Thesis Dissertation

“Exception Handling: The Case Against”

Andrew P. Black

(Balliol College)
1982

ABSTRACT

It has recently become apparent that only by striving for the
utmost simplicity in programming languages can one hope to
produce programs which express their semantics clearly. Thus
it is essential to examine any new language feature to see if
its contribution to ease of expression outweighs its cost in
terms of language complexity.

This thesis examines exception handling mechanisms in
this light. Such mechanisms are included in the programming
languages PL/I, CLU and Ada, and extensive proposals have been
made by Levin. All the mechanisms are "high-level” in the
sense that they can be simulated by conventional language
features. Their designers offer only the vaguest indication
of their range of applicability, and when the motivating
examples are re-written without exception handling there is
often an improvement in clarity. This is partly because of the
reduced weight of notation, and partly because the exception
handling mechanisms obscure what is really happening.

The same techniques which produce these improvements in
programs can be applied to axiomatic definitions of data types.
This finding contradicts the claim of some other workers in
data abstraction that exceptions are essential for the
description of data types like stack.

The role of exception handling mechanisms in the
construction of fault-tolerant computer systems is also
examined. It has been suggested that exception handling and
fault-tolerance are really different facets of the same
problem. However, careful examination of these facilities
leads to the conclusion that exception handling is only
relevant to anticipated events, whereas fault-tolerance
addresses the problem of residual design errors which are of
their nature totally unexpected. The very real problems of
survival after a component violates its specification is not
addressed by exception handling.

ACKNOWLEDGEMENTS

This thesis, both as an idea and in its present form, is the
result of varied influences. My debts are many:

To the authors of the Algol 60 Report, for kindling my
interest in programming languages.

To Brian Shearing, for proving that both syntax and
semantics do matter in the world of commercial software.

To Les Belady and the staff of the Software Technology
Project at the IBM T.J. Watson Researéh Center, who taught me
a lot about the problems of modifying real software and provided
support for the work on exception handling and data abstraction
[10] out of which this thesis grew. |

To Tony Hoare, for convincing me that simplicity is a
more worthy goal than complexity, and more of a challenge, toco.

To Jim Horning, Jim Mitchel and others at Xerox PARC for
answering my questions on Mesa and its use.

To the Science Research Council, for providing the
studentship which enabled me to undertake this research.

To the members of the Programming Research Group, Oxford,
and the members of the Computer Science Department at the
University of Washington, for providing constructive criticism,
for tolerating my irregular hours and moods, and for providing
computing resources.

To my wife Gloria, for typing this thesis (twicel, for
giving me moral support in its writing, and most of all for
being there whén I needed you.

Thank you.

CONTENTS

Acknowledgements

Introduction
0.1 The Quest for Simplicity
0.2 What is a Simple Programming Language?
0.3 Exceptions and Exception Handling
0.4 Structure of this Thesis

Chapter 1: What are Exceptions?

1.1 Cristian’'s View of Exceptions
Exceptions in CLU
Exceptions as Apology Messages
Levin’s View of Exceptions
Exceptions in Ada
Summary

RN QY
O wWN

Chapter 2: A Historical View of Exception Handling
2.1 Exceptions in Fortran and Algol 60

Clearing Up

Exception Mechanisms in PL/I

Exception Handling in Multics

Exception Handling in Algol 68

Conclusion

NNNNN
YU WN

Chapter 3: "Structured” Exception Handling
3.1 A Taxonomy for Exception Handling

Exception Handling in CLU

Exception Handling in Mesa

Levin's Proposals for Exception Handling

Exception Handling in Ada

Summary

WWwWwww
DU WN

Chapter 4: Exception Handling in Action
4.1 The CLU Sum_Stream Example
4.2 Levin's Examples
4.3 Experience with Mesa Signals
4.4 Implementation Efficiency
4,5 Conclusion

Chapter 5: Exception Handling and Abstract Data Types
5.1 Errors and Exceptions in Axiomatic Type

Definitions

Defining Partial Operations

The Problem with Error -

A Rigorous Definition of Data Type Union

Formal Specification of Two Data Types

Conclusion

[Sy NS RE NS NE)|
- L] - »n -
a1 WN

ii

152
153
157
160
164
167

Chapter 6: Programming without Exception Handling
6.1 Programming with Discriminated Unions
6.2 Manipulating Procedures in Programming
Languages
6.3 Conclusicon

Chapter 7: Catastrophe Handling
7.1 Catastrophses, Exceptions, Errors and Faults
7.2 Fault-tolerant Computing
7.3 Using a Recovery Mechanism for Exception
Handling

Chapter 8: Conclusion
8.1 Exception Handling is Unnecessary
8.2 Exception Handling is Undesirable
8.3 Exceptions and Catastrophes
8.4 On Subjectivity and Proof
8.5 Suggestions for Further Work

References

168
168

181
180

191
191
193

213

217
217
220
227
229

iii

230

232

INTRODUCTION

Much recent research in the areas of programming language design and
programming methodology has been devoted to proposing and defining new
language features, and indeed whole new languages. This thesis
represents a departure from that trend. It opposes a language feature,

and one which has recently become fashionable: exception handling.

0.1 The Quest for Simplicity
Until the early 1970’'s language design was considered to be a process
of innovation, of creating new and varied features which would make
programming easy for a growing user population. The task has now
changed. We are coming to realize that "powerful” programming languages
can compound problems rather than contribute to their solution. The
availability of a large number of features can be a burden instead of
a convenience.

It has been convincingly argued that building large programs is
intrinsically difficult because of "our inability to do much” [21]:
our ability to master complexity is strictly limited. We can hope to
solve large and complicated programming problems only by dividing them
into manageable parts and by keeping each part as siﬁple as possible.
For this effort to be successful our most basic tool, the programming
language itself, must also be kept as simple as possible. An
unnecessarily complex language bristling with ornamental "features” is
an added burden which cannot be tolerated. There is a pressing need for
consolidation, not innovation, in programming languages. Simplicity
should be pursued not as one goal amongst 118 [95] but as the principal

objective of language design.

The need for simplicity has been eloquently argued in [45],
[79], [32] and [39]. It is not necessary to repeat these arguments
here. Instead I wish to consider their impact on the design of languages

and language features.

0.2 What is a Simple Programming Language?

A simple language is not obtained just by minimizing the number of
features it contains. It is also necessary to ensure that the included
features reflect natural concepts in the mind of the progremmer, and to
minimize the interdependence of the features. A universal Turing machine
provides a lower bound on the number of features necessary to perform
computation. Howerver, it is clear that primitives which reflect our
thought processes are needed if programs are to be comprehensible.

In designing Algol 68 an attempt was made to keep the number of
concepts included in the language small. This was accomplished by
generalizing each feature as much as possible, subsuming other features
in the process. The trouble with this approach is that the generalized
features are foreign to the way most programmers think about problems.

One example will serve to illustrate this point. The concepts of
"variable” and "constant” were well understood by programmers in Algol 60
and its successors. Pointers were not so well understood, but they were
considered’ necessary to provide an adequate data structuring capability.
However, instead of including a restricted form of pointer specialized
for this purpose, "references” were invented and generalized until they

subsumed the notions of variable and constant. Instead of

const i:complex = c;

var v:complex;

var pc:pointer to complex;

Algol 68 uses the declarative forms

comglex i= 03

" ref complex v = loc complex;

ref ref complex pc = loc ref complex;

Three* concepts have been replaced by one: unfortunately this is not a
simplification. References are difficult to reason about; making the
progranmer use them when ordinary variables are adequate complicates his
task._ It is not even possible to produce a subset of the language (say,
for teaching purposes) which does not include references.

The designers of Algol 68 were aware of the dangers of complexity.
In order to make the interaction of the various features as tractable as
possible, one of their design goals was "orthogonality”. Features were
intended to be independent, and to combine in regular ways. The mode
concept interacts with control structures very regularly: the ordinary

if ... then ... else is a "void choice clause using boolean”; an integer

valued conditional expression is an "integer choice clause using
boglean”, and so on. Orthogonality is certainly a desirable property for
the composition of semantics in a language, and Algol 68 would be even

more difficult to understand if it were not so regular. However,

* Tn fact, at least one more important concept, recursive data structures,
was avoided too.

regularity is not a substitute for simplicity: both are essential
properties of a well-designed language.

The need for simplicity means that any new feature must be
examined very critically to determine whether or not it should be
included in a language. For example, a choice construct is desirable
because it permits enumeration of cases - but guarded commands [22] are

preferable to if then else .and unlabelled case statements because they

make explicit the condition to which each statement sequence corresponds.
Procedures and abstract data types are amongst the most powerful tools
available for dealing with large problems - precisely because

abstraction is one of our most significant mental aids [21].

0.3 Exceptions and Exception Handling

The problem of programs that fail to perform their allotted tasks has
always existed. Over the last five or six years a belief has arisen
that this problem can be eliminated, or at least significantly eased, by
the introduction of language constructs for "exception haﬁdling". Such
features have been proposed by Goodenough and Levin, and are present in
the progranming languages PL/I, Bliss, CLU, Mesa and Ada.

I do not believe that exception handling mechanisms are necessary.
Primarily this is because there is no single mental process for them
to capture. Rather, failures occur because of three problems:

(i) deciding exactly what a progran should dos

(i1) writing code to do it correctlys

(iii) relying on an underlying machine which may fail.
There are techniques for dealing with>each of these difficulties.

Formal specifications and structured programming help us to cope with (i)

and (ii) respectively. By recursive application to the underlying machine

they can also reduce (iii), although hardware and software
fault-tolerance techniques may be necessary in addition.

I shall argue that attempting to bring these diverse concerns
under the common heading of "exception handling technigues” has resulted
in the all-embracing definition of exceptions as those conditions
brought to the attention of a program’s invoker [30], and the invention
of exception handling mechanisms powerful enough to subsume the role
not only of subroutines but of coroutines and jumps tob. It seems likely
that such mechanisms will reduce reliability rather than increase it.
Not only do they complicate the programming language, they do so in the
most critical places. Exception handling mechanisms have been engineered
so that their use is economic only when they will be rarely exercised -
the very circumstance i? which an error of logic is likely to remain
undetected. Their use hés been urged when there are many cases needing
different treatment, but instead of making the handling of each case
explicit at the place where it may occur, exception handling mechanisms aim
to hide from scrutiny both the existence of the difference cases and the

program’'s response.

This thesis aims to show that unusual and undesired events, if
anticipated, can be adeguately dealt with in exactly the same way as
common and desirable events: by the application of the ordinary constructs
of struc%ured programming. 0On the other hand, the occurrence of an
unanticipated event cannot be dealt with at all. That is why one of the’

programmer’'s major responsibilities is to anticipate all possible events:

a language feature which pretends to take over that responsibility is

both misguided and dangerous.

