
SPEClAiL SECTION

INTERCONNECTING HETEROGENEOUS
COMPUTER SYSTEMS

A software stmcture created by the Heterogeneous Computer Systems
@KS) Project at the University of Washington wus designed to address the
problems of heterogeneity that typically arise in research computing
environments.

DAVID NOTKIN, ANDREW P. BLACK, EDWARD D. LAZOWSKA,
HENR.Y M. LEVY, JAN SANISLO, and JOHN ZAHORJAN

Hardware and software heterogeneity arises in many
computing environments for many reasons. In our own
environment-an academic department with a signifi-
cant experimental research component-heterogeneity
arises because experimental computer research is often
best conducted on a high-level test bed (e.g., Lisp and
Smalltalk machines, multiprocessor workstations), and
because such research often produces unique hard-
ware/software architectures (e.g., prototype distributed
systems, special-purpose image analysis hardware). Our
environment currently includes more than 15 signifi-
cantly different hardware/software systems.

Today’s very loose interconnection of heterogeneous
computer systems (HCS-see Table I for a list of acro-

TABLE I. Glossary

BIND
HCS
HMS
HNS
HFPC
101.
MSM
NSM
RPC
THERE
TPL

Berkeley Internet Domain Server
Heterogefleous computer systems
HCS mail service

i HCS name service
HCS femote procedure call
Interface description language
Mail semantic manager
Name semantic manager
Remote procedure call
The HCS environment for remwe exeoution
THERE programming language

This material is based on work supported by the National Science Foundation
under Grants DCR-8352098. DCR-8420945. and CCR-8611390. by an IBM Fac-
ulty Development Award. by the Xerox Corporation University Grants Pro-
gram, ana by the Digital Equipment Corporation External Research Program.

0 1988 ACM OOOl-0782/88/0300-0258 $1.50

nyms used in this article) poses several significant prob-
lems. One problem is inconvenience. An individual
must either use multiple systems or else accept the
consequences of isolation from parts of the environ-
ment. Isolation is generally unacceptable, so many
users regularly work with several systems, through rel-
atively crude techniques such as multiple terminals/
workstations or Telnet/FTP. A second problem is ex-
pense. The hardware and software of the environment
are not effectively amortized, making it unnecessarily
costly to conduct a specific project on the system to
which it is best suited. One must acquire not only the
system directly required to support the project, but also
the peripheral hardware and software necessary to al-
low that system to function as a largely independent
entity. A third problem is diminished effectiveness. On
many projects, substantial effort must be diverted to
address the problems of heterogeneity; time-consuming
hacks by scientists and engineers who should be doing
other work are the rule, rather than the exception.

The widespread availability of communication proto-
cols such as TCP does not solve these problems, be-
cause constructing new services and applications on
top of such protocols is too difficult. File transfer and
remote terminal programs also are insufficient, since
their users must explicitly manage multiple machines.

Our particular approach to accommodating heteroge-
neity [lo] is motivated by several widespread (though
certainly not universal) characteristics of our environ-
ment. We have a large number of system types, but
only a small number of instances of some of these sys-
tem types. New system types are added relatively often.
System types are acquired precisely because of their

250 Communications of the ACM March 1988 Volume 31 Number 3

Special Set

Network services

Filing Mail Remote
computation

I
RPC Naming

Underlying facilities

FIGURE 1. Relationship of HCS Facilities and Services

ability to support specific projects, without regard for
whether heterogeneity is increased. Thus, it must be
possible to incorporate a new system type into the envi-
ronment at low cost and without masking the unique
properties for which that system was obtained. This
leads to an approach that we refer to as “loose integra-
tion through shared network services.” As illustrated in
Figure 1, two underlying facilities-remote procedure
call (RPC) and naming-support a set of key network
services that are adapted to the demands of a hetero-
geneous environment: remote computation, mail, and
filing. Our approach can be characterized in a bit more
detail as follows:

l We provide a set of network services that are made
available to a heterogeneous collection of client sys-
tems through the use of our RPC and naming facili-
ties. The services we have selected are those funda-
mental to cooperation and sharing.

l In both the services and underlying facilities, we
attempt not to legislate standards, but rather to
accommodate multiple standards. This allows the
integration of unmodified or minimally modified sys-
tems.

l We do not attempt to provide existing programs with
transparent access to services. The primary reason is
that we have too many system types to permit cost-
effective development and maintenance of the modi-
fications necessary for transparency. A secondary
reason is that transparency is impossible for systems
in which the source code is unavailable. Transpar-
ency can be provided for specific system types if suf-
ficient use exists to warrant the investment and if
the required source code is available.

l We focus on system heterogeneity rather than lan-
guage heterogeneity. Just as we cannot generally jus-
tify the effort to support transparent access to ser-
vices, we cannot commit to providing complete inte-
gration of programs written in different languages.
Existing solutions to the “easy 80 percent” of the
language heterogeneity problems will suffice for our
purposes.

Each of the individual facilities and services reflects
this approach.

The HCS RPC (HRPC) facility utilizes a modular de-
sign that, by appropriate selection of implementations
at run time, can be made to emulate a wide variety
of existing RPC facilities. Thus, the central core of
HCS-those systems on which the HRPC facility has
been implemented-can easily be adapted to commu-
nicate with a new system type.
The HCS name service (HNS) creates a global name
space that accesses names and data from existing
name services. By using data in existing name ser-
vices, rather than reregistering data into an entirely
new name service, existing clients can work with
their name services without change, and new clients
of HNS need not make changes when a new under-
lying name service is introduced.
The HCS remote computation service provides a
generic mechanism by which services can be exe-
cuted remotely. Each remote service includes a de-
scription of its required inputs and outputs, the steps
needed to process the information, and the steps re-
quired to create an environment in which to execute
the service. These descriptions are processed by in-
terpreters that are responsible for passing information
between nodes and for performing any necessary
translation of file names, options, etc.
The HCS mail service (HMS) attempts to improve the
quality of most existing mail services while integrat-
ing services that are based on diverse models. The
mail service is structured like the Xerox Grapevine
mail service [g], but also integrates mail systems such
as UNIX’s@’ sendmail [l]. Abstract mail retrieval
and submission interfaces are defined and imple-
mented in multiple ways, facilitating the integration
of new mail systems.
The HCS filing service is represented by two distinct
efforts: The first approach defines a centralized filing
service that stores files in multiple representations
(based on those used in the HRPC facility). The sec-
ond approach is based on that of the naming facility,
where existing local file systems are used to store
data, and neither the files themselves nor information
about them (such as the file type) need be reregis-
tered.

The role of our work has been to devise approaches,
produce designs embodying those approaches, and test
these designs through prototype implementations. This
article does not represent a “quick packaged universal
solution” to every person’s heterogeneity problems.
On the other hand, the ideas presented here represent
more than “academic speculation,” since implementa-
tions exist in each area, some of which have stood the
test of production use by nonsympathetic audiences.

In related work, other styles of heterogeneity de-
mand somewhat different solutions. MIT’s Project
Athena [4] and Carnegie-Mellon’s Information Tech-
nology Center (ITC) project [31] are two highly visible
efforts. Each seeks to accommodate heterogeneity

UNIX is a registered trademark of AT&T Bell Laboratories.

March 1988 Volume 31 Number 3 Communications of the ACM 259

Special Section

through coherence: enforcing high-level uniformity in
software while permitting implementation on diverse
hardware. Both projects rely primarily on UNIX. Proj-
ect Athena is standardizing on an applications inter-
face, and ITC on a centralized file service.

Another major effort is the MIT Laboratory of Com-
puter Science (LCS) Mercury project, which attempts to
share programs written in substantially different lan-
guages such as Lisp and CLU. The LCS group hopes to
provide a “semantic bridge” between these languages.

The UCLA Distributed Systems Laboratory is con-
cerned with integrating computational resources with a
high degree of transparency. In one approach, they de-
veloped LOCUS [45], a single distributed operating sys-
tem that runs on multiple, heterogeneous machines,
including VAXes, IBM 43OOs, and IBM PC-ATs. In an
alternative approach, they are developing transparent
operating systems bridges [20] with the goal of integrat-
ing m.achines with dissimilar operating systems.

General Motors’ MAP (manufacturing automation
protocol) [3, 271 is an industrial effort to achieve coher-
ence through standardization. MAP is based on the
seven.-level IS0 standard and specifies protocols from
the physical interconnect level to the application level.
At the physical level, a MAP network is based on a
10 Mbit/s, broadband, token-based, coaxial cable.
Device-to-device communications may require con-
formance to lower layers only, while application-to-
application communication will typically require all
seven levels. MAP’s goal is to encourage vendors to
supply hardware and software using MAP protocols.
Thus, MAP attempts to solve the problem of heteroge-
neity by enforcing homogeneity of communication.

REMOTE PROCEDURE CALL
Network communication is the sine qua non of our
work. Although some form of networking capability
is possessed by all systems of interest to us, no single
protocol is shared by all of them. Even among each
subset of systems that share a protocol, the precise
function of and interface to network operations can
differ substantially. This absence of protocol standard-
ization is one serious impediment to accommodating
heterogeneity.

