-level structure for deal- 
ing with the heterogeneous naming semantics of HRPC 
binding in a modular fashion. This structure is manifest 
in the NSM code for doing binding using each of the 
underlying name services (BIND and the Clearinghouse 
in our prototype implementation). Each of these mod- 
ules deals with a single name service and a single 
query type, rendering their code manageable and 
easing the task of adding new RPC and name services 
to the existing network. 

REMOTE COMPUTATION 
One a.dvantage of a distributed system is its potential 
for resource sharing. Availability of a single network 
resource can remove the need for replicating that re- 
source on each computer. A typical network includes 
resources of several types, including computational 
resources such as high-performance processors, input/ 
output resources such as mass storage or printing facili- 
ties, and software resources such as special-purpose 
programs. 

Remote computation-the remote execution of a 
program or service-is one means by which these re- 
sources can be accessed. Access to network resources 
can be provided in several ways. A common scheme 
is to grant each user an account on each system; tools 
such as remote login and network file transfer programs 
allow manual use of facilities. There are three problems 
with t.his approach. First, providing accounts on each 
system may be difficult; it should be possible to permit 
a user to access a service without providing general ac- 
cess to the machine on which it runs. Second, a user is re- 
quired to understand the operation, command language, 
etc., of each of the systems used. Third, users waste 
a significant amount of time executing remote login 
and file transfer programs to access remote facilities. 

Many systems now provide tools to simplify remote 
access and aid in remote computation. For example, 
UNIX system commands such as rsh, rep, and rdist 
simplify distributed access within a network of UNIX 
mach:ines, particularly when used together with shell 
scripts. Integrated networks, such as Locus [45], Apollo 
Domain [30], Newcastle Connection [El, VAXclusters 
[28], and Eden [2], provide transparent access to net- 
work computing or storage facilities. Several other sys- 
tems provide a framework for defining specific network 
servers and remote clients; for instance, UNIX Maitre’d 
[5] and Xerox Summoner [21] are both capable of locat- 
ing lightly loaded servers (for load sharing), transferring 
files, etc. Dannenberg’s Butler system [15] similarly 

considers these issues, as well as more general prob- 
lems of resource and access control. 

These tools and services all operate within a homo- 
geneous hardware or operating-system environment. 
In a heterogeneous environment, remote computation 
becomes both more desirable and more difficult. It is 
more desirable because, by definition, the network con- 
tains systems with different capabilities that users wish 
to exploit. It is more difficult exactly because of this 
variety. 

Remote computation facilities must solve a number 
of problems, regardless of the degree of heterogeneity. 
The creator of the client interface must be able to pass 
command options to the service. The client must send, 
or the server must request, files that are needed for 
execution. Locating files may be complicatesd, particu- 
larly when file names are not explicitly specified in the 
command string. For example, some text processors 
maintain auxiliary files that describe the structure of a 
document; these are read if they exist and are created 
otherwise. More troublesome, there may be input re- 
quirements that become known only during, execution. 

Some problems in remote computation are more spe- 
cific to heterogeneity. One fundamental problem is the 
naming of objects. For example, the structure of file 
names may differ on the client and server machines. 
This may include the syntax of file names, the specifi- 
cation of directories, and the specification of devices or 
even machines on which those files reside. (Conven- 
tions for naming may be different; compiling the pro- 
gram myprog may produce a. out on one system and 
myprog . ob j on another. 

Even describing the service to execute is complicated 
by heterogeneity. For example, most application pro- 
grams permit the specification of options. The syntax 
and semantics of the options will differ on different 
systems; optimized compiler output may be specified 
by following the compile command with -0, with 
/optimize, or even by selecting a menu item. In addi- 
tion to the options specified when a program is run, its 
execution often depends on its environment; that is, 
contextual information provided by the user and the 
operating system, including logical names or aliases, a 
default directory, a directory search path, and some 
invisible files used by the service for input and output. 
Each system has a different environment that must be 
communicated between the client and server. 