On practical grounds, too, exception handling seems to be poorly
motivated. Many strange and wonderful language features have been
proposed over the last twenty-five years. It seems likely that for even
the most barogue there is one example which shows them to be useful:
the very example which was responsible for their invention. Nevertheless,
I have failed to find an example of a programming problem amenable to
simple and natural solution by an exception handling mechanism which cannot be
so solved without one.

Apart from the lack of real need, there are other grounds for
objecting to exception handling mechanisms. Most of the mechanisms
proposed to date are badly designed. They impair readability and program
proof, introduce problems such as clearing-up, violate modularity
assunptions, and in some formulations even allow one process to interfere
with another.

Implementation is another problem. The increased cost of a compiler
which implements an exception handling mechanism may be small, and may not
be significant to the employers of the compiler writers. This is
probably true of the compilers for PL/I, the only widely available
language to incorporate exception handling. Unfortunately, the indirect
costs are much larger, and must be born by the users of such a compiler.
It is likely to be larger, slower, more prone to bugs, and less
explicit with its error messages; And some of these costs are inflicted
on the user every time a program is compiled, even if the exception

mechanism isnever used.

My rejection of exception handling mechanisms does not mean that I
am entirely satisfied with existing programming languages. Many strongly
typed languages do not provide a convénient way for a procedure to
return results of different types, and exception handling mechanisms have
been used as a way of simulating such results. I will use a type
constructor called oneof for producing discriminated unions of types; this en-
ables "exceptiqnal" results to be communicated in the same way as
ordinary ones. Human fallibility also forces me to recognize that the
totally unexpected will sometimes. occur, and that some way must be found
of minimizing the consequences of such a catastrophe. There have indeed
been proposals for doing so; they have in common the division of the
system into compartments which attempt to contain the catastrophe and its
consequences. Each nested recovery compartment represents a frame of
reference in which progressively more disastrous events are anticipated,
but progressively less comprehensive recovery is attempted. Catastrophes

are survived rather than handled.

0.4 Structure of this Thesis
Chapter 1 attempts to define the term "exception”. The definitions used
by the designers of various exception handling mechanisms are compared,
but none is found to be satisfactory.

Chapter 2 examines some early methods of dealing with exceptions.
The treatment is chronological; it includes methods applicable to Algol 60
and Fortran, the primitive exception handling of PL/I, and exceptions in
Algol 68.

Chapter 3 considers the more recent proposals for exception handling

mechanisms. They generally provide more structure than do PL/I ON

conditions, but there is great variation between different languages.
CLU, Mesa and Ada are studied in detail, as are the proposals of Levin.

Chapter 4 is entitled "Exception Handling in Action”. It contains
examples which have been used by the designers of various exception
mechanisms in an attempt to justify them. I present the original
form of the example and a revised version which achieves a similar effect
without special purpose language features.

Chapter 5 examines exceptions in specifications of data types. The
axiomatic method of type definition is briefly introduced, and used to
rigorously define the oneof type constructor used in Chapter 4. 'Stack’
and 'SymbolTable’ are defined using oneof, illustrating that exceptions
and "abstract errors” [27] unnecessarily complicate the problem of data
type definition.

Chapter 6 looks at the language features assumed by my examples in
Chapter 4. Specifically, various languages are examined to see if the
oneof constructor can be conveniently provided. The treatment of
procedures as manipulable values is motivated, and the complexity of thesg
features is compared to that of exception handling.

Chapter 7 investigates techniques for dealing with catastrophes,

i.e. the totally unexpected. The key idea is found to be contaimment, and
various containment strategies are surveyed. Operating systems and

the Newcastle Recovery Block scheme are considered, and the way in which
they differ from exception handling mechanisms is bfought out. Because the
possibility of hardware failure is ever-present, catastrophe handling

seems to be an essential part of a reliable system. Exception handling has

‘no such fundamental role.

Chapter 8 summarizes my main arguments and draws the conclusion

that exception handling mechanisms are not a desirable feature of a

modern programming language.

Chapter 1 '

WHAT ARE EXCEPTIONS?

This chapter will attempt to answer the philosophical guestion "what
is an exception” and to examine the objectives of recent proposals for
exception handling mechanisms. The details of individual mechanisms are
deferred to later chapters: here I attempt to isolate the perceived

need which they were designed to satisfy.

The starting point for most of the recent developmehts in exception
handling is: the 1975 papers of Goodenough [29] [30]. He defines
exceptions as those conditions which an operation brings to the attention
of its invoker. He claims that it is characteristic of an exception
that its significance is known only outside the operation which detects it.
Exceptions are not necessarily rarely activated: a procedure may generate
exceptions many times in the course of a single call. The first part of
Goodenough's definition is of course guite universal: it includes any
results or observable effects of the operation. His proposals for
exception handling are equally general, and have been criticised on those
grouhds (see, for example, [99],[68] and [16]). As far as I‘kndw thére
has never been a language which planned to incorporate a mechanism of such
power, and it would be unfair of me to launch the case against exception
handling by repeating the criticisms of others. It is more appropriate to

search for a less general definition.

1.1 Cristian's view of Exceptions
In [16] Cristian attempts to set out rigorous definitions of the concepts

involved in exception handling. He states that an exception occurs if the

standard precondition of an operation is false when that operation is invoked.

10

11

The "standard precondition” of an opefation is defined as the weakest
precondition guaranteeing the termination of the opepation in a state
which satisfies its postcondition. A later paper concerned with the
automatic detection of exceptions [8] echoes this definition.

An operation may be invoked with its preconditions false for two
reasons. First, it is possible that the designer or implementor of the
operation documented it incorrectly. It can then happen that although
the invoker meets the published precondition, the operation cannot possibly
establish its postcondition because the real precondition is stronger than
the published one.

The second possibility is that there is a mistake in the code which
invokes the operation. It is the duty of the programmer who uses an
operation to ensure that it is invoked only fran those states which do
satisfy that operation’s precondition. If the progranmer is negligent in
that duty a programing error occurs.

It is a truism that progranming errors should be corrected, not
"handled”. If the programmer is aware of the mistake then of course he
should correct it. If, as too often happens, he is unaware of the error
then he cannot correct it, but neither can he handle its effect. Before
he can even consider writing an exception handler he must be aware that the
exception can occur, which implies that the generation of an exception
signal must be part of the specified behaviour of the operation. But, by
definition, no exception occurs when the operation is used according to

its specification!

12

1.2 Exceptions in CLU

The language CLU (see Section 3.2) incorporates an exception handling
mechanism. The reference manual [61] states that an exception occurs when
a routine cannot complete the task it is designed to perform.
Superficially this definition is very like that of Cristian; provided
that the precondition of a routine is satisfied it should always be able
to complete its task. However, the examples in the manual and the informal
nature of the CLU definition make a more general interpretation possible.
It is the duty of the designer of an operation to ensure that it is
not impractical or impossible. One might imagine a client going to a
software designer and asking for the provision of a ’table’ with two
operations: 'table := Insert(name, data, table)’ and
'data := LookUp(name, table)’. As a responsible professional the software
engineer ought to tell the client that the ’'LockUp’ operation cannot be
implemented in its full generality: 'data’ can only be returned if the

'name’ has been inserted into the 'table’. 'LookUp’' must be guarded by a
precondition to this effect. The client may therefore decide that he
needs an operation 'bool := IsIn(name, table)’ sothat this precondition
can be checked. The engineer should then advise the client that in the
interests of efficiency he should prefer an operation 'LookUpIfPossible’

which returns either the ’'data’ or an indication that the name was not

in the table.

13

Now let us examine again the statement from [671]. "An exception
occurs when a routine cannot complete the task it is designed to
perform.” The task of 'LookUpIfPossible’ is always possible: a
professional was employed to ensure this is so. However, it is not
what the client wanted; he wanted 'LookUp’. From AZs point of view
an exception cccurs when 'name’ is not in 'table'. From the subjective
viewpoint of the client we can indeed find situations where a routine
cannot complete its task. From the objective viewpoint of the software
engineer there is no such situation, or at least he has tried to ensure
that there is none.

There are many examples of such "subjective" exceptions: taking the
top of an empty stack, reading from an empty file and dividing by zero
inmediately come tomind. Each such operation can be realized in two ways.
The domain of the operation can include "holes”, i.e. there can be values
for which the operation is not defined. This is the way division is
usually treated: it is not defined if the divisor is zero. Alternatively,
the range can contain a "bump”, an extra value of a distinct type. It is
possible to define a (different) division operation on all pairs of
integers whose range is the union of the rational numbers and the
distinguished value 'ZERO DIVIDE' Figure 1.1 illustrates the examples.

It is worth emphasizing that there are no errors involved. The versions
with the holes in the domain are perfectly acceptable from a theoretical
point of view; they are also eminently practical providing that the
domain can be checked cheaply. This is so with division, for example.
They become impractical (but not wrong) when the domain is expensive to

check, as with ’'LookUp’.

14

entered LookUp

sfr:js

attributes

AlL éb"ubg LookUp I Pessible ~

At inf@m Alt .'nhbe‘s

a par(:ioi Jwiston opcz_mjcor oo total dwvision opuui"or

a)om'&'al Top opafa%or a total Top operator

Figure 1.1: Partial and Total Versions of Three Functions

15

This, then, is one definition of exception: the "inconvenient”
result of an operation. It should be remembered that it is totally

subjective; it may nevertheless be quite useful.

1.3 Exceptions as Apology Messages

Another possible interpretation of exception was hinted at above. There
may be situations where a routine camnot complete its task because there
are insufficient resources available. These situations will arise despite
the best efforts of the software engineer: they are the inevitable
consequences of attempting to implement an infinte abstraction on a finite
machine.

The infinite set of integers, easy to define and familiar in use,
cannot be represented on a computer which can assume only a finite number
of states. The same applieé to many convenient abstractions: unbounded
tables, queues and stacks cannot be implemented on finite computers.

What should the conscientious software engineer do when his client
asks for an implementation of an unbounded table? Unlike the LookUp of a
not-yet-inserted item, there is nothing wrong with the abstraction.
Nevertheless, he must tell his client that this clean simple and desirable
abstraction is impossible to implement, and offer one of two unattractive
alternatives. The first is a different abstraction, such as a bounded
stack or a finite set of integers, which is not only not what the client
wants but is. also clumsier and more complicated to use. The secaond
alternative is a partial implementation of the desired abstraction, an
implementation which will work often enough to satisfy the client but
which will sometimes fail and emit an appropriate apology message. The

generation of an exception can be viewed as just such an apology message.