A second, equally serious problem is that, until re-
cently, commercially available network implementa-
tions provided only low-level services. Higher level
functions are generally encapsulated in application pro-
grams such as Telnet, FTP, and NSChat. The absence of
low-level protocol standardization, however, makes it
particularly important that application code be insu-
lated from this layer. Furthermore, building applica-
tions on top of low-level services is beyond the capabil-
ities of most programmers.

One attractive approach to this problem is RPC [a].
An RPC facility provides a user-level mechanism across
the communication network that, as much as possible,
has the same syntax and semantics as local procedure
calls within the application program’s high-level lan-

guage. Hence, RPC supports communication among
application programs while relieving programmers from
concern with data encoding, transport protocol details,
etc. The run time system of an RPC facility is responsi-
ble for mapping the language’s calls and high-level type
system into the facilities provided by the low-level net-
work protocols. Although most RPC implementations
exhibit limitations when measured against the demands
of a heterogeneous environment, the RPC model itself
has various characteristics that make it an ideal vehicle.
One of the few areas of consensus at the 1985 “ACM
SIGOPS Workshop on Accommodating Heterogeneity”
was the appropriateness of RPC in a heterogeneous
environment [32].

To a first approximation, an RPC facility works in
the following way: The client (caller) and server (callee)
modules are programmed as if they were intended to be
linked together. A description of the server interface,
that is, the names of the procedures and the types of
arguments the server implements, is processed, yielding
two stubs. The client stub is linked with the client; to
the client this stub looks like the server. The server
stub is linked with the server; to the server this stub
looks like the client. The stubs shield the client and
server from the details of communication.

The construction and use of an RPC-based distrib-
uted application can be divided into three phases: com-
pile time, bind time, and call time. Compile time involves
the production of stubs, which ideally is done mechan-
ically by a stub generator that processes an explicit
definition of the interface, written in an interface de-
scription language (IDL). Bind time involves the server
making its availability known by exporting itself, and
the client associating itself with a specific server by
making an import call to this mechanism. Call time
involves the transport protocol, control protocol, and data
representation. The transport protocol is used by the
stubs to convey arguments and results reliably between
client and server. The control protocol consists of infor-
mation included by the RPC facility in each transport
packet to track the state of the call, which may require
multiple transport messages. The data representation is
a convention for ensuring data compatibility between
client and server (e.g., byte ordering or record layout).

Existing RPC facilities make significantly different
choices in each of these five areas: compile time sup-
port (including the programming language, the IDL, and
the stub generator), the bind time protocol, and the
three call time protocols-transport, control, and data
representation. Although in principle these choices are
orthogonal to one another, in practice they are inter-
twined in each implementation. As a result, the various
existing RPC facilities not only are incapable of com-
municating with one another, but are also difficult to
modify to make such communication possible.

This need not be the case. As one example, an RPC
facility implemented at the DEC Systems Research
Center is able to employ different transport protocols
between different pairs of systems (personal communi-

260 C:ommunications of the ACM March 1988 Volume 31 Number 3

cation by A. D. Birrell, 1984). This was accomplished by
two steps: First, a clean interface, consisting of three
procedures, was defined between the stubs and the
transport mechanism; these procedures could be imple-
mented in several different ways by placing a thin
veneer over common transport mechanisms. Second,
binding was augmented to include a mechanism for
determining which transport protocol should be used
between a specific client and server, and to return the
correct three procedure implementations to the stubs.
Thus, the same mechanically generated stub could em-
ploy a variety of transport protocols, with the choice
delayed until bind time.

Inspired by this modularization, in our HRPC facility
[7] we have specified clean interfaces among all RPC
components. An HRPC client or server and its associ-
ated stub can view each of the remaining components
as “black boxes” that can be mixed and matched. The
set of protocols actually used is determined dynami-
cally at bind time-long after the client or server has
been written, the stub has been generated, and the two
have been linked. This design meets two key objec-
tives: We are able to emulate existing RPC facilities by
providing appropriate implementations of the underly-
ing abstractions, thus allowing unmodified native RPC
systems to communicate with our core HRPC systems;
and we are able to employ existing software (e.g., trans-
port protocols) easily in building an RPC facility for a
new system that does not have a native facility.

Two examples illustrate our approach. The first is
the Face-Finger Service (f f inger), a relative of the
Berkeley UNIX finger program. The finger pro-
gram returns textual information (full name, phone
number, etc.) about a given user on a given machine.
The f f inger program provides a heterogeneous, dis-
tributed, department-wide service that provides pic-
tures of each user. When a user f f ingers another
user, a window pops up on the screen with the picture,
full name, office phone, and so on, in a “bubble-gum
baseball card” format (see Figure 2).

The server for f f inger runs on a single machine
and is implemented using HRPC. Clients who call the

Special Section

server and display the baseball cards have been imple-
mented for workstations including VAXes, SUNS, Xerox
D-machines, Tektronix 4404/4405s, and IBM RT/PCs.
Each of these clients uses its own native RPC facility
and windowing system; each believes it is communi-
cating with a server written using the same native
RPC facility. HRPC creates this illusion and allows the
server to deal simultaneously with a variety of clients.

The second example illustrates the case of a single
client using multiple servers. We designed a server
that returns a list of users logged in to the machine on
which it resides. We implemented this server on three
different systems: on Xerox computers using the stan-
dard Xerox RPC (i.e., the XNS protocol for transport
and the Courier protocols for binding, data represen-
tation, and control) [46], on SUN computers using the
standard SUN RPC with UDP data grams (i.e., the UDP
protocol for transport, the XDR data representation
standard, and the SUN protocols for binding and con-
trol) [41, 421, and on VAX computers using the standard
SUN RPC with TCP (i.e., the TCP protocol for transport,
the XDR data representation standard, and the SUN
protocols for binding and control). We then imple-
mented an HRPC client of this service. This single
client can bind to each server using that server’s own
native binding protocol and communicate with each
server using that server’s own native RPC; the same
client can make a sequence of calls to different servers,
each call emulating a different native RPC.

The Call Time Organization of HRPC
In traditional RPC facilities, all decisions regarding
implementation of the various components are made
when the RPC facility is designed. Making these
choices early simplifies the work done at run time. For
instance, in such systems the only information needed
by a client to access a server is the location of that
server; no other decisions concerning details of commu-
nication between client and server need be made.

Acquiring this location information is the process of
binding. Executing the HRPC binding protocol yields a
Binding, a data structure containing information de-

FIGURE 2. Display from the Face-Finger Program

March 1988 Volume 31 Number 3 Communications of the ACM 261

Special Section

scribing the logical connection to a server. A Binding
typically is held by the client and passed to the stub as
an explicit parameter of each call.

The basis of the HRPC factorization is an abstract
model of how any RPC facility works, expressed
through a procedural abstraction of the call time com-
ponents (transport, control, and data representation).
E:ach HRPC stub is written in terms of these abstract
interfaces. During binding these interfaces are bound
to implementations, selecting a specific combination of
control protocol, data representation, and transport pro-
tocol components. In addition to the location informa-
tion, a Binding explicitly represents the choices for
these three components as separate sets of procedure
pointers. At call time, references to the component rou-
tines #are made indirectly via these procedure pointers.
The interaction between these entities is depicted in
Figure 3, where the direction of the arrows indicates
the direction of calls during the call portion of an RPC.
Returns are made in a reverse manner, with messages
containing results passed back from the server to the
client.

The Eind Time Organization of HRPC
The first step in binding is nnming: the process of trans-
lating the client-specified server name into the network
addre.ss of the host on which the server resides. The
second step is activation: Some RPC designs assume the
server is already active; others require that a server
process be created dynamically. The third step is port

RPC
call I

Client Server

t
RPC

return
RPC
call 1

Client Server
stub stub

~,~.\i’~,~,.\‘,~.‘..‘“.‘” .,\,I,,*\.,. I%....‘“(I 1 . . , . . .
t I I

\
:
: z
: Control - Data representation :

determination: The network address produced during
naming does not generally suffice for addressing the
server, since multiple servers may be running on a sin-
gle host. So, each server is typically allocated its own
communications port, which, together with the net-
work address, uniquely identifies the server.

The naming and port information constitute the loca-
tion of the service. The client’s outgoing messages can
use this location information, and the server can reply
using information passed up to it from the transport
level upon receipt of an incoming call.

Consider the case of an HRPC client importing a
server written using some existing RPC. The client
specifies a two-part string name containing the type
(e.g., FileService) and instance (e.g., a host name)
of the service it wishes to import. To honor this re-
quest, the HRPC binding subsystem first queries the
name service (described under “Naming”), retrieving a
BindingDescriptor.EachBindingDescriptor
contains a machine-independent description of the in-
formation needed to construct the machine-specific and
address-space-specific Binding. In particular, a Bind -
ing Descriptor consists of a designator indicating
which control component, data representation compo-
nent, and transport component the service uses, a net-
work address, a program number, a port number, and a
flag indicating whether the binding protocol for this
particular server involves indirection through a binding
agent. The remainder of the Binding must now be
completed in accordance with the information in the

I RPC
return

Control f--) Data representation

L Transport

._... ‘..\..,..~-~.i,i ,,.. \. ,/.i ..,i,.,~..-l.i.i.-.~.“~-

t

j \ , . ..:.