Another problem typical of any heterogeneous com- 
munication is translation of data. Translation must oc- 
cur on the client side, server side, or both sides, de- 
pending on the approach taken. This translation can 
be handled at a level below the application, as demon- 
strated by our HRPC system. 

Finally, error handling will differ on the client and 
server. In particular, error messages generated on the 
server may be nonsense when read in the context 
of the client. A remote computation system must be 
aware of the possible error conditions so that they may 
be reported sensibly to the client. 
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The HCS Environment for Remote Execution 
Our goal is to simplify the construction of remote ser- 
vices in a heterogeneous environment. A service may 
run on multiple system types or only on a single sys- 
tem. In either case, however, it should be easy to access 
the service through a collection of heterogeneous 
clients. We require that, wherever possible, no modifi- 
cation of service program code be needed to make that 
service remotely accessible. The reasons for this goal 
are that sources for some services (e.g., compilers or 
formatters) may not be available and that maintaining 
modified sources for a variety of implementations over 
multiple releases would present serious problems. 

From the user’s point of view, the interface to a re- 
mote service should be identical to the interface for a 
local service. Thus, if a service is available both locally 
and remotely, invocation of the service should use the 
same command syntax, option names, etc., even if the 
remote system requires different syntax. One visible 
difference may be that some services will execute 
asynchronously with respect to the user’s session, 
perhaps even running in the background. 

We have designed and prototyped a remote computa- 
tion system called THERE: the HCS environment for 
remote execution [6]. THERE is a facility for construct- 
ing remote execution clients and servers in a heteroge- 
neous network. THERE simplifies the addition of new 
network services and aids the service developer in 
handling some of the problems mentioned above, in- 
cluding communication of command information, name 
translation, and file transfer. 

The basic structure of THERE is shown in Figure 5. 
Both client and server execute copies of the THERE 
interpreter-a generic front-end. On the client side, the 
interpreter provides the communications path to all 
available THERE network services. The interpreter 
parses the user’s command line and sends any needed 
data to the appropriate server. On the server side, the 
interpreter manages a remote computation session with 
all services available on a particular node. The server- 
side interpreter receives requests from clients, estab- 
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lishes the appropriate execution environment, and exe- 
cutes the service or spawns a task to do so. The server 
determines needed files and requests them from the 
client through special function calls. File requests and 
file data are shipped using the HRPC mechanism. 
Client and server interpreters are nearly identical with 
the exception of system-local functions and the knowl- 
edge of which role is being played. Of course, they may 
have different implementations on different architec- 
tures. 

To make a new service available on a THERE server 
machine, the service builder must first decide what 
information is needed from clients, what processing 
will need to be done locally, what environment will be 
needed for execution, and what data will be returned 
to the client. Based on these decisions, the service 
builder codes a THERE programming language (TPL) 
program, which is a high-level description of the ser- 
vice. The TPL program defines the information to be 
exchanged between server and client, the steps needed 
to process that information, and the steps required to 
create an appropriate environment to execute the de- 
sired service. A different server-side TPL program must 
be created for each system type on which the service 
runs. 

Similarly, a client TPL program exists for each client 
system that can access a service. When a user issues a 
remote computation request, the appropriate client TPL 
program is selected by the interpreter. That TPL pro- 
gram processes the command line, gathers environmen- 
tal information, defines input/output relationships, and 
communicates that information to the server. 

The information exchanged between client and 
server is determined by variables that are exported 
by the client and imported by the server. The server 
TPL program for a specific service declares a set of 
variable names, for example, InputFileName and 
Optimizeswitch. The corresponding TPL client 
program declares similar variable names and binds 
invocation-specific values to those variables. When 
the interpreted client TPL program has completed its 

User 
command - 

line 

HRPC data requests 
THERE 4 

THERE - 
client service Service 

interpreter * interpreter -* 
HRPC 

service request 

TPL TPL 
client server 

program program 

FIGURE 5. Structure of THERE 
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processing, it tells the interpreter to execute the re- 
quested service remotely. The interpreter then uses the 
HRPC service to send exported variables and their val- 
ues to the server-side interpreter. One parameter of 
the HRPC call specifies the requested service so that 
the server interpreter will know which TPL program 
to execute. 