16

- The earliest reference I have been able to trace which considers
exceptions in this way is [74]. This paper commences "During the
execution of a program a number of exceptional conditions can arise, not
from program defined action, but .as a result of exceeding some computer
limitation”. This is curious becauée the paper goes on to consider
exception handling in PL/I; of the eighteen exception conditions listed
only one arises from a computer limitation.

Here, then, is another definition: an exception is an admission
by the implementation of an abstraction that it cannot comply with its
specification. This definition is objective provided that 5ne has a
specification describing the required behavibur.‘ A particular
implementation may satisfy a restricted set of axioms but fail tonsat{sfy
a more demanding specifioafion.

An implementation of any programming language incorporating infinite
abstractions may benefit from a mechanism for saying what to do when the
implementation is insufficient. An exception handling mechanism designed
for and restricted to this purpose might be a useful adjunct to an infinite
language. Unfortunately, exéept for the short paragraph in [74]cited above,
exception handling méchanisms have been neither designed nor advertised
on the basis of this usage. Even Goodenough's elaborate scenarios [30]
do not include the use of exceptions for signalling implementation
insufficiencies. More recently lLevin and others at Xerox Palo Alto
Research Center have classified the use of the Mesa signalling mechanism

and have noted that one use is to report failure of an implementation.*

* Private communication.

17

Nevertheless, it is in general fair to say that no mechanism has yet been
designed to deal specifically with the problem of implementing infinite
abstractions on finite machines. The exception handling mechanisms that
will be examined in this thesis do not address the problem. Because they
are part of the prograrmming language and may therefore invoke unbounded
abstractions, they are themselves unimplementable in general. For example,
an exception handling mechanism would not be useful for dealing with
overflow of the run-time stack used for procedure calls. Where could one
put the linkage to the exception handler and the routines it calls?
Moreover, while exception handling mechanisms are designed for dealing with
results that can only be interpreted outside of the operation that
detects them (see Goodenough's remark quoted above), it is characteristic
of an implementation insufficiency that its details are meaningful

only Zmnside the implementation of the abstraction. Effective recovery
from an implementation insufficiency is possible only if information about
the implementation is available. VYet it is the very purpose of the
abstraction to hide that information.

To illustrate this point, consider the abstraction "integer”. Given
the external information that the implementation of integers broke when
adding 32 760 to 10, there is nothing that the user can do. Only if he
is aware that the integers are represented as a row of sixteen binary
digits according to the two's complement convention will he be able to
determine if useful computation can be continued with -32 766. A
knowledge of the external specification (Peanc's axioms) alone is
insufficient.

The problem is essentially the same for programmer defined

abstractions. It is obviously incumbent onan implementation to apologise

18

when it cannot append a value to a list because it has run out of store.
However, it is not clear that the user module can do anything useful when
the apology is received. The lists module has failed to comply with its
specification, which is the only basis on which the user module can act.
Perhaps then a mechanism for dealing with implementation insufficiencies
should allow for the generation of exceptions (i.e. apology messages) but
should not provide, within the programming language, any mechanism ?or
handling these exceptions and continuing execution. This is consistent
with conditional correctness. Providing that the program terminates
normally its results will be in accord with its specifibations; however,
should the program fail to terminate normally, either by looping
indefinitely or by generating an apology message, then nothing may be
assumed about any result it may produce.

This view of a program as an object which possibly may fail in an
unpredictable way is one that has traditionally been adopted by operating
systems. Various technigues for continuing meaningful compbtation have
been developed; this topic is given further consideration in Chapter 7.
As was indicated in the introduction, these techniques are essentially
different fran those of programmed exception handling, which deal with
anticipated failures.

E.C. Hehner* has suggested another approach to the problem of implementation
inéuffibiency. Given a particular program and a particular implementation, it is
possible to supply implementation dependent annotations which instruct the

implementation how to proceed when it cannot comply with the axioms.

* Private communication.

19

For example, if a program manipulates rational numbers which are
implemented with binary floating point binary, the annotations could
tell the implementation to use an approximation when it cannot représent
the result of dividing one by three. This particular example shows that
abandoning the computation is not always the appropriate response to an
implementation insufficiency. Perhaps implementation dependent
instructions on how to continue cannot be avoided.

Nevertheless, the notion of extensive annotations is intellectually
unappealing. The problem of dealing with approximate arithmetic is
sufficiently important for numerical analysts to have developed technigues
for minimizing and estimating rounding errors. It is quite reasonable for
a programming language to provide as an abstraction numbers with a
finite accuracy and bounded range; the numerical analyst can then study
the propagation of rounding errors within the programming language. This
argument can be generalized to the claim that whenever one would require
continuation after the detection of an implementation insufficiency one
also needs a theory in which to reason about the validity of the results.
The best way of obtaining this is to alter the specification so that the
"implementation insufficiency” is now part of the expected behaviour. In
other words, the unimplementable abstraction must be given up in favour of

a more modest implementable one, even if it is less convenient.

1.4 Levin's View of Exceptions

Levin's thesis [59] deals solely with the subject of exception handling,

and proposes a new and powerful mechanism for incorporation into programming
langusges. Nevertheless, he is forced to admit that he failed to find a

definition of "exception”. He rejects the common guideline that an

exception is a rarely occurring event, justifying this stand with the

example of looking up a name in the compiler's symbol table. There are
two possible results: name absent and name present. Which of these is
more frequent. depends on context. Why should one result be considered as
an exception when the other is not? Levin’s solution to this dilemma

is to treat both results as exceptions.

Levin also rejects the identification of exceptions with errors,
although he includes errors as a proper subset of exceptions. However,
he does not define the term error:. He is also willing to classify
both input/output interrupts and other interprocess communication as
exceptions should this be convenient.

How then does Levin distinguish exception handling from other
techniques of program construction? He offers the guideline that exception
handling is to be preferred when a programmer wishes tc "play down”
the processing of a particular case in order that another case may be
emphasised. Of course, in the end this comes down to a matter of taste.
Levin considers that this lack of a firm boundary increases the
applicability of his mechanism and is therefore desirable.

It is clear even from the title of this thesis that my views differ
from those of Levin. As far as taste is concerned, mine is to prefer to
see explicitly where different cases may occur; as Levin points out,
guarded commands [22] express this adequately. (So do ordinary conditional
statements.) In my view it is not surprising that Levin failed to
formulate a satisfactory definition of exception: exceptions cannot be
defined because they do not exist as an abstract concept. I am not

claiming here that Levin's idea of separating the treatment of certain

21

rare cases from that of other, more common cases is never helpful.
However, some works in this field elevate errors and exceptions to the
status of an abstract and fundamental concept. In particular, Abstract
Errors for Abstract Data Types [27] defines a whole mathematical system
Cailed "Error Algebras” for dealing with "exceptions” such as looking for
a name which is not in a symbol table. Although the theory is complicated
it does not permit recovery from exceptions. A simplified way 5? dealing
with such situations ié described in Chapter 5.

Another paper which suggests that "exception” is an abstract notion
is [67], which provides an axiomatic description of some uses of the Ada
exception handling mechanism. The authors find it necessary to state
that "Our specifications and proof rules apply to programs with exceptions
regardless of whether excepticns are used only for error situations or as
a method of programming normal program behaviour.” It is as.if they believe

that it is possible to write axioms which distinguish the two cases!

1.5 Exceptions 1in Ada
In view of the probable economic importance of the Ada programming language
it is pertinent to ask how its designers interpreted the term "exception”.
The details of the particular mechanism they adbpted are discussed in
Section 3.5; we are here concerned with the more philosophical question
"What Zs an Ada exception?”. ,
The rationale for the design of Ada is described in [55]. Section 12.1
states that exception handling "provides a facility for local termination

upon detection of errors”. Exception handling should be restricted "to

\
events that can be considered (in some sense) as errors, or at least as

22

terminating conditions”. However, the term "error” is not defined, and it
is clear from the context that the last phrase means only that an exception
will lead to the termination of the current invocation.

Section 7.2, which discusses the implementation of parameter passing,
gives another clue as to the interpretation of an exception. Parameters
in Ada can be implemented either by reference or by copying: in normal
situations the semantics are identical. The case of a subprogram terminated
by an exception is classified as abnormal: the fact that out parameters
may or may not be updated is stated to be of no importance. The revised
definition of Ada [96] retains this rule (Section 5.2) and adds more
concerning optimization in the presence of functions which may generate
exceptions (Section 11.8). Specifically, operators whose result values
depend only upon their arguments may be invoked as soon as those arguments
are known, "even if this invocation may cause an exception to be
propagated”. "The operation need not be invoked at all if its value is
not needed, even if the invocation would raise an exception.”

When promulgating these rules the designers of Ada seemed to have in
mind expressions such as 'a or fun(b)'; they wished to permit the
invocation of ’'fun(b)’ to be omitted when 'a' is true even if it could
raise an exception. This is consistent with an interpretation of
exceptions as indicating an implementation insufficiency. Suppose that the
invocation of 'fun(b)’ would require more rescurces than are available and
would thus generate an exception indicating this fact. Clearly. an
implementation which avoids invoking 'fun(b)' and thus produces the correct
result instead of an apology message is to be applauded. Omitting the

invocation is not sensible if exceptions represent essential results. It

23

thereFore seems that exceptions in Ada are intended aé a means of
indicating implementation insufficiencies.

Unfortunately the examples given in the Report [86] do not observe
this intention. Section 12.4 presents a stack package with procedures
'Push’ and 'Pop’ but no predicate 'IsEmpty’. Instead the 'Pop’ procedure
may raise the exception 'Underflow’ if it is applied to an empty stack.
'"Underflow’ is thus an essential part of the result of 'Pop’. On the
other hand, the 'Push’ procedure may raise the exception 'Overflow’,
which presumably indicates an implementation insufficiency. (One cannot
be éure because the semantics of the package are not specified.) These
two exceptions representing such different concepts are generated with
the same syntax and are declared on the same line.

Section 1.6 of the Ada reference manual also provides some clues about
the meaning of "exception”. It states that Ada recognizes three categories
of error. The first are errors which must be detected at compile time; it
seems clear that this category includes syntactic errors, such as real
numbers with multiple exponents and constant objects on the left-hand side

of assignments. Of course, sequences of characters which viclate the Ada

syntax in this way are not Ada programs at all. However, such "non-programs”

are aoften informally referred to as "programs wifh errors”, and it would
be churlish to object to this usage. Indeed, it is the only guide to the
meahing of "error” offered by the manual, so I will assume that an error
is that which divides programs from non-programs.

The third category of error is consistent with this interpretation.
"The language specifies certain rules that must be obeyed by Ada programs,

although Ada compilers are not required to check that such rules are not

24

violated.” Programs which viclate the rules of Ada in this way are said
to be "erroneous”, and the effect of executing them is not predicted by
the reference manual.