RPC message

Transport Control Data

262 Communications of the ACM

FIGURE 3. interaction among Call-Time Components in HRPC

March 1988 Volume 31 Number 3

Binding Descriptor. To do this the procedure ing RPC facility, the implementation of any one combi-
pointer parts of Binding are set to point to the rou- nation of the components emulated by HRPC will make
tines to handle the particular control protocol, data rep- communication possible. HRPC has been in active use
resentation, and transport protocol understood by the for several years and represents a proven approach to
server. the problems it addresses.

The HRPC Stub Generator
Stubs insulate the code that actually implements the
functions of the RPC client and server from the details
and complexity of the RPC run time system. To facili-
tate this the IDL specification of an RPC service is pro-
cessed by a stub generator. The generator consumes the
specification, which consists of procedure names and
the data types of their arguments and results, and pro-
duces appropriate stubs in a designated programming
language. These stubs are compiled and linked with the
actual client and server code.

The HRPC system uses a stub generator for an ex-
tended version of the Courier IDL [46], based on the
generator written at Cornell [24]. The “code generator”
portion of the stub generator was heavily modified to
support the HRPC interface. The stub routines are gen-
erated in the C programming language. Our major addi-
tion to the Courier IDL is an escape mechanism known
as USERPROC, which allows users to provide their own
marshaling routines for complicated data types, such as
those containing pointer references.

In related work, a variety of RPC facilities support
differing degrees of heterogeneity. SUN RPC [41] sup-
ports the two common byte orderings of integers and
two transport protocols. Matchmaker [25, 261 is based
on a single operating system that may run on different
machines. Messages are tagged to tell the recipient
what source-machine representation is used in the
message body. Several programming languages are also
supported. Horus [18] supports a single RPC mecha-
nism, but for multiple languages. Differences among
source languages and machine-specific data representa-
tions are embodied in specifications that together with
the interface description are inputs to the Horus stub
generator. Mixed-language programming (MLP) [22]
focuses on the construction of programs with proce-
dures written in different programming languages. MLP
is concerned, in part, with accommodating existing pro-
grams without requiring that interface specifications be
given.

Although not a primary objective of our work, multi-
language support has been provided by integrating
HRPC with the Franz Lisp system [19] running on
VAXes and with the Smalltalk- system running on
Tektronix workstations. Other aspects of HRPC include
a lightweight process mechanism and a mechanism by
which servers can make calls back to clients.

HRPC’s unique hypothesis is that the most effective
way to provide basic communication with a diverse
set of systems is to emulate the native RPC facilities of
these systems. The major intellectual task in HRPC was
defining the interfaces between the various RPC com-
ponents that make this emulation feasible. The result-
ing modularization has the added benefit of making a
subset of HRPC an excellent candidate for porting to a
new system that lacks a native RPC, since any existing
building blocks can be employed.

Perhaps most related is the Apollo Network Com-
puter System (NCS) [16], an effort to define a multiven-
dor communications architecture for network services.
The basis of NCS is an RPC system similar in several
ways to HRPC. NCS/RPC supports both data represen-
tation and transport heterogeneity. RPC messages are
self-defining, containing information about the types of
the data being sent; stubs are independent of any spe-
cific format. Stubs are defined in terms of a socket-style
transport interface, which can be implemented in sev-
eral ways; currently, UDP/IP and Apollo Domain trans-
ports are supported. NCS/RPC does not handle differ-
ent control protocols; specifically, NCS/RPC talks only
to other implementations of NCS/RPC implemented on
a heterogeneous set of systems.

NAMING

A natural concern is that the widespread use of indi-
rection within HRPC might significantly increase exe-
cution time. Our benchmarks show, however, that the
performance of HRPC is competitive with that of the
native RPC facilities being emulated. The reason is that
these native RPC facilities use a large number of inter-
nal procedure calls for reasons of software structuring:
They pay the same price as HRPC without gaining any
run time flexibility for it. Of course, these native sys-
tems could be streamlined (a few research RPC systems
have been), whereas HRPC could not.

HRPC can be viewed as an easy-to-satisfy standard.
Given a new system with an existing RPC facility, the
addition of new modules to HRPC will make communi-
cation possible. Given a new system without an exist-

Name services [29, 33, 441 provide the run time map-
ping of names into data. For the most part, a name is
simply a character string that conveniently allows a
human to identify a resource. For instance, samar .
cs. Washington. edu is an ARPA domain-style name
[34] for a VAXstation-II host. The data associated with a
name can be almost anything, but most often involves
information that is likely to change infrequently. The
most common use of name services is to obtain ad-
dresses. For example, the Berkeley Internet Domain
Server (BIND) name service [44], which supports
domain-style names, contains a mapping from
samar. cs . Washington. edu to the IP address
128.95.1.32. Hosts wishing to communicate with
samar . cs . Washington. edu obtain its address
dynamically by querying BIND. This run time determi-
nation of addresses simplifies the management of dis-
tributed systems, since each host may be administered
individually, including changes to its location. All that

Special Section

March 1988 Volume 31 Number 3 Communications of the ACM 263

Special Section

is required for continuing operation is that any location
change be registered with the name service when it
occurs.

In a heterogeneous system, it is necessary to manage
a global name space, that is, a set of names whose associ-
ated data can be accessed from anywhere in the envi-
ronment. This global name space allows sharing of
names among clients on different systems and is crucial
in supporting location-independent execution. It is also
necessary for convenient use of the system by human
users, as it permits the exchange of names across sys-
tem boundaries.

Our environment places three specific demands on a
name service: First, existing applications must continue
to run unaltered. Second, new applications written to
use the global service must have access to the naming
information contained in newly integrated systems,
without requiring recompilation or relinking. Third,
the incorporation of new systems must have relatively
low development cost.

To some extent these goals conflict with one another.
Continued execution of existing applications requires
that names be accessible in the existing name services
local to the individual systems. Graceful integration of
new systems into the global name space might most
naturally be accomplished by reregistering the data
conta:ined in the local name services in a global service,
which carries with it the difficult problem of maintain-
ing consistency between local and global copies. Addi-
tional problems that arise due to heterogeneity concern
name syntax and name conflicts. Name syntax is a prob-
lem because the separate systems that comprise the
heterogeneous environment are likely to have conflict-
ing name syntaxes, so it is not possible to impose a
single syntax for the global name space that would be
“natural” on all systems. Name conflicts arise because
several systems may have identical names that are un-
ambiguous when issued in an environment consisting
of only one system, but ambiguous when the systems
are combined.

The HCS name service (HNS) is the global name
service we have constructed to address these problems
[37, 381. Primarily because of problems of consistency,
we have chosen not to perform reregistration in HNS,
but to use the local name services directly to store the
data associated with the global name space.

STRUCTURE OF THE HNS
The HNS provides a global name space accessible in a
uniform manner throughout the heterogeneous envi-
ronment, and a facility to associate data with those
names. Rather than directly storing the data associated
with a global name, the data are maintained in an
existing name service, where they are associated with
some name local to that name service. Viewed at the
highest level, the HNS provides mappings between the
global. name for an object and the name of that object
in its local system, while the local name service per-
forms the final name-to-data mappings.

Each HNS name contains two parts, a context and an
individual name. The context portion of an HNS name
determines the specific name service used to store data
associated with that name. The individual name com-
ponent determines the corresponding local name with
which the data are associated in that service. In the
simplest case, the individual name is simply equal to
the local name, although more sophisticated schemes
are allowed. The HNS name for an ArpaNet host might
have a context BIND - hosts and an individual name
samar.cs.washington.edu.

Although the HNS does not impose any restrictions
on the syntax of individual names, it is required that
there be an invertible mapping between individual
names within a context and the names of objects in the
local name service. This ensures that HNS names are
conflict-free. Because the HNS guarantees that only
a single name service maintains information on objects
in any one context, it is not possible for distinct name
services to create name conflicts in the HNS.

Another problem that arises is that local name ser-
vices may store equivalent data in different formats or
store similar but not identical information of a particu-
lar type. For instance, BIND and Clearinghouse [33]
servers both contain host machine name-to-address
mappings, but accessing and decoding this information
are done differently in each case.

Ideally the HNS should insulate the client program
from this semantic heterogeneity. In particular, it
would be unmanageable to require every client program
accessing the HNS to understand the semantics of each
underlying name service. If this were the ca.se, every
client would have to be modified and recompiled when-
ever a new system type was added to the environment.