TPL provides a number of standard programming 
language features, for example, the ability to loop, com- 
pare and branch, build lists, and process strings. The 
TPL program may also specify local execution of pro- 
grams to pre- or postprocess files on either the client 
or server side. Furthermore, TPL contains a number of 
functions specific to processing remote computation 
requests in a heterogeneous system. For example, there 
are built-in functions to create local file names of var- 
ious file types. Typically, a server will receive file 
names from the client and must create system-local 
names with which to store those files. The server must 
remember the relationship between the client name 
and the server name, and must also associate created 
output files with the input files from which they were 
constructed. In this way the interpreter can produce 
the reverse mapping from server output file name back 
to a cl:ient output file name. 

THECRE has been used to construct a number of re- 
mote services, including one that successfully sup- 
ported an undergraduate course by providing remote 
access to graphics capabilities on IBM PC/RTs, and an- 
other that allowed students in graduate courses broad 
access to an Ada compiler that ran only on a single 
node. 

MAIL 
Electronic mail is perhaps the most ubiquitous hetero- 
geneous service. The number of users interconnected 
by an amalgam of networks is enormous and increasing 
rapidly. Given that most mail systems are already inter- 
connected, why are we providing a mail service? De- 
spite this general interconnection, the mail service pro- 
vided to users across systems is often primitive relative 
to that provided within individual systems. For in- 
stance, replying to users is often unsuccessful due to 
differences in addressing syntax. The HCS mail system 
(HMS) [ho] improves the quality of the mail service 
among interconnected systems, while easing the inte- 
gration of new mail systems. 

There are two major models of distributed mail ser- 
vices: host-based and server-based. The host-based model 
represents the services that have evolved from the orig- 
inal messaging services on time-shared hosts. The most 
distinctive characteristic of this model is that user mes- 
sages are maintained by the mail system in files on the 
local host; network facilities transfer messages between 
hosts. The services on UNIX and VMS machines are 
examples of the host-based model. The server-based 
model represents the services that have been con- 
structed explicitly for networks of computers. The most 

distinctive characteristic of this model is that user mes- 
sages are maintained by the mail system on special 
mail servers. The Grapevine [g] service is a prototypical 
example of the server-based model. 

Attempts to solve many of the problems of heteroge- 
neity in the host-based model are best characterized 
by the sendmail internetwork mail router 1.11. The 
se ndma i 1 program relies heavily on a configuration 
file that encapsulates information about heterogeneity. 
For example, the configuration includes a set of address 
rewriting rules that define translations to be applied 
during name resolution, thereby supporting resolution 
of addresses with different syntax. The evolutionary 
nature of the host-based model, however, results in a 
mail service that falls short in three key ways: addressa- 
bility (it is hard to determine the addresses of recipi- 
ents, since addresses in the host-based model include 
information about the host to which the mail should be 
delivered), availability (a single host-the one on which 
a user receives mail-controls the availability of that 
user’s mail), and accessibility (users must login remotely 
to read mail while using a machine that is not their 
mail host). 

The server-based model lessens the problems associ- 
ated with the host-based model. For instance, in Grape- 
vine each user is associated with a set of mail servers 
rather than an individual host. Mail is delivered to any 
available server in the set; mail is received by querying 
all available servers in the user’s set. The addressing 
problem is simplified since each user has only one 
name throughout the system, rather than one for each 
host in the system. The availability and accessibility 
problems are reduced since no single host is responsible 
for all of a user’s mail submission and retrieval. Server- 
based approaches, however, have so far been limited to 
homogeneous environments. (Systems such as Grape- 
vine are connected with the rest of the world through 
gateways that act as mediators between the two 
models.) 