The remaining category contains "errors that must be detected at
run time. These are called exceptions”. These phrases lead very rapidly
to a contradiction. If the interpretation of "error” derived above is
indeed correct, then exceptions can only occur in non-programs. And yet
exception handling certainly seems to be a part of the Ada language: a
whole chapter of the reference manual is devoted to it! But if exceptions
can be generated by valid Ada programs, what is an error?

The purpose of a programming language definition is to determine
unambiguously both the set of character strings which represent programs
in the language and the meaning of those programs. With its references
to "erroneous programs” and "exceptions” the Ada reference manual fails to

do these things. In the scope of the declaration
i : integer range 1..10

is 'i := 15’ an Ada assignment? No, because '15’ does not satisfy the
range constraint of 'i’', which the manual says it must. Or yes, because
the effect of this assignment is to raise the exception ’'constraint error’.

I am thus unable to answer the question which introduced this section.
It seems that the designers of Ada did not have a very clear idea of what
an exception ought to be. None of the possible interpretations are
consistent with the text and examples of the reference manual. The result
of this is not just ambiguity over whether certain texts are Ada programs;
as will be demonstrated in Section 3.5, the very semantics of legal

programs can sometimes be surprising.

25

1.6 Summary

It is clear that exceptions have several unrelated uses: announcing
programming errors, apologising for implementation insufficiencies,
delivering "unusual” results and achieving interprocess communication

are the examples mentioned in this chapter. Perhaps a mechanism which
could serve all of these purposes would be useful. Very general mechanisms
have appeared in the history of programming languages; the goto statement
is an obvious example. Gotos, like exceptions, can be used to simulate
many language features. There is another similarity, too: both exceptions
and gotos are provided by the hardware (as interrupts and jumps).

It is no discredit to the pioneers of programming to have investigated
the properties of such universal mechanisms. But the goto belangs to an
parlier ége. We are no longer seeking mechanisms which do as many different
things as possible; rather we are trying first to decide what we want to do,
and then looking for ways to do exactly that.

The designers of exception mechanisms have not been very successful in
their guest for the all-embracing. A run-time exception handling mechanism
is clearly inappropriate for dealing with mistakes which occurred when the
program was written. Insufficiencies of implementation cannot of their
nature be "handled” by a mechanism which is part of the programming language.
Exception mechanisms have been devised which deal with unusual results and
interprocess communication, but such mechanisms can only be justified on
the basis of a useful commonality between these things, and then only if
they are simple to understand and implement. Exceptions may be a useful

design notion, but such utility must be demonstrated, not assumed.

Chapter 2

A HISTORICAL VIEW OF EXCEPTION HANDLING

This chapter attempts to put the recent flurry of interest in
exception handling in perspective. Inconvenient results and

undesired events are not new phenomena; it is interesting to

see how they were dealt with before the invention of special

purpose exception handling mechanisms. Algol 60 and Fortran
will be used to illustrate the techniques available.

One of the first languages to provide a specialized exception handling -
mechanism was PL/I. It was developed by the IBM Corporation in the 1960's,
although it was not standardized until 1976. The PL/I exception mechanism
was clearly conceived as a means of trapping a varied collection of
language-defined run-time errors. The deFicigncies in the PL/I mechanism
are noted and the extensions provided by the implementors of the Multics
operating system are discussed.

The other major language of the 1860's was Algol 68. Whereas PL/I
provides a large number of specialized comstructs, each intended for a
specific application, Algol 68 offers a small core of very general facilities,
with no mechanism specifically designed for exception handling. The

methods used to handle undesired events are examined.

2.1 Exceptions in Fortran and Algol 60

Algol 60 and Fortran do not include any mechanism specifically designed for
exception handling. Hill [44] considers the problem in the context of a
function of 'A’ with an integer argument 'n'. He assumes that 'A' is only

defined for 'n 2 0', and that the legality of 'n’ is checked in the body‘oF

26

27

the function. If the check fails, what action should be taken? This
problem is quite fundamental: the idea that certain things are not defined
cannot be expressed in an algorithmic language. Undefinedness can only be |
interpreted as freedom to do anything the implementor sees fit. Thus,

if Hill’s question is understood in its strictest terms, any answer is
valid. Having stated that 'A’ has a limited domain, if a user is foolish
enough to invoke it outside that domain he cannot blame anyone but himself
for the consequences. Héwever, since programmers are human and mistakes

do happen, the reasonableness of the action should 'n’' be negative is a
legitimate engineering concern.

One possible action is to complete the function 'A' by decreeing that

’ ’

in the case 'n < 0' the result is 'x'. Then the function implemented is

not 'A' at all but a new function 'A'’, where 'A'(n)’' = 'A(n)’ if

'n € Dom(A)', and 'x' otherwise. Nevertheless, all correct calls of 'A’

can be replaced by calls of 'A'’ without any change in the action of a
program containing them. But what of the incorrect calls? If 'x’ is
distinct from all the valid results of 'A’ (i.e. 'x 2 Ran(A)') then the
result of 'A'' can be tested. This has the disadvantage that the programmer
must remember to perform the test; he is no mare likely to do that than to
remember to test the precondition 'nz 0'! Hill also points out that if

'A'' is called within a complex expression the result may be impossible to

test. Furthermore, if 'Ran(A)’ is the whole of the result type, no

suitable 'x' is available.

If the requirement of functionality is dropped when the value of 'n
is outside the permitted range, many more courses of action become available.

Hill lists the following possibilities:

(1) Terminate the program after printing a message, as is usually

done for standard functions like square root.

(ii) Add an extra output parameter. A Boolean result can be
used to indicate the success of the call. If several errors
are possible an extra integer result can be used to indicate
which error occurred. However, some value must still be
returned as the result of the function.

(iii) Use a Boolean function which has as its result the validity of
'n', and sets an output parameter to the value of the required
function 'A(n)' only if 'n ¢ Dom(A)’.

(iv) Add a label parameter to 'A’, and jump to that label if 'n’ is
invalid. This is allowed in Algol 60 [73] 9] but not in ANSI
Fortran [3].

(v) Add a procedure parameter to 'A', and call that procedure if 'n’
is invalid. Of course, control returns to 'A’ when the procedure
completes, and one of the other possibilities listed above must

" then be adopted. However, the choice of what to do can be

influenced by results returned by the procedure. It is also

possible, in Algol, to include in the procedure a non-local goté

and thus not to return at all.

Hill prefers method (iv), even though he is opposed to the widespread use of
goto statements: "The shock of a goto, jumping away from the scene of

action to start picking up the pieces elsewhere, seems to me to be just what
is required...” My view depends on whether it is easy to test if the
parameters are in the right domains. If they are, then (i) seems to be

most appropriate. The objection that this precludes recovery is not well

29

founded, for it is easy to test the parameter before calling the function
and to program an appropriate recovery action at that point. If it is not
easy to test the precondition then the function should be generalized until
it is - using "impossible results”, or methods (ii) or (iii).

A variant of method (v) was used extensively in the AED Free-Storage
Package [81]. In this system is was possible to partition the available
free store into several zomes, which might themselves be partitioned into
sub-~zones and so on recursively. Each zone cobtained a cache of free store
from its parent, which it then distributed to its users. Sometimes a
zone might not contain enough storage to satisfy a request, a typical
"exceptional” situation. This and similar eventualities were dealt with by
calling a so-called Help Procedure, a proCeQureLsuppliedabg«the\uégr,»the
_integer result of which told the storage system how to proceed. Various
primitive routines were available so that the Help P rocedure could, as a
side effect, manipulate the zone and attempt to cure the problem.

One of the significant things about a Help Procedure is that it was
not associated with a particular call on the package but with a zone of
storage. A zone was established by calling a procedure whose parameters
defined the attributes of the zone, including the Help Procedure. Help
procedures were associated with the data abstraction of storage zone, not
with the control abstraction of requesting a piece of store. This
distinction appears again in connexion with Algol 68 transput (see Section

2.5), and in the proposals of Levin [59] (see Section 3.4).

2.2 Clearing Up
Before going on to describe the exception handling mechanism of PL/I,

it is necessary to digress a little and examine one of the problems that

30

mechanism fails to solve. It often happens that a program initiates an
activity which requires completion even if the program fails. Indeed,
it is a major function of an operating system to restore itself to some
standard state after a user program has run, regardless of whether that
program worked correctly. This involves clearing up the arbitrarily
complex mess the user program left behind.

Clearing up is also necessary on a smaller scale. Any routine which
allocates storage,initiates a peripheral transfer or indicates in some
global fashion that it is active, must ensure that the storage is returned,
the transfer completed or cancelled, and the global indication reset before
it terminates. There is normally no difficulty in achieving this provided
that termination is always voluntary, i.e. due to completion of the body of
the routine or execution of a normal return. Problems arise, however, if
it is possible for a routine to be terminated abmormally. This can occur
if a call is made to a procedure at a lower level which, on detecting saome
undesirable event, unilaterally decides not to return. Even if the
calling routine is aware that this may happen, it is inconvenient, expensive
and sometimes impossible for order to be restored befbre calling every
such procedure.

Abnormal termination can only occur if the programming language allows
some form of non-local goto statement. In Fortran [3] a sub-program or
function must return to its caller (unless it executes a STOP statement,
which causes execution of the entire program to be concluded). In Algol 60
it is possible to jump to a label in any statically enclosing block; it
is also possible to pass labels as parameters through an arbitrary number

of procedure calls.

3

Of Hill's proposals for dealing with Faults in functions, both passing
1abéls and procedures as parameters (iv and v) may give rise to the clear-up
problem if the overall effect is to Jump from a routine body to a scope
outside that which called the offending function. The language PL/I provides a
mechanism for trapping exceptions which all but compels the programmer to use

;such non-local jumgps.

2.3 FException Mechanisms in PL/T
PL/I was the first general purpose progranming language to include specific
facilities for handling exceptions, known in PL/I as conditions. It is
possible for programmers to define their own conditions, and there are
twenty language-defined conditions which are detected either by the hardware
of the computers for which PL/I was designed, the software of the language
implementation or the library of built-in functions. This description is based
on [68] and [4].

A programmer designates what action is to be taken on the occurrence
of an exception condition by dynamically establishing a so-called on-unit
as a handler for that condition. When a condition occurs during the
performance of some operation, the operation is interrupted and the most
recently established on-unit is invoked; if no on-unit has been established |
a default action is taken.

Exception handlers are called on-units because they are established
by the use of the ON statement. The handler has the syntactic form éF a
begiﬁrblock or a single statement (in practice usually a call statement).