The HNS cannot relieve client programs of the
burden of understanding the interfaces, formats, and
data semantics of the local name services without
having some name-service-specific code to support this.
In the HNS this code is encapsulated in a sei of HRPC-
accessible routines called name semantics mlanagers
(NSMs). Each type of HNS query is supported by a set of
NSMs with identical interfaces, with one NSM for each
local name service. (Figure 4 contains a diagram of the
logical structure of the HNS.) Because they are remote
procedures, NSMs can be added to the system dynam-
ically, without recompilation of any existing code.
When a new system is added to the HNS, we construct
NSMs for that system and register these NSMs with the
HNS; the data stored in them become available through
the HNS. Individual data records in the name services
are not registered explicitly with the HNS.

Although the number of NSMs grows in proportion
to the number of query and system types, it is impossi-
ble to avoid this complexity. It is an inherent aspect of
a heterogeneous environment that code to deal with
each different system type must exist somewhere. We
believe that the structure we have created, with NSMs
separate from the HNS itself, is the most natural one in
terms of ease of use and management.

264 Conwmrnications of the ACM March 1988 Volume 31 Number 3

Special Section

NSM for
clearinghouse/

query class

Clearinghouse
name service

t

Old
clearinghouse

client

HNS

lAr
HNS
client

FIGURE 4. HNS Query Processing

HNS Name Lookup Procedure
The logical structure of the HNS and the process fol-
lowed in satisfying an HNS request has two phases (see
Figure 4). In the first phase, the client program calls the
HNS using HRPC. The client passes the HNS a name
and a query type indicating the type of data desired
about that name (e.g., mailbox or telephone number).
The HNS uses the query type and the context portion
of the name to determine which NSM is in charge of
handling this query type for this context. The HNS
then returns a Binding for the NSM to the client.

In the second phase, the client uses the returned
Binding to call the NSM, passing it the name and
query type parameters as well as any query-type-
specific parameters. The NSM then obtains the re-
quested information, usually by interrogating the name
service in which it is stored (although any technique,
such as looking in a local file, may be employed). This
information is then returned to the client. (Figure 4
shows two ways-through BIND or through Clearing-
house--that the second phase can be satisfied, depend-
ing on the name passed to the HNS in the first phase.)

Every name provided in an HNS request is fully
qualified. Any abbreviations or nicknames must be
transformed to fully qualified names by other utilities
before they can be passed to the HNS. Especially in
large or highly heterogeneous systems, the user may
require considerable help in dealing with the global
name space, making this separation appropriate.

Separating the NSMs from the HNS incurs the ex-
pense of an additional HRPC call over a scheme where
NSMs are part of the HNS. Nevertheless, this separation
is essential to managing long-term growth, as it sepa-
rates the query-type-specific interfaces from the HNS
and moves them out to the more easily managed NSMs.

Although the above procedure indicates the logical
process followed in satisfying HNS requests, an imple-

NSM for
BIND/

query class

BIND
name service

t

Old
BIND

mentation need not be structured in just this manner.
For specific query types, it is possible to trade a de-
crease in management convenience for an increase in
performance by making particular NSMs local to either
the HNS or the client code. For instance, NSMs that
support HRPC binding might be contained in the same
address space as the HNS, permitting a client query to
be satisfied with a single HRPC call from the client to
the HNS and a single local procedure call from the HNS
to the appropriate NSM. Alternatively, a particular
client might determine that a specific query type is
crucial to its performance. In that case copies of the
corresponding NSMs could be placed in the client’s
address space, so that local rather than remote calls to
them can be made. Finally, caching can be employed to
improve response times to requests [39,43] at the cost
of increased code complexity.

Prototype Implementation
Although the HNS is logically a centralized facility, its
implementation must be distributed and replicated for
the usual reasons of performance and availability. Be-
cause the implementation problems associated with
these properties are for the most part successfully ad-
dressed in existing name services, we choose to ease
our implementation effort by making use of an existing
name service in storing the HNS’s map from contexts
and query types to NSM information. In particular, a
modified version of BIND is used for this purpose. The
key modification allows dynamic updates, since stan-
dard BIND maintains only static information that is
loaded from a file when the program is initialized.

The prototype HNS implementation supports a lim-
ited number of query types, including HRPC binding.
This implementation illustrates the utility of several
aspects of the HNS design. First, the use of existing data
rather than reregistered data has the advantage that

March 1988 Volume 31 Number 3 Communications of the ACM 265

Special Section

services running in the underlying systems are gener-
ally available to HCS clients without the need to regis-
ter new information with the HNS. Because of this,
client programmers can conveniently make use of other
network services, while changes and additions to the
underlying service registration information are auto-
matically reflected through the HNS to HCS clients,
alleviating problems of consistency and scalability.

In addition to these client-perceived benefits, the
HNS provides implementation-level structure for deal-
ing with the heterogeneous naming semantics of HRPC
binding in a modular fashion. This structure is manifest
in the NSM code for doing binding using each of the
underlying name services (BIND and the Clearinghouse
in our prototype implementation). Each of these mod-
ules deals with a single name service and a single
query type, rendering their code manageable and
easing the task of adding new RPC and name services
to the existing network.

REMOTE COMPUTATION
One a.dvantage of a distributed system is its potential
for resource sharing. Availability of a single network
resource can remove the need for replicating that re-
source on each computer. A typical network includes
resources of several types, including computational
resources such as high-performance processors, input/
output resources such as mass storage or printing facili-
ties, and software resources such as special-purpose
programs.

Remote computation-the remote execution of a
program or service-is one means by which these re-
sources can be accessed. Access to network resources
can be provided in several ways. A common scheme
is to grant each user an account on each system; tools
such as remote login and network file transfer programs
allow manual use of facilities. There are three problems
with t.his approach. First, providing accounts on each
system may be difficult; it should be possible to permit
a user to access a service without providing general ac-
cess to the machine on which it runs. Second, a user is re-
quired to understand the operation, command language,
etc., of each of the systems used. Third, users waste
a significant amount of time executing remote login
and file transfer programs to access remote facilities.

Many systems now provide tools to simplify remote
access and aid in remote computation. For example,
UNIX system commands such as rsh, rep, and rdist
simplify distributed access within a network of UNIX
mach:ines, particularly when used together with shell
scripts. Integrated networks, such as Locus [45], Apollo
Domain [30], Newcastle Connection [El, VAXclusters
[28], and Eden [2], provide transparent access to net-
work computing or storage facilities. Several other sys-
tems provide a framework for defining specific network
servers and remote clients; for instance, UNIX Maitre’d
[5] and Xerox Summoner [21] are both capable of locat-
ing lightly loaded servers (for load sharing), transferring
files, etc. Dannenberg’s Butler system [15] similarly

considers these issues, as well as more general prob-
lems of resource and access control.

These tools and services all operate within a homo-
geneous hardware or operating-system environment.
In a heterogeneous environment, remote computation
becomes both more desirable and more difficult. It is
more desirable because, by definition, the network con-
tains systems with different capabilities that users wish
to exploit. It is more difficult exactly because of this
variety.

Remote computation facilities must solve a number
of problems, regardless of the degree of heterogeneity.
The creator of the client interface must be able to pass
command options to the service. The client must send,
or the server must request, files that are needed for
execution. Locating files may be complicatesd, particu-
larly when file names are not explicitly specified in the
command string. For example, some text processors
maintain auxiliary files that describe the structure of a
document; these are read if they exist and are created
otherwise. More troublesome, there may be input re-
quirements that become known only during, execution.

Some problems in remote computation are more spe-
cific to heterogeneity. One fundamental problem is the
naming of objects. For example, the structure of file
names may differ on the client and server machines.
This may include the syntax of file names, the specifi-
cation of directories, and the specification of devices or
even machines on which those files reside. (Conven-
tions for naming may be different; compiling the pro-
gram myprog may produce a. out on one system and
myprog . ob j on another.

Even describing the service to execute is complicated
by heterogeneity. For example, most application pro-
grams permit the specification of options. The syntax
and semantics of the options will differ on different
systems; optimized compiler output may be specified
by following the compile command with -0, with
/optimize, or even by selecting a menu item. In addi-
tion to the options specified when a program is run, its
execution often depends on its environment; that is,
contextual information provided by the user and the
operating system, including logical names or aliases, a
default directory, a directory search path, and some
invisible files used by the service for input and output.
Each system has a different environment that must be
communicated between the client and server.

Another problem typical of any heterogeneous com-
munication is translation of data. Translation must oc-
cur on the client side, server side, or both sides, de-
pending on the approach taken. This translation can
be handled at a level below the application, as demon-
strated by our HRPC system.

Finally, error handling will differ on the client and
server. In particular, error messages generated on the
server may be nonsense when read in the context
of the client. A remote computation system must be
aware of the possible error conditions so that they may
be reported sensibly to the client.

266 Communications of the ACM March 1988 Volume 31 Number 3

The HCS Environment for Remote Execution
Our goal is to simplify the construction of remote ser-
vices in a heterogeneous environment. A service may
run on multiple system types or only on a single sys-
tem. In either case, however, it should be easy to access
the service through a collection of heterogeneous
clients. We require that, wherever possible, no modifi-
cation of service program code be needed to make that
service remotely accessible. The reasons for this goal
are that sources for some services (e.g., compilers or
formatters) may not be available and that maintaining
modified sources for a variety of implementations over
multiple releases would present serious problems.