The HMS Approach 
The goal of the HMS is to accommodate heterogeneity, 
including the host-based model, while solving the prob- 
lems of addressability, availability, and accessibility in 
the style of the server-based model. It must also be 
relatively easy to accommodate new mail systems as 
they become available. Our approach is structured sim- 
ilarly to that of the name service. Our mail service 
must coexist with existing mail services, with users 
permitted to continue using existing, unmodified user 
agents. 

The HMS model consists of four layers. The top layer 
represents the user agents of the HMS. The second 
layer represents the HMS server, which is responsible 
for retrieving and sending mail to and from HMS user 
agents. The third layer represents a set of mail semantic 
managers (MSMs), one for each distinct integrated mail 
system, each of which is responsible for transforming 
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operations in the underlying mail systems to and from together and returned to the user agent. When a user 
HMS server operations. The bottom layer represents the sends mail from an HMS user agent, the same mappings 
existing mail systems themselves. The HMS server and are done. The difference is that the HMS server looks 
the MSMs are remote servers, allowing interaction for a single MSM to succeed in sending the message, 
through the HRPC facility. since only one instance of the message need be sent. 

The basic objective of the HMS server is to imple- 
ment the server-based model across heterogeneous mail 
repositories, such as mail servers and local spool files. 
In our prototype we integrate the UNIX mail system 
with the Xerox Clearinghouse mail system. We could 
not make the HMS server specific to these two systems, 
however, without increasing the difficulty of integrat- 
ing a new system later. So, we implemented the HMS 
server in terms of an abstract interface, including oper- 
ations to get and deliver messages, that the individual 
MSMs must implement. This structure makes it easy 
to have the HMS server check all repositories on mail 
reading and any repositories on mail sending, regard- 
less of whether the mail repositories are mail servers, 
files, or a mixture of the two. 

Our model and prototype are related to both the 
Cornell Bridge system [17] and Norman system [13], 
but we provide richer interconnection and a structure 
more suitable for integrating additional mail systems. 
The X.400 effort [14], also called MHS (message han- 
dling system), intends to connect different systems 
using a particular message format and protocol suite; 
this contrasts with the HMS, which does not attempt 
to define such standards. The HMS could provide 
interconnection between X.400 services and other 
mail services by defining an MSM for X.466. 

FILING 

In addition to the uniform interface between MSMs 
and the HMS server, the model requires that the HMS 
server provide a uniform interface to HMS user agents, 
so that introduction of new mail systems does not ne- 
cessitate changes to the user agents. The interface is 
identical to that provided by MSMs, except that the 
operations apply to all of a user’s mail repositories, 
rather than the specific one associated with a given 
MSM. 

We have approached heterogeneous filing in two ways: 
The first effort defined a centralized file service that 
permits the storing and retrieval of multiple representa- 
tions of the same data. The second effort is structured 
more like that of the naming service, where existing 
file systems are used as the basic medium for storing 
data. (In contrast to the other facilities and services, our 
efforts in filing have to date been more investigational 
than production oriented.) 

The HMS server maintains several databases that 
map names to information about users, services, and 
distribution lists. These databases are used to control 
mail delivery and retrieval, as well as naming transla- 
tion across the different mail systems. Through careful 
use of indirection, we avoid reregistering information 
from underlying mail systems (such as alias databases) 
into these HMS databases. The mailbox database main- 
tains mailbox information for each HMS user, each of 
whom might have mailboxes in multiple mail systems. 
The entry for each user indicates to the HMS server 
which repositories are associated with the user. Each 
user has a unique HMS name associated with the ap- 
propriate master mailbox list. Each HMS name must be 
unique, since each HMS user has its own master mail- 
box list. Since an HMS user may invoke the HMS from 
any local system, the HMS must provide a mapping 
from each user’s name to the user’s HMS name. This 
many-to-one mapping is represented in the HMS’s 
global alias database. 