Examples (after [68]) are

32

ON UNDERFLOW PUT LIST('Underflow in Tabulate');
ON OVERFLOW ~ BEGIN;
CALL P;
GO TO L;
END;

The eFFth of the ON statement is constrained by the block structure
of the language (where block means begin block or procedure block). An
ON statement establishes the given handler Fof the named condition until
the current block is left; at that time the handler for the dynamically
enclosing block again becomes current. The enclosing handler can alsc be
re-established explicitly: the REVERT statement is used for this purpose.
If more than one ON statement for the same condition occurs in any block,
the previously established handler becomes inaccessible; the REVERT
statement cannot be used to reinstate an old handler established in the
current block. Thus the ON statement has some of the properties of a
declaraction {such as lasting only until the end of the block) and some of
the properties of assignment (such as being able to completely obliterate a
previous value).

The distinguishing feature of PL/I exception handling is captured in
the phrase "dynamically enclosing block”, i.e. the block which called the
current block. For a begin block this is, of course, its textually
enclosing block. However, a procedure block may be called from many
different places and may thus be provided with different handlers for its
conditions on each invocation. Moreover, those handlers cannot be determined
from a étatio scan of the program, but only from its simulated execution.
PL/I condition handlers thus behave rather like free variables in Lisp. This

is remarkable because such dynamic inheritance is not used in any other part

33

~of the language. PL/I free variables follow normal Algol scope rules, and
even condition prefixes (discussed below) have static scope.

Conditions in PL/I are divided into various groups. Computaticnal
conditions occur during evaluation of an expression. or assignment. Examples
are SUBSCRIPTRANGE, which occurs if an attempt is made to access a
non-existent array element, ZERODIVIDE, and STRINGSIZE, which occcurs if an
attempt is made to assign a string to a variable of insufficient length.

Input~-output conditions are always associated with a particular file
as well as with an action. Examples of input-output conditions are
ENDFILE (an attempt to read beyond the end of a sequential file) and
UNDEFINEDFILE, which occurs when an external file satisfying the requirements
of the program cannot be found. When on-units for these conditions are

established a file must be named, i.e. one must write
ON ENDFILE (file) Action;

and not
ON ENDFILE Action;

Incidentally, the ENDFILE condition is the only way of detecting the end of
a sequential file in PL/I.

There are some other conditions mentioned in the language definition,
such as AREA, signalled when a storage area is too small to accommodate a
demand for based storage, and ERROR, which the implementation may signal
when an illegal program is detected. However, when an implementation-defined
limit is exceeded the PL/I standard guarantees only that one or more of
a list of ten conditions will be raised.

1

Each language definsd condition has a default handler, which is invoked

if the programmer does not establish his own; the default handler can also

be established explicitly be writing
ON condition SYSTEM;

The handlers for some conditions are allowed to return control to the
interrupted operation while others are not. For example, the UNDERFLOW
condition arises if the result of a floating point operation is too small

to represent. If the handler for this condition returns, evaluation is
continued with zerc as the result. The default handler for UNDERFLOW prints
a message and then returns. Conversely, the handler for FIXEDOVERFLOW is
not allowed to return.

The programmer may define his own conditions and then specify handlers
for them with ON statements. Such conditions must be explicitly raised with
the SIGNAL statement. It is not possible to associate programmer-defined
conditions with data structures in the way the ENDFILE condition is associated

with files. Maclaren [68] comments as follows on this aspect of PL/I:

Allowing programmer defined conditions is a natural way to unify the
treatment of exceptions. However a programmer defined condition is
really nothing more than a procedure variable with the following
peculiar properties:

Assignment to the variable in one block activation has no effect on
assignments in previocus block activations. The values assigned to
the variable must be procedures with no parameters. Assignments are
made by ON and REVERT statements. The only way to access the value
of the variable is hy a SIGNAL statement.

Clearly a programmer can handle his own exceptions more flexibly by
using the normal procedure variables provided in PL/I.

Various ad hoc facilities complete the PL/I exception handling
machinery. There are a few global variables which the programmer can test
within a condition handler to discover more about the cause of the exception.

For example, the CONVERSION condition occurs during string to numeric

conversion when the string does noct have the syntax of a ﬁumeral. The

PL/I pseudo-variable ONSOURCE contains the offending string; moreover, its
value may be changed in an attempt to repair the fault. However, the exact
effect of such an assignment is an area in which implementations tend to
depart from the PL/I standard (see [68]).

Condition prefixes provide a way of "disabling” certain conditions,
generally the computational conditions. If a condition occurs and it is
enabled, the appropriate on-unit is invoked. Disabling a condition is
equivalent to asserting that it will not occur. It follows that any such
ocourrence is a failure and that further execution is undefined. The point
of this rule is to enable expensive checking (such as that of array subscripts)
to be turned off: if the programmer has asserted that a condition will not
occur, the implementation is relieved of any responsibility if it does.
OVERFLOW is enabled by default because most hardware will trap it
automatically; SUBSCRIPTRANGE is disabled by default becausé it is usually
detectable only by software checks.

Condition prefixes are nothing more than compiler directives which
are affixed to individual statements or blocks and control the generation
of checks. Their scope is thus static, contrasting with that of ON

statements. For example, in

{NOOVERFLOW) : BEGIN;
ON OVERFLOW CALL overerror;

X = X + v
(OVERFLOW) & a=b*c;
CALL P(x +a)

END;

the overflow condition is disabled throughout the begin block except in

the statement 1abelléd (OVERFLOW) : occurrence of overflow during the
execution of 'a = b * ¢’ will result in the invocation of the procedure
'overerror’, as directed by the ON statement. Whether overflow is enabled
during the execution of 'P’ depends on the condition prefix attached to

the body of 'P’, which may be separately compiled. If 'P' neither disables
OVERFLOW nor establishes its own condition handler, occurrence of overflow
in'P'will also cause 'overerror' to be invoked.

A common misconception is that PL/I on-units provide the ability to
trap hardware interrupts. They do not. It is essential to the language
that conditions occur only at discrete points. At all such points the
"machine” of the PL/I language definition must be in a well-defined state,
so the condition handler can manipulate both program variables and the
hidden variables of the implementation. If an interrupt occurred while
the system was performing an "indivisible” action, such‘as altering the
state of the free store system, and arbitrary user code were to be executed
in response, the effect could not be predicted.

As one of the first languages to include a specialized exception
handling mechanism, it would be surprising if PL/I was entirely satisfactory
in this respect. Notions of what are and what are not good progranming
practices have changed since PL/I was designed. The result is that the
exception handling facilities of PL/I are at variance with current ideas of
program structuring.

Any PL/I procedure inherits from its caller a nest of handlers for
various conditions. The consequences of the occurrence of a given condition

in a procedure cannot be determined by loocking at the text of that

procedure and its actual parameters. They depend on statements executed

in other, possibly separately compiled, procedures, and may vary from

one call to the next. The only way to avoid this dependence is to include
an on-unit for every conceivable condition in every procedure: even then it
is possible that the inconceivable may occur. The current emphasis on
reliability requires that occurrence of the totally unexpected should cause
an alarm (such as an error halt); this cannot be achieved in PL/I.

The dynamic nature of on-units makes each condition behave like a
global variable, or more precisely like a global stack. The argument usually
put forward in defense of this mechanism is that the invoker of a library
procedure should be able to treat a condition arising in that procedure in
the same way as when it arises in his own code. This may indeed be desirable
provided the condition has one specific meaning, as is the case for a few
of the language defined conditions such as ENDPAGE. But for the rest, and
for progranmer defined conditions, the meaning of a condition raised by an
alien subroutine may be completely different from the meaning of a condition
of the same name raised by the rest of the program. I cannot agree that
the provision of a single handler is desirable a prior<.

Trying to establish different handlers for different occurrences of
the same condition is very cumbersome. Maclaren gives the example of a
program with several GET statements which should take different actions if
they encounter the end of the input file. Each one must be prefixed by an
'ON ENDFILE (f) ...’ statement which sets up the appropriate handler, and
probably postfixed by a 'REVERT ENDFILE (f)' statement too. This is
expensive to implement and obscures the function of the program.

These pfoblems may be avoided by establishing one condition handler

38

for 'ENDFILE (f)’ which sets a Boolean variable 'end of file F’, and testing
this after each GET. Assuming that the correét handler is always invoked,
and that the programmer remembers to check the state of 'end of file F’,

all will be well; but this is a cumbersome way of implementing a predicate
that could have been provided by the input system at little cost.

Another problem with PL/I on-units is finding a sensible action for
the condition handler to take. First, there is a list of ad hoc
restrictions on what a condition-handler can do. The restrictions vary from
one condition to another; they are intended to permit the generation of
efficient code. (This is discussed in detail in [68].)

Second, one should note that, unless special precautions are taken, a
condition handler is inside its own scope. Should the same condition occur
inside the on-unit, the on-unit is invoked again recursively. "Taking
special precautions” is quite inconvenient. The following solution is

after MaclLaren.

BEGIN;
ON OVERFLOW
BEGIN; :
ON OVERFLOW GOTO recursive overflow_handler;
/* Remainder of the overflow on-unit */
END;

GOTO start;
recursive_overflow_handler:
REVERT OVERFLOW;
SIGNAL OVERFLOW;
start:

/* Main Part of Block */
END;

Such contortions are very difficult to follow.
Lastly, some method must be found to terminate the handler. One

way of doing this is by the execution of a STOP statement, which terminates

39

the entire program. This could be appropriate if the condition were .
catastrophic. Another possibility is executing the END statement which
terminates the handler; this implies a return to the context which raised
the condition. While it may be reasonable to return after some conditions
(such as an ENDFILE which has been handled by setting a variable), it is
sometimes desirable to abandon the operation which raised the condition;
morecver, a return is prohibited after eight of the language-defined
conditions. In these cases, assuming that one does not want to STOP, it is
necessary to execute a GOTO statement and to transfer control to the block
activation that established the on-unit, or to a scope enclosing it.

Such a transfer of control is potentially non-local, and may therefore
cause an arbitrary number of procedure and block invocations to be abandoned.
This obviously gives rise to the clear-up problem described in Section 2.2.
The implementation will presumably clear upestablished on-units and stack
frames, but PL/I does not provide a mechanism which permits a programmer to

do his own clearing up of files or off-stack storage.

2.4 Exception Handling in Multics
The Multics system was developed at M.I.T. as a research project intended
to examine how a reliable operating system with a multitude of user
interfaces could best be constructed. It was determined at the start that
the system should be written in a high-level language and be published
[14]. A machine independent high level language was therefore required, and
at the time of the inception of the project, PL/I was considered to fit this
description.