From the user’s point of view, the interface to a re-
mote service should be identical to the interface for a
local service. Thus, if a service is available both locally
and remotely, invocation of the service should use the
same command syntax, option names, etc., even if the
remote system requires different syntax. One visible
difference may be that some services will execute
asynchronously with respect to the user’s session,
perhaps even running in the background.

We have designed and prototyped a remote computa-
tion system called THERE: the HCS environment for
remote execution [6]. THERE is a facility for construct-
ing remote execution clients and servers in a heteroge-
neous network. THERE simplifies the addition of new
network services and aids the service developer in
handling some of the problems mentioned above, in-
cluding communication of command information, name
translation, and file transfer.

The basic structure of THERE is shown in Figure 5.
Both client and server execute copies of the THERE
interpreter-a generic front-end. On the client side, the
interpreter provides the communications path to all
available THERE network services. The interpreter
parses the user’s command line and sends any needed
data to the appropriate server. On the server side, the
interpreter manages a remote computation session with
all services available on a particular node. The server-
side interpreter receives requests from clients, estab-

Special Section

lishes the appropriate execution environment, and exe-
cutes the service or spawns a task to do so. The server
determines needed files and requests them from the
client through special function calls. File requests and
file data are shipped using the HRPC mechanism.
Client and server interpreters are nearly identical with
the exception of system-local functions and the knowl-
edge of which role is being played. Of course, they may
have different implementations on different architec-
tures.

To make a new service available on a THERE server
machine, the service builder must first decide what
information is needed from clients, what processing
will need to be done locally, what environment will be
needed for execution, and what data will be returned
to the client. Based on these decisions, the service
builder codes a THERE programming language (TPL)
program, which is a high-level description of the ser-
vice. The TPL program defines the information to be
exchanged between server and client, the steps needed
to process that information, and the steps required to
create an appropriate environment to execute the de-
sired service. A different server-side TPL program must
be created for each system type on which the service
runs.

Similarly, a client TPL program exists for each client
system that can access a service. When a user issues a
remote computation request, the appropriate client TPL
program is selected by the interpreter. That TPL pro-
gram processes the command line, gathers environmen-
tal information, defines input/output relationships, and
communicates that information to the server.

The information exchanged between client and
server is determined by variables that are exported
by the client and imported by the server. The server
TPL program for a specific service declares a set of
variable names, for example, InputFileName and
Optimizeswitch. The corresponding TPL client
program declares similar variable names and binds
invocation-specific values to those variables. When
the interpreted client TPL program has completed its

User
command -

line

HRPC data requests
THERE 4

THERE -
client service Service

interpreter * interpreter -*
HRPC

service request

TPL TPL
client server

program program

FIGURE 5. Structure of THERE

March 1988 Volume 31 Number 3 Communications of the ACM 267

Special Secfion

processing, it tells the interpreter to execute the re-
quested service remotely. The interpreter then uses the
HRPC service to send exported variables and their val-
ues to the server-side interpreter. One parameter of
the HRPC call specifies the requested service so that
the server interpreter will know which TPL program
to execute.

TPL provides a number of standard programming
language features, for example, the ability to loop, com-
pare and branch, build lists, and process strings. The
TPL program may also specify local execution of pro-
grams to pre- or postprocess files on either the client
or server side. Furthermore, TPL contains a number of
functions specific to processing remote computation
requests in a heterogeneous system. For example, there
are built-in functions to create local file names of var-
ious file types. Typically, a server will receive file
names from the client and must create system-local
names with which to store those files. The server must
remember the relationship between the client name
and the server name, and must also associate created
output files with the input files from which they were
constructed. In this way the interpreter can produce
the reverse mapping from server output file name back
to a cl:ient output file name.

THECRE has been used to construct a number of re-
mote services, including one that successfully sup-
ported an undergraduate course by providing remote
access to graphics capabilities on IBM PC/RTs, and an-
other that allowed students in graduate courses broad
access to an Ada compiler that ran only on a single
node.

MAIL
Electronic mail is perhaps the most ubiquitous hetero-
geneous service. The number of users interconnected
by an amalgam of networks is enormous and increasing
rapidly. Given that most mail systems are already inter-
connected, why are we providing a mail service? De-
spite this general interconnection, the mail service pro-
vided to users across systems is often primitive relative
to that provided within individual systems. For in-
stance, replying to users is often unsuccessful due to
differences in addressing syntax. The HCS mail system
(HMS) [ho] improves the quality of the mail service
among interconnected systems, while easing the inte-
gration of new mail systems.

There are two major models of distributed mail ser-
vices: host-based and server-based. The host-based model
represents the services that have evolved from the orig-
inal messaging services on time-shared hosts. The most
distinctive characteristic of this model is that user mes-
sages are maintained by the mail system in files on the
local host; network facilities transfer messages between
hosts. The services on UNIX and VMS machines are
examples of the host-based model. The server-based
model represents the services that have been con-
structed explicitly for networks of computers. The most

distinctive characteristic of this model is that user mes-
sages are maintained by the mail system on special
mail servers. The Grapevine [g] service is a prototypical
example of the server-based model.

Attempts to solve many of the problems of heteroge-
neity in the host-based model are best characterized
by the sendmail internetwork mail router 1.11. The
se ndma i 1 program relies heavily on a configuration
file that encapsulates information about heterogeneity.
For example, the configuration includes a set of address
rewriting rules that define translations to be applied
during name resolution, thereby supporting resolution
of addresses with different syntax. The evolutionary
nature of the host-based model, however, results in a
mail service that falls short in three key ways: addressa-
bility (it is hard to determine the addresses of recipi-
ents, since addresses in the host-based model include
information about the host to which the mail should be
delivered), availability (a single host-the one on which
a user receives mail-controls the availability of that
user’s mail), and accessibility (users must login remotely
to read mail while using a machine that is not their
mail host).

The server-based model lessens the problems associ-
ated with the host-based model. For instance, in Grape-
vine each user is associated with a set of mail servers
rather than an individual host. Mail is delivered to any
available server in the set; mail is received by querying
all available servers in the user’s set. The addressing
problem is simplified since each user has only one
name throughout the system, rather than one for each
host in the system. The availability and accessibility
problems are reduced since no single host is responsible
for all of a user’s mail submission and retrieval. Server-
based approaches, however, have so far been limited to
homogeneous environments. (Systems such as Grape-
vine are connected with the rest of the world through
gateways that act as mediators between the two
models.)

The HMS Approach
The goal of the HMS is to accommodate heterogeneity,
including the host-based model, while solving the prob-
lems of addressability, availability, and accessibility in
the style of the server-based model. It must also be
relatively easy to accommodate new mail systems as
they become available. Our approach is structured sim-
ilarly to that of the name service. Our mail service
must coexist with existing mail services, with users
permitted to continue using existing, unmodified user
agents.

The HMS model consists of four layers. The top layer
represents the user agents of the HMS. The second
layer represents the HMS server, which is responsible
for retrieving and sending mail to and from HMS user
agents. The third layer represents a set of mail semantic
managers (MSMs), one for each distinct integrated mail
system, each of which is responsible for transforming

266 Communications of the ACM March 1988 Volume 31 Number 3

Special Section

operations in the underlying mail systems to and from together and returned to the user agent. When a user
HMS server operations. The bottom layer represents the sends mail from an HMS user agent, the same mappings
existing mail systems themselves. The HMS server and are done. The difference is that the HMS server looks
the MSMs are remote servers, allowing interaction for a single MSM to succeed in sending the message,
through the HRPC facility. since only one instance of the message need be sent.

The basic objective of the HMS server is to imple-
ment the server-based model across heterogeneous mail
repositories, such as mail servers and local spool files.
In our prototype we integrate the UNIX mail system
with the Xerox Clearinghouse mail system. We could
not make the HMS server specific to these two systems,
however, without increasing the difficulty of integrat-
ing a new system later. So, we implemented the HMS
server in terms of an abstract interface, including oper-
ations to get and deliver messages, that the individual
MSMs must implement. This structure makes it easy
to have the HMS server check all repositories on mail
reading and any repositories on mail sending, regard-
less of whether the mail repositories are mail servers,
files, or a mixture of the two.

Our model and prototype are related to both the
Cornell Bridge system [17] and Norman system [13],
but we provide richer interconnection and a structure
more suitable for integrating additional mail systems.
The X.400 effort [14], also called MHS (message han-
dling system), intends to connect different systems
using a particular message format and protocol suite;
this contrasts with the HMS, which does not attempt
to define such standards. The HMS could provide
interconnection between X.400 services and other
mail services by defining an MSM for X.466.

FILING

In addition to the uniform interface between MSMs
and the HMS server, the model requires that the HMS
server provide a uniform interface to HMS user agents,
so that introduction of new mail systems does not ne-
cessitate changes to the user agents. The interface is
identical to that provided by MSMs, except that the
operations apply to all of a user’s mail repositories,
rather than the specific one associated with a given
MSM.