Both efforts have many similar premises drawn from 
the needs of a heterogeneous environment. In most ho- 
mogeneous file systems, the storage of data alone allows 
information to be shared: The file system accepts and 
delivers streams of raw bytes. In a heterogeneous envi- 
ronment, storage of data is not the same as storage of 
information. Consider a stream of data consisting of a 
sequence of records, each containing an integer, a char- 
acter, and a floating-point number, written by a Mesa 
program on a Xerox workstation. To read these data 
into a Pascal program executing under VMS, trans- 
ferring the bytes is not enough. It is also necessary to 
address the heterogeneity of the programming lan- 
guages, operating systems, and underlying hardware. 
Language heterogeneity means that record packing and 
padding characteristics differ. Operating-system hetero- 
geneity means that the file system calls used by the two 
programs may differ, as may the underlying file struc- 
tures. Hardware heterogeneity means that the byte or- 
dering of integers and the representation of floating- 
point numbers differ. 

The basic operation combines the server-based ap- 
proach with the indirection of the HNS. When a user 
reads mail from an HMS user agent, the user’s local 
name is mapped to his or her HMS name, using the 
global alias database. Using this name the list of mail 
repositories is retrieved from the mailbox database. The 
HMS server then iterates through the MSMs associated 
with every one of these repositories (the mapping to the 
MSM is included in the database), invoking the desired 
retrieval operation. The messages retrieved are merged 

Our approach to both language and hardware hetero- 
geneity is to rely on the HRPC facility, which accounts 
for the differences in data representation. We do not 
attempt to overcome operating-system heterogeneity. 
Instead, our filing service is not transparent: Client 
programs are required to distinguish between access 
to local file systems and the HCS filing service. Non- 
transparency, which is embraced by other file systems 
such as those from Xerox PARC [ll, 3.5, 361, is necessi- 
tated by our assumption that the code of existing sys- 
tems cannot be modified. 
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A Centralized Approach 
In the first approach to filing, we viewed writing a file 
from one system and later reading it from another as 
similar to a very slow RPC. Like an RPC, a user writes a 
record from one machine and later reads the logically 
equivalent record onto another. Any necessary repre- 
sentational changes are automatic. For this to be possi- 
ble, each file is considered to be a sequence of typed 
records. The record type is described, using the HRPC 
interface description language, when a file is created. 
The type is stored along with the file, and a mechanism 
ensures that programs reading records from the file in- 
terpret the data correctly. Just as we allow multiple 
data representations in HRPC, we permit files to be 
stored on disk in any legitimate HRPC format. 

The benefits of accommodating multiple represen- 
tations rather than defining a standard representation 
hold in filing as well as in HRPC. Besides being poten- 
tially faster, storing the RPC format avoids any loss 
in acc:uracy from unnecessary conversions. Although 
the prototype server is implemented using HRPC, the 
clients typically run their own native RPC; hence, it is 
the data representations of these native RPCs that are 
stored by the file system. 

The prototype is composed of a type server, a file 
server, and a mechanism for generating routines for 
accessing the file system. The type server provides stor- 
age for the file type database, assigning a unique identi- 
fier to each distinct type. To avoid problems of circular- 
ity, we implemented a separate type server, rather than 
storing type information in the HCS filing service. The 
file server provides directory, read, and write opera- 
tions. The directory operations include list, delete, and 
create directory. Files are immutable, permitting read- 
ers to open and read from the random access files at 
any time. 

Reading and writing are implemented using generic 
routines parameterized by the type of file record, allow- 
ing accommodation of an increasing number of file 
types without requiring recompilation of the server. 
These server routines receive RPC calls from a client, 
demarshaling the arguments according to the file type. 
Although the same technique could have been used by 
clients, the lack of support for polymorphism in most 
programming languages makes it less than elegant; 
even naming the read and write routines for different 
types is clumsy. Instead, we modified the HRPC stub 
generator to produce type-specific client stubs, easing 
the creation of read and write routines specific to a 
given language and file type. The modified stub genera- 
tor also registers new file types with the type server. 