Multics provides an exception handling mechanism derived from PL/I ON

conditions but including several extensions. The first extension is the

40

' and

provision by the system of the procedures 'condition ', 'reversion_
'signal ’ which correspond to the PL/I ON, REVERT and SIGNAL statements,

but are more general. These procedures enable programmers in languages
other than PL/I to use the Multics exception handling mechanism. This is
possible because, as we have seen, the effect of the PL/I ON, REVERT and
SIGNAL statements is dynamic.

The major extension to PL/I condition handling was an attempt to
solve the clear-up problem. Any block which performs an action which may
need to be cleared up, such as opening a file or allocating off-stack
storage, should group the necessary 'clearing up’ actions into the handler
for a special condition called 'cleanup’. If the block completes normally
then this handler becomes disestablished on block exit in the usual way.
However, if the block is terminated by a non-local GOTO, a system routine
called the unwinder is given control. The unwinder goes down the chain of
activation records and finds each routine which is about to be aborted.
Before releasing its local variables and carrying out any other clearing up
that the system realises is necessary, the unwinder searches for a handler
for ’'cleanup’. If one is found, it is invoked. It is important to realise
that a special mechanism is used to invoke the cleanup handlers; the
unwinder cannot raise the 'cleanup’ condition in the normal way. This is
because the handler for each about-to-be-aborted invocation must be executed
exactly once; if there is no handler then no clearing up is necessary. An
ordinary signal raised at the scurce of the transfer would cause only
the most recently established handler to be executed. Thus, the use of
the ON mechanism for establishing cleanup actions, while convenient

syntactically, does not greatly influence the cleanup mechanism itself. The

41

condition mechanism does ensure that cleanup handlers are automatically
reverted when the context which established them ceases to exist.
Nevertheless, the manner. in which they are invoked must be quite separate

from the normal method of invoking a handler.

Another extension provided by the Multics implementors was the use of
the condition mechanism to trap asynchronous interrupts - primarily attention
interrupts from a user's terminal. Similar facilities are provided by many
IBM implementations. Such interrupts can occur at any time and can
invalidate the assumption made by the handler that the impleﬁentation is in

a consistent state. Of the Multics extension MaclLaren writes

it almost always works, but there do appear to be a few obscure
windows that cause occasional failure. This situation is satisfactory
for interrupts from the terminal. It would probably not be acceptable
for process control interrupts.

When writing this he was obviously unaware of the frustration caused to a
user by a system which randomly ignores some of the things typed at a
terminal.

Given PL/I and the task of designing a reliable operating system, the
Multics team had options other than adopt%ng PL/I-1like condition handling.
One course of action was not to use a special exception handling mechanism

at all. Organick [75, p. 191] discusses this possibility.

Signalling via the SIGNAL statement offers the programmer an attractive
way to invoke a subroutine without actually having to specify its

name, letting its designation be determined dynamically, as determined

by the ON statement most recently executed for the same condition. ...

You may be wondering if signalling is merely a fancy programmer's
convenience for avoiding the need to set and return proper status
arguments. Isn't it the case that a condition can always be reflected
backward via possibly a chain of such status returns until it reaches
the procedure that knows what to do about it (i.e. what handler to
invoke)? Certainly, but even this approach has ‘its shortcomings,

42

especially if the chain of returns is long and antecedents on this
chain are unable to add any new contextual information (i.e. intelligence)
that will clarify or qualify the (recovery) action that should be taken.

As a rule of thumb, therefore, recognized errors and other conditions
should be signalled rather than relayed as status arguments whenever
the immediate callers are not expected to be ’'smart’ enough to improve
the quality of the 'recovery’ from the given condition.

The claimed advantage of condition handling is that notification of an
exceptional event can be passed up the call chain until a procedure willing
and able to handle the event is found, without the intervening procedures
having to know anything about it. If status arguments are used then every
procedure in the call chain must be aware of their significance.

However, this advantage is largely fictional. In a hieraréhal
system, each 1éyer of procedurss represents a level of abstraction. Dealing
with an exception means either acting on it at the correct level of abstraction
or passing it up the hierarchy. But passing it up involves changing the
meaning to that appropriate at the higher level. There is thus very little
difference between setting status returns at each call and relaying an
appropriate exception. In both cases the problem must be analysed and
interpreted in the light of all the current information. Even if the
correct response is to pass the problem up a level, this cannot be
determined without examining it first.

To make this concrete, let us consider the example of a function
"invert' which either delivers the inverse of a matrix or raises the
'zerodivide' exception in the case that the matrix is singular. Suppose that
this function is called from a procedure 'Solve'’ which is attempting to
solve a set of simultanecus equations. Organick’s argument is that the
caller of 'Solve’, say 'Main’, having been informed of the singularity, can

then attempt to re-solve in a space of reduced dimensionality. But for

'Main’ to interpret the 'zerodivide’ exception as notification of

singularity is quite against the sp;rit of structured, modular progranmming.
The caller of 'Solve’' has no business knowing that 'invert’ is ever
called, far less that the 'zerodivide' exception implies a singularity.
Indeed it may not - for 'Solve’ may do many divisions for its own
purposes, any one of which may signal 'zercdivide’, because of a
progranmming error if for no better reason. It is really for 'Solve’ to
determine what to do if 'Invert’ fails, for only ’'Solve’ knows enough
about what is being inverted to take sensible action. If all it can do
is to signal to its caller "solutions may not exist”, then that is fair
enough. It is a very different piece of iﬁfonnation from "zerodivide".
Organick’s "rule of thumh” also ignores an essential property of a
hierarchal system. A given procedure must be callable from a variety of
higher level procedures, and cannot therefore-use any knowledge about those
higher levels. It follows that it is impossible to decide whether the
immediate caller is "smart” enough to improve the quality of the recovery:

it is not even possible to know who the immediate caller is.

2.5 FException Handling in Algol 68
In contrast with PL/I, Algol 68 contains no special purpose exception
handling machinery. It is interesting to see how Algol 68 deals with those
situations-in which PL/I resorts to raising a condition.

Many of the PL/I computational conditions arise because of the finite
- nature of the computer on which the language is implemented. Such
failures of representation include normal arithmetic underflow and overflow.
In these cases the Algol 68 Report [97] is specific in leaving subsequent

actions undefined. Similarly, the result of division by zero is an

undefined value. The implementer is given complete freedom to do as he

likes, and tﬁe progranmer must take care to avoid the consequences.

This situation is not altogether satisfactory, but the designers
of Algol 68 were forced to make a compromise. They were an international
group designing a language for a varied collection of machines. For
example, on ICL 1800 series computers overflow in a fixed point operation
sets a special register but does not interrupt the normal execution sequence.
- The overflow can only be detected by explicitly testing the register.
If Algol 68 were to insist that some specific action be taken on
encountering overflow, an implementation for such a machine would be
rprohibitively expensive. (When IBM designed PL/I they were in a better
position: on conditions could correspond to exactly those eventualities
which the hardware of the System/360 was able to trap.)

What Algol 68 does provide are aids to help in avoiding overflow in
the first place. There are a number of "environment enquiries”, whereby a
program can determine the maximum and minimum values of a given type, the
nunber of different precisions of arithmetic available, and so on [97,
§10.2.1]. If conditions like overflow are liable to arise in only a few
places they can be avoided by careful programming, but if they may occur
almost anywhere the language is of no real help. Arguably, of course,
PL/I is of little more help; all one can do in the latter case is to
establish a global handler which prints a message and stops.

Environment enguiries, invented by Naur, are undoubtedly one of the
most successful aspects of Algol 68; the idea has been adopted by most of
its successors, including Modified Algol 60 [19]. The relationship with

exceptions should be clear. When asked to include a function with a

restricted domain, there are two things that a language designer might
reasonably do. The first is to provide a means whersby membership of the
domain may be tested: that is the role of environment enguiries. The
second is to extend the domain and make the function total; in this case
the range must also be extended by the addition of "exceptional” results.

A different approach is used by the Algol 68 transput (i.e. input
and output) mechanism. Information in the system resides in "books”
containing text, some identification, the position of the logical end of the
text, and so on. An Algol 68 file is the means of communication between a
program and a book; a book may be linked to several files simultaneously
(via one or more channels, which correspond to types of devices).* There
are enquiries to determine whether a book opened on a file may be accessed
in particular ways, such as ’'get possible’, which is true if the file may
be used for input, and 'reidf possible’, which is true if the identification
of the book can be changed. More interestingly, it is possible to
associate "event routines” with a file [97, §10.3.1.3.cc]. There are seven
such routines, each associated with a particular transput condition:
physical and logical end of file, end of line and page, exhaustion of a
format and conversion errors. When one of these conditions occurs the
appropriate routine is called. If that routine mends the condition it
should return true; transput will then continue. Alternatively, it could
return falses; in this case the transput routine will take a default action.

Not all of the conditions are errors, and the default actions are chosen

* More conventional terminology would be to call an Algol 68 bock a file.
Algol 68 files are more mnemonically known as streams [91].

46

appropriately. For example, if the routine associated with the "end of
format” condition returns false, the default action of the transput
routine is to re-use the format from the beginning. On the other hand, if
the "physical file end” condition is not mended (i.e. the event routine |
returns false), the default action is left undefined by the report. End
of line and page can be detected by "position enquiries” as well as with
~event routines, but the latter are obviously more convenient if one simply
wishes to add page numbers to a listing.

Procedures in Algol 68 are data objects which can be freely stored in
data structures. A library written by a user in ordinary Algol 68 could
employ an event mechanism modelled on that of the transput system. The
only facility used by the transput mechanism not available to an ordinary
programmer is that of "hiding” the names of the field selectors. One
cannot assign to the 'page mended’ field of a file, but must use the 'on
page end’ routine to assign a new event routine.*

One of the consequences of procedures being data-objects is that they
have the scope of the block in which they are declared. Algol 68 p}ohibits
the assignation of a value to a name which has an older scope [97, \
$§5.2.1.2.b]. The following (illegal) example is given in the Report, and
assumes that the file 'intape’ is opened in a surrounding block. The

intention is to count the number of integers on the input tape.

* Although this corresponds to modern ideas on hiding the representation
of an abstract object, Algol 868 introduced it for quite a different reason;
see [97, $§0.3.7].

47

begin int n := 0

s on logical file end(intape
, (ref file file)bool:goto f
)

5 do get(intape, loc int); n plusab 1 od
; f: print(n)
end

This is illegal because the scope of the procedure -

(ref file file)bool:goto. f

is the block of the example, and it canncot be assigned to a field of
'intape’, which has an older scope (or else it would be possible to jump

into a block). The solution is to write

begin int n :=0

; file auxin := intape
3 on logical file end(auxin
, (ref file file)bool:goto)
; do get(auxin, loc int); n plusab 1 od
5 f: print(n)
end

so that both the event procedure and the field to which it is assigned go
out of scope simultaneously. The effect is the same as PL/I's automatic
reversion of handlers on block exit, although the syntax is clumsier.