We have approached heterogeneous filing in two ways:
The first effort defined a centralized file service that
permits the storing and retrieval of multiple representa-
tions of the same data. The second effort is structured
more like that of the naming service, where existing
file systems are used as the basic medium for storing
data. (In contrast to the other facilities and services, our
efforts in filing have to date been more investigational
than production oriented.)

The HMS server maintains several databases that
map names to information about users, services, and
distribution lists. These databases are used to control
mail delivery and retrieval, as well as naming transla-
tion across the different mail systems. Through careful
use of indirection, we avoid reregistering information
from underlying mail systems (such as alias databases)
into these HMS databases. The mailbox database main-
tains mailbox information for each HMS user, each of
whom might have mailboxes in multiple mail systems.
The entry for each user indicates to the HMS server
which repositories are associated with the user. Each
user has a unique HMS name associated with the ap-
propriate master mailbox list. Each HMS name must be
unique, since each HMS user has its own master mail-
box list. Since an HMS user may invoke the HMS from
any local system, the HMS must provide a mapping
from each user’s name to the user’s HMS name. This
many-to-one mapping is represented in the HMS’s
global alias database.

Both efforts have many similar premises drawn from
the needs of a heterogeneous environment. In most ho-
mogeneous file systems, the storage of data alone allows
information to be shared: The file system accepts and
delivers streams of raw bytes. In a heterogeneous envi-
ronment, storage of data is not the same as storage of
information. Consider a stream of data consisting of a
sequence of records, each containing an integer, a char-
acter, and a floating-point number, written by a Mesa
program on a Xerox workstation. To read these data
into a Pascal program executing under VMS, trans-
ferring the bytes is not enough. It is also necessary to
address the heterogeneity of the programming lan-
guages, operating systems, and underlying hardware.
Language heterogeneity means that record packing and
padding characteristics differ. Operating-system hetero-
geneity means that the file system calls used by the two
programs may differ, as may the underlying file struc-
tures. Hardware heterogeneity means that the byte or-
dering of integers and the representation of floating-
point numbers differ.

The basic operation combines the server-based ap-
proach with the indirection of the HNS. When a user
reads mail from an HMS user agent, the user’s local
name is mapped to his or her HMS name, using the
global alias database. Using this name the list of mail
repositories is retrieved from the mailbox database. The
HMS server then iterates through the MSMs associated
with every one of these repositories (the mapping to the
MSM is included in the database), invoking the desired
retrieval operation. The messages retrieved are merged

Our approach to both language and hardware hetero-
geneity is to rely on the HRPC facility, which accounts
for the differences in data representation. We do not
attempt to overcome operating-system heterogeneity.
Instead, our filing service is not transparent: Client
programs are required to distinguish between access
to local file systems and the HCS filing service. Non-
transparency, which is embraced by other file systems
such as those from Xerox PARC [ll, 3.5, 361, is necessi-
tated by our assumption that the code of existing sys-
tems cannot be modified.

March 1988 Volume 31 Number 3 Communications of the ACM 269

Special Section

A Centralized Approach
In the first approach to filing, we viewed writing a file
from one system and later reading it from another as
similar to a very slow RPC. Like an RPC, a user writes a
record from one machine and later reads the logically
equivalent record onto another. Any necessary repre-
sentational changes are automatic. For this to be possi-
ble, each file is considered to be a sequence of typed
records. The record type is described, using the HRPC
interface description language, when a file is created.
The type is stored along with the file, and a mechanism
ensures that programs reading records from the file in-
terpret the data correctly. Just as we allow multiple
data representations in HRPC, we permit files to be
stored on disk in any legitimate HRPC format.

The benefits of accommodating multiple represen-
tations rather than defining a standard representation
hold in filing as well as in HRPC. Besides being poten-
tially faster, storing the RPC format avoids any loss
in acc:uracy from unnecessary conversions. Although
the prototype server is implemented using HRPC, the
clients typically run their own native RPC; hence, it is
the data representations of these native RPCs that are
stored by the file system.

The prototype is composed of a type server, a file
server, and a mechanism for generating routines for
accessing the file system. The type server provides stor-
age for the file type database, assigning a unique identi-
fier to each distinct type. To avoid problems of circular-
ity, we implemented a separate type server, rather than
storing type information in the HCS filing service. The
file server provides directory, read, and write opera-
tions. The directory operations include list, delete, and
create directory. Files are immutable, permitting read-
ers to open and read from the random access files at
any time.

Reading and writing are implemented using generic
routines parameterized by the type of file record, allow-
ing accommodation of an increasing number of file
types without requiring recompilation of the server.
These server routines receive RPC calls from a client,
demarshaling the arguments according to the file type.
Although the same technique could have been used by
clients, the lack of support for polymorphism in most
programming languages makes it less than elegant;
even naming the read and write routines for different
types is clumsy. Instead, we modified the HRPC stub
generator to produce type-specific client stubs, easing
the creation of read and write routines specific to a
given language and file type. The modified stub genera-
tor also registers new file types with the type server.

The file system is used either through standard util-
ity programs, such as get-text-file and put -
text - f i 1 e, or by reading and writing individual rec-
ords under program control. To write a program that
uses the file system, the user first describes the file
record types in Courier IIJL, extended with a new key-
word FILETYPE. This description is then compiled
with our modified HRPC stub compiler, producing a set

of stubs specific for reading and writing files; of each of
the declared types.

The implementation of the polymorphic server rou-
tines that accept type parameters was complex given
HRPC’s statically typed call model. We needed dynamic
typing, and only a small change to the HRPC stubs, in
combination with a dynamic parameter demarshaler,
gave us this capability. The dynamic demarshaler is
implemented as a procedure that accepts a record type
and two HRPC Bindings. It reads bytes from the input
Binding, breaking them up into data types according
to the record type and input format, and then writes
the same data to the output Binding, using the output
format. The Bindings can represent any combination
of RPC components; as a result it is possible to convert
between any of the supported formats. If the Bindings
have the same format, then a simple copy is done.

The Face-Finger Service used as an example under
“Remote Procedure Call” is in fact based on our proto-
type implementation of this approach to heterogeneous
filing. The data for each user are stored in a separate
file. When a client wants the information, it makes
calls to the filing service to open and read the appro-
priate file. Because of record typing, all necessary data
conversions are done at the server, and the client re-
ceives the data ready to display. Of course, a client
need not conform to the baseball card format. For ex-
ample, an initial prototype client just displayed the text
information and ignored the picture. Another client
might take advantage of the tagged data and display the
office and office phone number side by side, something
that would not be possible if all the information were
contained in one homogeneous string.

This approach to filing is similar to the File Transfer,
Access and Management (FTAM) effort [23], an IS0
standard that provides remote access to files. FTAM
defines a large, general interface that must be provided
across all participating hosts. FTAM access is available
to those files stored in a special FTAM file siore. To
make a file available through FTAM, the user must
write a type description and then place the file in the
FTAM store.

A Decentralized Approach
Our first approach (and the FTAM approach) has at
least two drawbacks: The shared files are seyparate from
the conventional local files, and each file must have an
associated, and often cumbersome, type description.
These problems have led us to explore an alternative
approach, based on a structure similar to that of HNS,
that allows us to overcome these differences in the
same ways that NSMs overcome differences in syntax
and semantics of name services. This approa.ch is in
some sense the heterogeneous analogy to mounting
pieces of a global file system in a distributed, homoge-
neous environment.

This effort adopts a much different approach than
the first. Rather than requiring that shared files be kept

270 Communications of the ACM March 1988 Volume 31 Number 3

Special Section

in a separate, logically centralized service, we attempt
to provide sharing of all files stored in the union of the
file systems available on each of the systems in the
environment. Just as in naming, the advantage of this is
that no explicit reregistration step is needed. Not only
is this more convenient for creators of new applica-
tions, but existing software that manipulates local files
only can run unaltered with its results still being avail-
able to all of the environment’s systems. Because we do
not impose a structure on existing files, the approach
focuses on providing an access method for these files.

As demonstrated by the first prototype, HRPC can
handle data representation heterogeneity if knowledge
of the data types of the file contents is available. So,
finding the data type of each item stored in the file
then is our first problem. The type server of the first
approach is unsatisfactory, since it requires significant
reregistration of information, which we wish to avoid.

Since there is no stored type information available
on the files stored locally, either the client must pro-
vide the type, or else the type must be inferred. In
the first case, the client provides the type information
when opening a file. This is an approach commonly
employed in homogeneous environments, where no
type checking of file contents occurs. Unfortunately, it
is not reasonable to expect the client opening the file to
know this information, since it may depend on the sys-
tem on which the file is stored and the client is igno-
rant of that information. Instead, we infer the types by
using sets of system-specific defaults, based on informa-
tion such as file name extensions. Exceptions to these
defaults can be registered explicitly; hence, the infor-
mation stored is proportional to the number of excep-
tions rather than the number of files. A similar problem
was solved in using the naming service to perform
HRPC binding [37], so we are reasonably confident of
the approach.