The file system is used either through standard util- 
ity programs, such as get-text-file and put - 
text - f i 1 e, or by reading and writing individual rec- 
ords under program control. To write a program that 
uses the file system, the user first describes the file 
record types in Courier IIJL, extended with a new key- 
word FILETYPE. This description is then compiled 
with our modified HRPC stub compiler, producing a set 

of stubs specific for reading and writing files; of each of 
the declared types. 

The implementation of the polymorphic server rou- 
tines that accept type parameters was complex given 
HRPC’s statically typed call model. We needed dynamic 
typing, and only a small change to the HRPC stubs, in 
combination with a dynamic parameter demarshaler, 
gave us this capability. The dynamic demarshaler is 
implemented as a procedure that accepts a record type 
and two HRPC Bindings. It reads bytes from the input 
Binding, breaking them up into data types according 
to the record type and input format, and then writes 
the same data to the output Binding, using the output 
format. The Bindings can represent any combination 
of RPC components; as a result it is possible to convert 
between any of the supported formats. If the Bindings 
have the same format, then a simple copy is done. 

The Face-Finger Service used as an example under 
“Remote Procedure Call” is in fact based on our proto- 
type implementation of this approach to heterogeneous 
filing. The data for each user are stored in a separate 
file. When a client wants the information, it makes 
calls to the filing service to open and read the appro- 
priate file. Because of record typing, all necessary data 
conversions are done at the server, and the client re- 
ceives the data ready to display. Of course, a client 
need not conform to the baseball card format. For ex- 
ample, an initial prototype client just displayed the text 
information and ignored the picture. Another client 
might take advantage of the tagged data and display the 
office and office phone number side by side, something 
that would not be possible if all the information were 
contained in one homogeneous string. 

This approach to filing is similar to the File Transfer, 
Access and Management (FTAM) effort [23], an IS0 
standard that provides remote access to files. FTAM 
defines a large, general interface that must be provided 
across all participating hosts. FTAM access is available 
to those files stored in a special FTAM file siore. To 
make a file available through FTAM, the user must 
write a type description and then place the file in the 
FTAM store. 

A Decentralized Approach 
Our first approach (and the FTAM approach) has at 
least two drawbacks: The shared files are seyparate from 
the conventional local files, and each file must have an 
associated, and often cumbersome, type description. 
These problems have led us to explore an alternative 
approach, based on a structure similar to that of HNS, 
that allows us to overcome these differences in the 
same ways that NSMs overcome differences in syntax 
and semantics of name services. This approa.ch is in 
some sense the heterogeneous analogy to mounting 
pieces of a global file system in a distributed, homoge- 
neous environment. 

This effort adopts a much different approach than 
the first. Rather than requiring that shared files be kept 
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in a separate, logically centralized service, we attempt 
to provide sharing of all files stored in the union of the 
file systems available on each of the systems in the 
environment. Just as in naming, the advantage of this is 
that no explicit reregistration step is needed. Not only 
is this more convenient for creators of new applica- 
tions, but existing software that manipulates local files 
only can run unaltered with its results still being avail- 
able to all of the environment’s systems. Because we do 
not impose a structure on existing files, the approach 
focuses on providing an access method for these files. 

As demonstrated by the first prototype, HRPC can 
handle data representation heterogeneity if knowledge 
of the data types of the file contents is available. So, 
finding the data type of each item stored in the file 
then is our first problem. The type server of the first 
approach is unsatisfactory, since it requires significant 
reregistration of information, which we wish to avoid. 