It is important to notice that the event procedures are associated
with files (like 'intape') rather than with transput operations (like 'get’).
This ensures that all occurrences of a condition on a given file will be
dealt with uniformly: what to do at the end of a line is a property of the
file abstraction. It does have the disadvantage that the setting of the

handler may be lexically remote from the operation which invokes it.

2.6 Conclustion
All the exception handling techniques discussed above fail to restrict the

flow of control. This is partly because all the languages discussed provide

48

an unrestricted goto statement; more precisely, it is because a non-local
transfer of control is often the only action a handler can Peasonably take.
PL/I ON conditions bear the same relationship to machine interrupts
as do goto statements to jump instructions. Both interrupts and jumps are
very powerful facilities, but it is now widely recognized that it is a
mistake to include them in high level languages. To paraphrase a famous
remark, PL/I ON conditions are too much of an invitation to make a mess of

one's program [20].

Chapter 3

"STRUCTURED” EXCEPTION HANDLING

The realization of the deficiencies of PL/I ON conditions (see
Section 2.3) has provided the impetus for the development of
language features for exception handling which help to retain
structure and constrain the flow of control. Although such
features are not present in any widely used language, many
proposals have been made and incorporated into experimental
languages. The Ada programming language sponsored by the U.S.
Department of Defense also contains an exception handling
facility and seems likely to become widely used in the future.
This chapter reviews the exception handling proposals of various
authors and examines the facilities available in CLU, Mesa and Ada. A
taxonomy of exception handling mechanisms is first presented, and then the

various proposals are evaluated within this framework.

3.1 A Taxonomy for Exception Handling
Various authors use the same words to denote different ideas, so this study
must begin by defining its terms.

An operation is an abstract entity, a mapping from arguments to
results. A standard operation like addition or concatenation may be
implemented in firmware or machine code, and a programmer defined operation
may be implemented as a piece of high level language text. In either case
the term routine will be used to mean a piece of program text implementing
an abstract operation.

A routine text may contain Znvocations of operations; it is said to be

49

the caller of the routines which implement them. An invocation is apiece

of text, and may give rise to zero, one or many activaticns of the
routine which it names. (For example, the invocation may be controlled
by a while statement.) An activation may generate an exception; this
results in the raising of the exception in some (other) routine (such as
the one which caused that activation). The Zandler is the program text
which is executed in response to the raising of an exception.

An early version [29] of Goodenough's widely cited survey paper
[30] included a useful classification of "exception association methods”, that
is, methods of linking the raising of an exception and a handler. Local
methods make a reference to a handler part of the text of the invocation; global
methods associate a handler implicitly. Passing an exception handling
routine as a parameter to an invocation is a local method of associating a
handler; PL/I ‘on conditions are a global method.

Two further classifications are used by Liskov and Snyder in [62].
Exceptions are essentially a communication mechanism between the activation
which detects an unusual event (and generates an exception to indicate this
fact) and the activation which deals with the event (by handling the
exception appropriately). Liskov and Snyder state that the "obvious
candidates” for handling an exception generated by an activation are the set
of activations in existence when the exception occurs. They exclude the
generator (because if it could deal with the event there would be no need
to raise an exception), and then classify techniques according to whether
activations other than the immediate caller of the generator are allowed
to handle the exception. They use the adjectives single-level and multi-level

to describe these two opticns. Levin [59] bases his proposals on the

51

premise that these "obvious candidates” are not the right ones. 1In

common with Parnas [76] he feels that the candidates should be the members
of the "uses” hierarchy, whereas the activations in existence when an
exception is detected form the "calls” hierarchy. The two hierarchies are
in general distinct. Nevertheless, the single or multi-level classification
can be applied to the uses hierarchy too, i.e. it is conceivable that the
users of a user might be able to handle an exception.

Liskov and Snyder's second classification is according to whether an
activation continues to exist after it has generated the exception. The
generator can be considered either to call the handler itself, or to return
to its invoker in such a way that the handler is activated. In the first
case it is possible for the handler to return to the generator, causing its
resumption; in the second case this is not possible because generating an
exception is considered to terminate the generator.

rMany more classifications could be used. Possibilities are whether a
technique is designed to deal only with rarely occurring events or with
common ones, whether exceptions can be raised only by statements or also by
expressions, and whether parameters are associated with exceptions.
Nevertheless, the freamework I have outlined should be sufficient for the
reader to appreciate the differences between the mechanisms described in

the remainder of this chapter.

3.2 Exception Handling in CLU

The CLU language was developed by the Computation Structures Group at M.I.T.
between 1974 and 1978. Many excellent papers have been published which not
only describe the language but also explain why its features have a

particular form. An overview of CLU is available in [64]. The description

52

below is based on [60}, B2], [61] and [/].

CLU takes the view that a routine may terminate in one of several
ways. A normal return indicates that the operation it implements has been
successfully completed. However, if such completion proves to be impossible
-the routine executes a signal statement instead. Results may be delivered by

both return and signal; the heading of a routine must specify the various

possibilities. The library routine for exponentiation has the type:

power: proctype (real, real) returns (real)
signals (zero divide, complex result,
overflow, underflow)

'zero_divide' occurs if 'argl’ = '0’ and 'arg2' < '0'. ’complex result’
occurs if 'argt’' < '0' and 'arg?2' is non-integral. ‘'overflow' and ’underflow’
ccour if the magnitude of the result is too large or too small to represent.
Few of the library routines actually use the facility of passing arguments
with a signal, although some of the file manipulation routines pass strings
which more precisely define the error.

An exception is generated by means of a signal statement such as
'signal complex_result’. The name of the exception can be followed by a list
of parameters if appropriate. The exception must either be listed in the
routine heading or be the special exception 'failure'. The signal statement,
like the return statement, terminates the current routine activation;
execution continues in the caller, i.e. the routine containing the invocation
which activated the generator. That invocation raises the exception, and
somewhere in the‘caller there must be a handler for it.

Handlers are specified by an except statement, which associates a list

of exception handlers with a statement. The statement in gquestion can be

53

a single invocation or a large block. For example, to handle the exceptions

raised by calls of 'power’ in a block, one could write

begin .
.+« body of block containing invocations of power...
end except when zero divide: h1

when overflow, underflow: h2

others: h3

end

If the 'zero_divide’ exception is raised by an invocation in the block,
handler 'h1' will be executed. If 'underflow’ or 'overflow’ occur, 'h2’
will be executed. If any other exception is raised, 'h3’' will be executed.
The handlers 'hi' will themselves usually be statement sequences, and may
contain other except statements.

If the execution of the statement enclosed by an except statement
completes without raising an exception, control passes to the statement
following the except statement without executing any of the handlers.
However, if an exception is raised during the execution of the statement,
control passes immediately to the textually closest handler for that exception.
(It is necessary to say "closest” because except statements can be nested.)
When execution of the handler completes, control passes to the statement
following the except statement containing that handler. A handler is outside
its own scope: an exception occurring in a handler must be caught either by
an except statement within the handler body or by another, enclosing,
except statement.

If a list of exception names in an except statement is followed By a
parameter list, all the named exceptions must have the same number of
arguments as there are parameters in the list, and the types must correspond.

The parameter list may be represented by an asterisk: this discards the actual

54

arguments, and can be used for any exception. An others handler may appear
once or not at all; it handles any exception not listed by name in the
except statement, including 'failure’ (see next paragraph). others may be
provided with a string parameter, which will be set to the exception name;
any arguments of the exception are inaccessible.

CLU does not syntactically enforce the restriction that there must be
a handler for every exception an invocation can raise. Instead, any unhandled
exception is converted to the special exception 'failure(”unhandled exception:
name”)’'; however, if the 'failure’ exception itself is not handled it is
passed bn unchanged. Every invocation is considered to be able to raise
the 'failure’ exception even though it appears in no routine heading. This
policy was adopted because the programmer may be able to prove that a given
exception will not arise, and should therefore not be forced to provide a
handler for it.

From the above it will be seen that exception handlers in CLU are static
and can be attached only to statements, not expressions. Exceptions are
propagated up the call hierarchy by exactly one level; they cannot be caught
within the routine that generates them, but rather cause its activation to be
terminated.

The decision to allow exceptions to propagate by only a single-level was
derived from the hierarchal program design methodology which the language
supports. Each CLU routine implements an abstract operation; the caller of
a routine need know only the specification of that operation, and not how it
is implemented. The exceptions generated by that routine form part of the
specification of the operation, and it is appropriate for the caller to be
aware of them. This is why they are listed in the routine heading. However,

it is not appropriate for the caller to know about the exceptions generated

55

by routines used in the implementation of the operation. Such exceptions
must be handled by the routine containing the invocation which raised them.
0f course, if that routine decides that the appropriate action is to itself
raise an exception, then it is free to do so.
The CLU except statement has one serious deF?ciency. The placement
of a handler is governed by two constraints.
(i) The handler must be suffixed to the statement whose execution is
to be terminated should the exception arise. The statement
following the handler must be an apbropriate continuation, assuming

the handler does not execute a return or signal. (CLU does not

have a goto statement.)

(ii) The handler must be appropriate for all occurrences of the named
exception. If two invocations raise the same exception but
require different handlers, then they must be caught by different
except statements, one of which must be situated so that only one

of the invocations is within its scope.

These two constraints may conflict. [62] gives as an example a statement
'S’ which invokes a routine ;Sign’ at two different points. 'sign’ may
generate the 'neg’ exception, which should be handled differently for each
invocation; however, execution should continue witﬁ the statement following
'S' in both cases. If the except statement is used to attach separate
handlers to each invocation then some other mechanism is needed to achieve the
desired flow of control. One possibility is to set and test variables, as

in the following code.

begin

. statements 1 ...

xneg := false
a := sign(x) except when neg (i:int): s1;
xneg := true
end

if not xneg
then

. statements 2 ...
yneg := false
b := sign{y) except when neg (j:int): s2;

yneg := true
end
if not yneg
then
.+ statements 3 ...
end

end

end

However, if one needs to do that there is little point in having an exception

handling mechanism: the code would be simplified if the result of 'sign’

were tested with the if statement directly. So CLU includes an exit statement
to perform local transfers of control. Using it the example can be rewritten

as follows.

begin
. statements 1 ,
a := sign(x) except when neg (i:int): s1;
exit done
end
. statements 2 ...
b := sign(y) except when neg (j:int): s2;

exit done
end
. statements 3 ...
end except when done:
end

Exits provide for local control transfers in a similar way to the situation-case
statement of Zahn [104]. An exit statement behaves like an invocation which

raises an exception. Whereas a signal statement raises an exception in the

calling routine, the exit statement raises the exception directly in the

current routine. An exception raised by an exit statement must be handled ex-
plicitly by an except statement; it is not sufficient for the except
statement to contain an others arm. Exits can, of course, be used to

prematurely. terminate any block, not just an exception handler.