Another reason we have avoided having clients des-
ignate the file type is that we wish to provide generic
file operations in our heterogeneous environment. A
typical example is compare, which should be defined
to compare two files for equality regardless of the types
of files. Type inference allows us, in cases where infer-
encing succeeds, to construct generic programs.

The file typing problem goes even deeper in some
heterogeneous environments. Whereas UNIX supports
only a single, very simple file type (a stream of bytes),
other file systems support multiple organizations.
HRPC’s support for translation does not solve this prob-
lem directly, since different organizations may require
translations at both the basic data-type level as well as
the organizational level.

We are in the process of implementing the prototype
for this approach to filing. Once it is completed, we
intend to use it as a base for continuing our research
into several topics, including organizational transla-
tions, run time performance measurements, and simply
determining the effectiveness of this style of shared file
system.

INTEGRATING A NEW SYSTEM TYPE
Significantly reducing the cost of integrating a new sys-
tem type into a computing environment is the primary
goal of our work. What does this integration actually
entail?

The first task in accommodating a new system is to
allow it to communicate with the HRPC facility. Sys-
tems that already have a native RPC system are gener-
ally straightforward to integrate. In these cases the new
system need not be modified at all. Instead, HRPC must
be updated to incorporate all components of the native
RPC that are not yet known by HRPC. Commonly the
transport protocol will already be known by HRPC,
whereas others, such as the binding and control proto-
cols, may have to be defined.

Systems with no native RPC system require an im-
plementation of one. Typically we would implement
a subset of HRPC: one instance of each of the compo-
nents. In many cases at least a suitable transport pro-
tocol will already exist and can be adapted merely by
providing a thin veneer. For the other components,
code that implements any HRPC-understandable in-
stance can be ported to the new system. Only in situa-
tions where a component does not exist and cannot be
ported to the new system must a new piece of code be
written. In the worst conceivable case-a system with
no native RPC, no existing components, and no possi-
bility of porting code from another machine-the situa-
tion is no worse than the pre-HCS situation in which a
full RPC system must be implemented from scratch.

In all three cases, clients and servers on the newly
integrated system can talk to any clients and servers in
the core HRPC system. In situations where one wishes
to broaden the scope of systems with which the new
system can communicate, either more instances of each
RPC component must be constructed for the new sys-
tem, or service-specific bridges must be constructed on
some full-HRPC system.

The second task in accommodating a new system is
to integrate it into the HNS. If there is a native naming
service on the system, and the service is one that has
already been incorporated in the HNS, then the integra-
tion is already complete. But, if the system uses a na-
tive naming service that has not yet been integrated
into the HNS, the new native naming service must be
registered with the HNS, and NSMs must be defined for
all appropriate query types. Both of these cases permit
existing clients of the native name services to continue
working without change. New clients can use the
newly defined HRPC support to access the HNS di-
rectly. After the HRPC and HNS facilities are supported
on the new system, the remote computation, mail, and
filing services must be installed.

Installing support for remote execution on a new
node is largely a matter of implementing TPL interpret-
ers for the new system and adding any needed local
function. Often the implementation of TPL interpreters
will be a simple port, although occasionally a more

March 1988 Volume 31 Number 3 Communications of the ACM 271

Special Section

significant effort might be required. Once the interpret-
ers are built, existing clients and servers can be used,
and new clients and servers easily created.

Integrating a new mail system requires three steps:
First, MSMs for the new mail system need to be built;
in our prototype, MSMs were crafted using significant
chunks of code from UNIX and Xerox user agents. Sec-
ond, at least one user agent that uses an HMS server for
mail delivery and retrieval must be built; this can be
done by porting HMS user agents to the new environ-
ment or else modifying existing user agents of the new
mail system to access the HMS server. Third, the new
mail system’s delivery agent must be configured to use
an HMS server as its delivery mechanism. This is gen-
erally a minor task since most mail systems have some
config,uration mechanism to specify the location of
gateways servicing nonlocal mail networks; if such a
change is impossible, all user agents in the new mail
system must be modified to use an HMS server.

Since both approaches to filing are based on non-
transparent calls, constructing new clients is relatively
simple. In the first approach, the type and file servers
can be used without change, but read and write stubs
must be defined to construct clients on the new system.
If the core HRPC system has been built for the new
system, the stub generator for the file service will be
similarly easy to build. If the new system has only its
native RPC system, then the stubs can be generated by
hand or, more likely, by modification of the stub gener-
ator for the native system. No servers need be defined
for the first approach, of course, since the centralized
servers are already available. To define clients, the sec-
ond approach requires only the availability of HRPC.
To integrate the new native filing system, the filing
service equivalents of NSMs need to be defined, just as
for the HNS.

CONCLUSION
Our initial interest in heterogeneity came from two
directions. One was our belief that the ever-growing
interconnection of diverse systems is leading to a situa-
tion in which we will be hard-pressed to easily take
advantage of the broad set of resources available
throu,gh this “meganet.” The other was the specific
problems we face every day due to heterogeneity in our
local computing environment. Our work is drawing us
closer to meeting our day-to-day needs. This experi-
ence i,s giving us insight to solutions that may apply in
the broader case.

Although each of our network facilities and services
was designed to meet specific goals, a number of com-
mon themes exist:

l Emulation. We do not integrate heterogeneous sys-
tern... by defining new standards that all systems must
support. Instead, we build software that can emulate
rela.tively easily a range of existing facilities. We ac-
complish this emulation by factoring the design of

subsystems into easily replaced parts. HRPC is the
best example of emulation.

Localized translation. Different systems store and
interpret shared information in different ways. With
many system types, centralizing the responsibility for
all combinations of translations is unmanageable. In-
stead, we place this responsibility for translating be-
tween representations in the hands of the entities
that know the most about it. One specific kind of
translation-the type conversions that arise in every
facility and service-is automatically managed as
much as possible. The HNS’s NSMs are another ex-
ample of localized translation.

Procrastination. We make decisions, such as those
involved in binding, as late as possible. This permits
us to place less specific information in the code itself,
making it easier to accommodate new systems. Pro-
crastination is facilitated by factoring, since choices
about how to select an individual component can be
delayed without significant modification of code.

Complex services and simple clients. To allow the cre-
ation of new clients at significantly reduced costs, we
must increase the sophistication of many services.
By complexity we do not mean that we define more
extensive and difficult-to-use interfaces to services;
indeed, the interfaces must be simple to ease con-
struction of the clients. Rather, we mean that the
function performed by the service is often more com-
plex and time consuming than might be desired in
the absence of the problems posed by heterogeneity.

We believe that “heterogeneity through homogene-
ity,” that is, defining a new standard that must be ad-
hered to by all systems, is an approach that Yhas serious
limitations, especially in the near term. In the best of
all possible worlds, standardization would al.low diverse
systems to communicate and to share infrastructure.
There is little indication, though, that the current trend
toward ever-greater diversity will reverse itself quickly;
an interim solution is needed. Hence, emulation and
accommodation are hallmarks of the HCS approach.

Acknowledgments. Many thanks go to the students
who have participated in the HCS Project, including
Brian Bershad, Fran Brunner, Dennis Ching., Sung
Kwon Chung, Bjorn Freeman-Benson, Kimi Gosney,
John Maloney, Cliff Neuman, Brian Pinkerton, Michael
Schwartz, Mark Squillante, James Synge, and Douglas
Wiebe.

REFERENCES
1. Allman, E. Sendmail-An internetwork mail router. ?INZX Program-

mer’s Man. 4.2BSD, 2C (Aug. 1983).
2. Almes, G.T., Black, A.P., Lazowska, E.D., and Noe, J.D. The Eden

system: A technical review. IEEE Trans. Softw. Eng. SE-II, I
[Jan. 1985), 43-58.

272 C:ommunications of the ACM March 1988 Volume 31 Number 3

Special Section

3.

4.

5.

6.

7.

6.

9.

10.

11.

12.

13.

14.

15.

16.

17.
16.

19.

20.

21.

22.

23.

24.

25.

26.

27.

26.

29.

Bairstow, J. GM’s automation protocol: Helping machines communi-
cate. High Technol. 6, 10 (Oct. 1986), 38-42.
Balkovich, E., Lerman, S., and Parmelee, R.P. Computing in
higher education: The Athena experience, Commun. ACM 28,ll
(Nov.1985),1214-1224.
Bershad, B.N. Load balancing with Maitre’D. Tech. Rep. UCB/CSD
86/276, Computer Science Division (EECS). Univ. of California,
Berkeley, Dec. 1985.
Bershad, B.N., and Levy, H.M. Remote computation in a heteroge-
neous environment. Tech. Rep. 67-06-04, Dept. of Computer Sci-
ence, Univ. of Washington, Seattle, June 1987.
Bershad, B.N., Ching, D.T., Lazowska, E.D., Sanislo, I., and Schwartz,
M. A remote procedure call facility for interconnecting heteroge-
neous computer systems. IEEE Trans. Softw. Eng. SE-13,8 (Aug. 1987),
880-894.
Birrell, A.D., and Nelson, B.J. Implementing remote procedure calls.
ACM Trans. Comput. Syst. 2, 1 [Feb. 1984), 39-59.
Birrell, AD., Levin, R., Needham, R.M., and Schroeder, M.D.
Grapevine: An exercise in distributed computing. Commun. ACM 25,
4 (Apr.1982) 260-274.