Since there is no stored type information available 
on the files stored locally, either the client must pro- 
vide the type, or else the type must be inferred. In 
the first case, the client provides the type information 
when opening a file. This is an approach commonly 
employed in homogeneous environments, where no 
type checking of file contents occurs. Unfortunately, it 
is not reasonable to expect the client opening the file to 
know this information, since it may depend on the sys- 
tem on which the file is stored and the client is igno- 
rant of that information. Instead, we infer the types by 
using sets of system-specific defaults, based on informa- 
tion such as file name extensions. Exceptions to these 
defaults can be registered explicitly; hence, the infor- 
mation stored is proportional to the number of excep- 
tions rather than the number of files. A similar problem 
was solved in using the naming service to perform 
HRPC binding [37], so we are reasonably confident of 
the approach. 

Another reason we have avoided having clients des- 
ignate the file type is that we wish to provide generic 
file operations in our heterogeneous environment. A 
typical example is compare, which should be defined 
to compare two files for equality regardless of the types 
of files. Type inference allows us, in cases where infer- 
encing succeeds, to construct generic programs. 

The file typing problem goes even deeper in some 
heterogeneous environments. Whereas UNIX supports 
only a single, very simple file type (a stream of bytes), 
other file systems support multiple organizations. 
HRPC’s support for translation does not solve this prob- 
lem directly, since different organizations may require 
translations at both the basic data-type level as well as 
the organizational level. 

We are in the process of implementing the prototype 
for this approach to filing. Once it is completed, we 
intend to use it as a base for continuing our research 
into several topics, including organizational transla- 
tions, run time performance measurements, and simply 
determining the effectiveness of this style of shared file 
system. 

INTEGRATING A NEW SYSTEM TYPE 
Significantly reducing the cost of integrating a new sys- 
tem type into a computing environment is the primary 
goal of our work. What does this integration actually 
entail? 

The first task in accommodating a new system is to 
allow it to communicate with the HRPC facility. Sys- 
tems that already have a native RPC system are gener- 
ally straightforward to integrate. In these cases the new 
system need not be modified at all. Instead, HRPC must 
be updated to incorporate all components of the native 
RPC that are not yet known by HRPC. Commonly the 
transport protocol will already be known by HRPC, 
whereas others, such as the binding and control proto- 
cols, may have to be defined. 

Systems with no native RPC system require an im- 
plementation of one. Typically we would implement 
a subset of HRPC: one instance of each of the compo- 
nents. In many cases at least a suitable transport pro- 
tocol will already exist and can be adapted merely by 
providing a thin veneer. For the other components, 
code that implements any HRPC-understandable in- 
stance can be ported to the new system. Only in situa- 
tions where a component does not exist and cannot be 
ported to the new system must a new piece of code be 
written. In the worst conceivable case-a system with 
no native RPC, no existing components, and no possi- 
bility of porting code from another machine-the situa- 
tion is no worse than the pre-HCS situation in which a 
full RPC system must be implemented from scratch. 

In all three cases, clients and servers on the newly 
integrated system can talk to any clients and servers in 
the core HRPC system. In situations where one wishes 
to broaden the scope of systems with which the new 
system can communicate, either more instances of each 
RPC component must be constructed for the new sys- 
tem, or service-specific bridges must be constructed on 
some full-HRPC system. 

The second task in accommodating a new system is 
to integrate it into the HNS. If there is a native naming 
service on the system, and the service is one that has 
already been incorporated in the HNS, then the integra- 
tion is already complete. But, if the system uses a na- 
tive naming service that has not yet been integrated 
into the HNS, the new native naming service must be 
registered with the HNS, and NSMs must be defined for 
all appropriate query types. Both of these cases permit 
existing clients of the native name services to continue 
working without change. New clients can use the 
newly defined HRPC support to access the HNS di- 
rectly. After the HRPC and HNS facilities are supported 
on the new system, the remote computation, mail, and 
filing services must be installed. 

Installing support for remote execution on a new 
node is largely a matter of implementing TPL interpret- 
ers for the new system and adding any needed local 
function. Often the implementation of TPL interpreters 
will be a simple port, although occasionally a more 
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significant effort might be required. Once the interpret- 
ers are built, existing clients and servers can be used, 
and new clients and servers easily created. 

Integrating a new mail system requires three steps: 
First, MSMs for the new mail system need to be built; 
in our prototype, MSMs were crafted using significant 
chunks of code from UNIX and Xerox user agents. Sec- 
ond, at least one user agent that uses an HMS server for 
mail delivery and retrieval must be built; this can be 
done by porting HMS user agents to the new environ- 
ment or else modifying existing user agents of the new 
mail system to access the HMS server. Third, the new 
mail system’s delivery agent must be configured to use 
an HMS server as its delivery mechanism. This is gen- 
erally a minor task since most mail systems have some 
config,uration mechanism to specify the location of 
gateways servicing nonlocal mail networks; if such a 
change is impossible, all user agents in the new mail 
system must be modified to use an HMS server. 

Since both approaches to filing are based on non- 
transparent calls, constructing new clients is relatively 
simple. In the first approach, the type and file servers 
can be used without change, but read and write stubs 
must be defined to construct clients on the new system. 
If the core HRPC system has been built for the new 
system, the stub generator for the file service will be 
similarly easy to build. If the new system has only its 
native RPC system, then the stubs can be generated by 
hand or, more likely, by modification of the stub gener- 
ator for the native system. No servers need be defined 
for the first approach, of course, since the centralized 
servers are already available. To define clients, the sec- 
ond approach requires only the availability of HRPC. 
To integrate the new native filing system, the filing 
service equivalents of NSMs need to be defined, just as 
for the HNS. 

CONCLUSION 
Our initial interest in heterogeneity came from two 
directions. One was our belief that the ever-growing 
interconnection of diverse systems is leading to a situa- 
tion in which we will be hard-pressed to easily take 
advantage of the broad set of resources available 
throu,gh this “meganet.” The other was the specific 
problems we face every day due to heterogeneity in our 
local computing environment. Our work is drawing us 
closer to meeting our day-to-day needs. This experi- 
ence i,s giving us insight to solutions that may apply in 
the broader case. 

Although each of our network facilities and services 
was designed to meet specific goals, a number of com- 
mon themes exist: 

l Emulation. We do not integrate heterogeneous sys- 
tern... by defining new standards that all systems must 
support. Instead, we build software that can emulate 
rela.tively easily a range of existing facilities. We ac- 
complish this emulation by factoring the design of 

subsystems into easily replaced parts. HRPC is the 
best example of emulation. 

Localized translation. Different systems store and 
interpret shared information in different ways. With 
many system types, centralizing the responsibility for 
all combinations of translations is unmanageable. In- 
stead, we place this responsibility for translating be- 
tween representations in the hands of the entities 
that know the most about it. One specific kind of 
translation-the type conversions that arise in every 
facility and service-is automatically managed as 
much as possible. The HNS’s NSMs are another ex- 
ample of localized translation. 

Procrastination. We make decisions, such as those 
involved in binding, as late as possible. This permits 
us to place less specific information in the code itself, 
making it easier to accommodate new systems. Pro- 
crastination is facilitated by factoring, since choices 
about how to select an individual component can be 
delayed without significant modification of code. 

Complex services and simple clients. To allow the cre- 
ation of new clients at significantly reduced costs, we 
must increase the sophistication of many services. 
By complexity we do not mean that we define more 
extensive and difficult-to-use interfaces to services; 
indeed, the interfaces must be simple to ease con- 
struction of the clients. Rather, we mean that the 
function performed by the service is often more com- 
plex and time consuming than might be desired in 
the absence of the problems posed by heterogeneity. 

We believe that “heterogeneity through homogene- 
ity,” that is, defining a new standard that must be ad- 
hered to by all systems, is an approach that Yhas serious 
limitations, especially in the near term. In the best of 
all possible worlds, standardization would al.low diverse 
systems to communicate and to share infrastructure. 
There is little indication, though, that the current trend 
toward ever-greater diversity will reverse itself quickly; 
an interim solution is needed. Hence, emulation and 
accommodation are hallmarks of the HCS approach. 
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