Brown, M.R., Kolling, K.N., and Taft, E.A. The Alpine file system.

Black, A., Lazowska. E.. Levy, H., Notkin, D., Sanislo, J., and

IEEE Trans. Comput. Syst. 3,4 (Nov. 1985), 261-293.
Brownbridge, A., Marshall, A., and Randell, A. The Newcastle con-

Zahorjan. J. An approach to accommodating heterogeneity. Tech.

nection-or UNIXes of the world unite. Sofrw. Pratt. Exper. 12, 12

Rep. 86-10-04, Dept. of Computer Science, Univ. of Washington,

(Dec. 1982) 1147-1162.
Callahan, J.. and Weiser, M. Norman Mailer: A multiple protocol

Seattle, Oct. 1985.

mail reading/composing program. In Proceedings of the International
Working Conference on Message Handling Systems (State of the Art and
Future Directions) (Munich, Germany, Apr.). IFIP, Arlington, Va.,
1987, pp. 2.2-1-2.2-16.
CCITT. Recommendations X.400 to X.410. Document 66 of the
8th Plenary Assembly of the CCITT. Dot. AP VIII-66-E, CCITT,
June 1984.
Dannenberg, R.B. Resource sharing in a network of personal com-
puters. Ph.D. dissertation, Dept. of Computer Science, Carnegie-
Mellon Univ., Pittsburgh, Pa., Dec. 1982.
Dineen, T.H., Leach, P.)., Mishkin, N.W., Pato, J.N., and Wyant, G.L.
The network computing architecture and system: An environment
for developing distributed applications, In Proceedings of the USENIX
Conference (Phoenix, Arm., June). USENIX Association, Berkeley,
Calif., 1987, pp. 385-398.
Field, J. The XDE/UNIX Bridge. Cornell Univ., Ithaca, N.Y.
Gibbons, P.B. A stub generator for multi-language RPC in heteroge-
neous environments. IEEE Trans. Softw. Eng. SE-13, 1 (Jan. 1987)
77-87.
Gosney, K. Heterogeneous remote procedure call for Franz Lisp.
M.S. thesis and Tech. Rep. 87-07-03, Dept. of Computer Science,
Univ. of Washington, Seattle, July 1987.
Gray, T.E. Position paper for workshop on “Making Distributed Sys-
tems Work.” In “Making Distributed Systems Work” (Amsterdam,
The Netherlands, Sept.). 1986.
Hagmann, R. Summoner Documentation. Xerox PARC, Palo Alto,
Calif., July 1985.
Hayes, R., and Schlichting, R.D. Facilitating mixed-language pro-
gramming in distributed systems. IEEE Trans. Soffw. Eng. SE-13, 12
(Dec. 1987) 1254-1264.
International Organization for Standardization. Information process-
ing systems-Open systems interconnection-File transfer, access
and management. Draft International Standard 8571, OMNICOM
Information Service, Vienna, Va., Apr. 1985, parts l-4.
Johnson, J.Q. XNS Courier under UNIX. Cornell Univ., Ithaca, N.Y.,
Mar. 1985.
Jones. M.B., and Rashid. R.F. Mach and Matchmaker: Kernel and
language support for object-oriented distributed systems, In Proceed-
ings of OOPSLA 86 [Portland, Oreg., Sept.). 1986, pp. 67-77.
Jones, M.B., Rashid. R.F., and Thompson, M.R. Matchmaker: An
interface specification language for distributed processing. In
Proceedings of the 12th ACM Symposium on Principles of Program-
ming Language (New Orleans, La., Jan.), ACM, New York, 1985.
pp. 225-235.
Kaminski, M.A., Jr. Protocols for communicating in the factory. IEEE
Spectrum 23, 4 (Apr. 1986) 56-62.
Kronenberg, N.P.. Levy, H.M.. and Strecker, W.D. VAXclusters: A
closely-coupled distributed system. ACM Trans. Comput. Sysf. 4, 2
(May 1986). 130-146.
Lampson, B.W. Designing a global name service. In Proceedings of the
5th ACM Conference on Principles of Distributed Computing (Calgary,
Canada, Aug.). ACM, New York, 1986, pp. l-10.

30.

31.

32.

33.

34.

35.

Leach, P., Levine, P.H., Douros, B.P., Hamilton, J.A., Nelson, D.L.,

36. Schroeder, M.D., Gifford, D.K., and Needham, R.M. The Cedar file

and Stumpf, B.L. The architecture of an integrated local network.
IEEE 1. Sel. Areas Commun. SAC-l, 5 (Nov. 1983), 842-856.
Morris, J.H., Satyanarayanan, M., Conner, M.H., Howard, J.H.,

system. Commun. ACM 31, 3 (Mar. 1988) 288-298.

Rosenthal, D.S.H., and Smith, F.D. Andrew: A distributed personal

37. Schwartz, M. Naming in large, heterogeneous systems. Ph.D. disser-

computing environment. Commun. ACM 29, 3 (Mar. 1986) 184-201.
Notkin, D., Hutchinson, N., Sanislo, J., and Schwartz, M. Heteroge-
neous computing environments: Report on the ACM SIGOPS

tation, Dept. of Computer Science, Univ. of Washington, Seattle, July

workshop on accommodating heterogeneity. Commun. ACM 30,2
(Feb. 1987) 1322140.
Oppen, DC., and Dalal, Y.K. The clearinghouse: A decentralized
agent for locating named objects in a distributed environment. ACM
Trans. Off Znf. Sysf. I, 3 (July 1983) 230-253.
Postel, J., and Reynolds, J. Domain requirements. Rep. RFC 920,
Information Sciences Institute, Univ. of Southern California,
Los Angeles, Oct. 1984.
Schroeder, M., Cifford, D., and Needham, R. A caching file system
for a programmer’s workstation. In Proceedings of the 10th ACM Sym-
posium on Operating Systems Principles (Orcas Island, Wash., Dec.).
ACM, New York, 1985. pp. 25-34.

36.

39.

40.

41.

42.

43.

44.

45.

46.

1987.
Schwartz, M.. Zahorjan, J., and Notkin, D. A name service for evolv-
ing heterogeneous systems. In Proceedings of the 11th ACM Sympo-
sium on Operafing Systems Principles (Austin, Tex.. Nov.). ACM, New
York, 1987. To be published.
Sheltzer, A.B., Lindell, R., and Popek, G.J. Name service locality
and cache design in a distributed operating system. In Proceedings of

the 6th lnfemational Conference on Distributed Computing Systems
(Cambridge, Mass., May). IEEE, New York, 1986, pp. 515-522.
Squillante. MS., and Notkin, D. A mail system for local, heteroge-
neous environments. Tech. Rep. 87-07-04. Dept. of Computer Sci-
ence, Univ. of Washington, Seattle, July 1987.
Sun Microsystems. Remote Procedure Call Protocol Specification. Sun
Microsystems, Jan. 1985.
Sun Microsystems. External Data Representation Reference Manual.
Sun Microsystems, Jan. 1965.
Terry, D. Distributed name servers: Naming and caching in large
distributed computing environments, Ph.D. dissertation, Computer
Science Division (EECS), Univ. of California, Berkeley, Feb. 1985.
Terry, D., Painter, M., Riegle, D., and Zhou, S. The Berkeley internet
name domain server. Tech. Rep. LJCB/CSD 84/182. Computer Sci-
ence Division (EECS), Univ. of California, Berkeley, May 1984.
Walker, B., Popek, G., English, R.. Kline, C., and Thiel, G. The
LOCUS distributed operating system. In Proceedings of fhe 9th ACM
Symposium on Operating Systems Principles (Bretton Woods, N.H..
Oct.). ACM, New York, 1983.
Xerox Corporation. Courier: The remote procedure call protocol.
Tech. Rep. XSIS 038112. Xerox Corporation, Dec. 1981.

CR Categories and Subject Descriptors: C.2.4 [Computer-
Communication]: Distributed Systems: H.2.5 [Database Management]:
Heterogeneous Databases

General Terms: Design, Management
Additional Key Words and Phrases: Heterogeneous computer systems

Authors’ Present Addresses: David Notkin, Edward D. Lazowska, Henry
M. Levy, Jan Sanislo, and John Zahorjan, Department of Computer Sci-
ence, FR-35, University of Washington, Seattle, WA 98195; and Andrew
P. Black, Digital Equipment Corporation, 550 King Street, Littleton, MA
01460.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

March 1988 Volume 31 Number 3 Communications of the ACM 273