3.3 Exception Handling in Mesa

The Mesa language has been developing at Xerox Palo Alto Research Center
since 1974. It is used for systems implementation by research staff. Prior
to the introduction of Mesa, these users had developed a wide range of
programming styles; as far as is possible, Mesa attempts to accommodate them
all. It contains the most extensive implemented exception handling mechanism
of which I am aware.

Information on Mesa is sometimes difficult to obtain. An overview of the
language was published [25], and the Manual is fairly readily obtainable
[72]. An evaluation of the Mesa mechanism has been made by Horning [51].
This section has also benefitted from discussion with Dr. J.G. Mitchell.

The Mesa exception mechanism is very general and powerful. Its description
occupies ten pages of the Mesa Manual, and only a summary is attempted here.
An exception in Mesa is called a signal, and has a data type rather

like that of a procedure: signals may have both parameters and results.
Signals differ from procedures in the way they are associated with a body.
The value of a procedure represents its body more or less directly. In
contrast, the value of a signal is a unigue code on which the only operation
is test for equality. The appropriate routine body is located if and when

the exception is raised.

A signal is generated by a signal statement, which has the same syntax

as a procedure call except that it is prefixed by the symbols SIGNAL,
ERROR or RETURN WITH ERROR.

Generation of a signal will eventually cause a handler to be invoked;
its selection is described below. If the handler completes without
performing a non-local transfer of control, the effect is to return to the
statement ?ollowing the signal call exactly.as with a procedure call. The
symbol ERROR provides a way of prohibiting such a return; any attempt to
return aFfer an error call is illegal (and causes another ERROR called
'ResumeError’). If a signal is declared as an ERROR then it is a syntax
error to use it in a signal call; if it is declarsed as a SIGNAL, 1t may be
used in any signal call, including an error call. Thus errors are a sort
of sub-type of signals.

Signal calls may return results, and may therefore appear in
expfessions; this is also true of error calls, although since they never
refurn at all this is purely for syntactic convenience. (A similar feature
is found in Algol 68, where a goto statement may be treated as an expression
of any type.)

A handler is associated with a signal by means of a so-called cateh
phrase. A catch phrase has as its scope & piece of program text. It may
appear after the BEGIN of a block or the D0 of a loop, in which case its
scope is the whole of that block or loop. It may also appear within the
brackets of a call, separated from the arguments by an exclamation mark;
the scope of such a catch phrase is the routine activated by that call,
but not the argument list itself. A catch phrase is said to be enabled

when control is within its scope in a dynamic sense. All this may be

59

clarified by an example (< is the assignment symbol).

Report : PROCEDURE[message : TEXT] =
BEGIN ENABLE catch phrase 1
5 : .+« declarations ...
3 IF ... THEN SIGNAL ImpossibleError
3 InputFileName < ConstructCurrentFileNamel[]
5 LineNr <« LineNr + 1 ’
END;
ConstructCurrentFileName : PROCEDURE RETURNS [FName : TEXT] =
BEGIN «».initialization...
5 UNTIL NameElement = Nil
DO ENABLE catch phrase 3
3 FNeme <« AppendText[FName
, FileName[NameElement]]
3 NameElement < Next[NameElement]
ENDLOCP
END;

AppendText : PROCEDURE[Head : Text, Tail: TEXT]
RETURNS[t:TEXT] =

BEGIN .

5 t <« ConcatText[Head, Tail ! catch phrase 4]
5 ReturnText[Head]

END

The routine 'Report' enables 'catch phrase 1’ for the whole of its
body. Signals generated by the statements of that body, such as the
assignment to 'LineNr’, will be offered to 'catch phrase 1’'. This is true
even if the 'SIGNAL ImpossibleError’ statement 1s executed.

"Report’ invokes 'ConstructCurrentFileName’, which does not have a
catch phrase attached to the whole of its body. If a signal is generated
while executing the initialization it will be offered to 'catch phrase 1’
in 'Report’, as this is the dynamically enclosing context. However, the
UNTIL ... ENDLOOP statement within 'ConstructCurrentFileName’ has its own

catch phrase, and signals generated by the body of the loop will be

60

offered to ’'catch phrase 3’ first.

'AppendText’ illustrates a catch phrase attached to a call. Signals
raised (but not caught) within 'ConcatText' will be offered to
'catch phrase 4°'..

A catch phrase may reject a signal, in which case it passes up to
the dynemically enclosing catch phrase. So if 'AppendText' is called fraom
within the loop of ’'ConstructCurrentFileName’ and generates a signal which
'catch phrase 4' rejects, it will be offered to 'catch phrase 3'. The
Mesa run time system guarantees that all otherwise uncaught signals will
be caught at the highest level by the dsbugger.

Tt should now be apparent that the Mesa signal statement both generates
an exception and raises it. This is also true of the error statement.
Thus in Mesa an exception may be handled by the routine which itself
generated the signal or error. The RETURN WITH ERRCR statement is used
to raise an exception in the environment of the calling routine. In the
example, if the UNTIL ... ENDLOOP construct contained such a statement, e.g.
'"RETURN WITH ERROR FileNameStructureInconsistent', the signal would first
be offered to 'catch phrase 1'. Resumption is not possible after a
RETURN WITH ERRCR statement.

The catch phrase itself is rather like a case statement; it takes the

following form.

BEGIN
sig 1 => body Aj
sig 2, sig 3 => body B;
sig 4 => body C

END

61

The 'sig i’ are variables which must evaluate to signals. If

'sig 1’ is declared to be of type
. SIGNAL [param : p] RETURNS [result : r]

then 'param' and 'result’ are implicitly available within 'body A’ as

the names of the parameter and result of the signal call. If 'sig 2’ and
'sig 3' do not have identical types their parameters and results are not
available within 'body B’. Clearly the scope of the signal declaration
must encompass all the signal calls and catch phrases which refer to it.

The last (or only) clause in a catch phrase may have the form
'ANY => body’. When a signal is offered to a catch phrase its value is
compared, in order, with each signal value in the variable lists preceding
the => symbol. If a match is found control passes to the appropriate body.
ANY matches any signal code, and is primarily intended for use in the
debugger.

If none of the variables in the catch phrase matches the signal, the
signal is "rejected” and propagated to the next catch phrase in the call
hierarchy. The body of a handler that has caught a signal may also
explicitly reject it; thus partial recovery from an exception may be
effected, and then the signal passed on up the hierarchy.

The body of a handler behaves exactly like a routine called by the
generator. Specifically, it may return to the generator (provided the
signal was not generated by an error call). This is done by means of the
RESUME statement, which may alsc return values toc the generator, according

to the type of the signal.

62

If resumption is inappropriate, the handler must execute some form of
non-local transfer of control. In addition to the ordinary methods of
control transfer, two special statements, RETRY and CONTINUE, may be uéed
within catch phrases. RETRY aptivates a transfer to the beginning
of the statement to which the catch phrase belongs; CONTINUE initiates a
transfer to the statement following the one to which the catch phrase
belongs. In the case of a catch phrase attached to a loop body, CONTINUE
means "go around the loop again”; the same effect can be achieved with
Mesa's LOOP statement.

Mesa also has a restricted GOTO (rather like a CLU exit), and an EXIT
statement for terminating loops. Before any of these non-local transfers
are completed each about-to-be-aborted activation is given an opportunity to
do some clearing-up (see Section 2.2). Syntactically, the clear-up code
appears as a handler for the special signal ’'unwind'. However, 'unwind’' is
not treated like an ordinary signal. The implementation of non-local control
transfers ensures that 'unwind’ is offered exactly once to each catch phrase
OF‘each activation which is about to be aborted. If a given catch phrase has
no handler for 'unwind’ the signal is not pr@pagated as an ordinary signal
would be. There are no constraints on the action which an unwind handler
can take. In particular, it may itself perform a non-local transfer of

control and initiate a second 'unwind’. No further clearing-up is then done

for either transfer, and the first transfer is abandoned in favour of the

second one.

It is a common misconception that exception handling mechanisms like

that of Mesa "solve” the clear-up problem. They do not. The "unwind”

signal in Mesa (and 'cleanup’ in Multics, see Section 2.4) cannot be

treated as ordinary signals. The inclusion of 'unwind’ amongst the
signal values in a catch phrase is syntactically convenient but
semantically irrelevant (and expensive at execution time). It would be
closer to the truth to say that Mesa exception handling causes the
clearup problem, because all non-local control transfers are associated
with signals. (This is a slight oversimplification because most

systems need some provision for clearing-up after a catastrophic failure.
This is considered in Chapter 7.)

It should be clear that Mesa's exception handling mechanism is much
more powerful than that of CLU. Both mechanisms are confined to the call
hierarchy and are engineered so as to be suitable for rarely occurring.
events. Howeve:, by allowing signals to span more than one 1evél of call,
and by not requiring a list of signals to appear in the heading of a routine,
the Mesa mechanism achieves greater power and convenience. Horning [51]
observes that there are responsibilities associated with the exercise of

this power.

It it necessary to document not only the names and meanings of the
signals that the components may use directly or indirectly, but also the
names and meanings of any parameters supplied with the signal,

whether the signal may be resumed, and if so, what repair is expected
and what result is to be returned. Unless all this information is
provided, it will be difficult for users to respond correctly to
signals. Each programmer must decide which signals to handle via

catch phrases, and which to reject (i.e. to incorporate into the
interface of his component).

... The more levels through which a signal passes before being handled,
the greater the conceptual distance is likely to be between the
signaller and the handler, the greater the care necessary to ensure
correct handling, and the greater the likelihood of some intermediate
level omitting a necessary catch phrase for 'unwind’'.

64

The ability to resume after a signal is stressed is one of the great
advantages of the Mesa mechanism. This is not because the generating
routine is often resumed but because when a signal is not caught control
passes to the debugger, and all the control context which existed when the
signal was generated is then available for inspection. In discussion
Jim Mitchell has claimed that ninety-nine per cent of signals are intended
for the debugger, in that they are generated in "impossible” situations.
Although his estimate is unsubstantiated, it is clearly common to use Mesa
signals for this purpose. In such a situation the programmer is able to
examine the local variables of the routine which generated the signal and
determine the cause of the problem. It may even be possible to use the
debugger to alter those variables and resume the signal.

It should be observed, however, that access to the local variables of a
routine by another part of the program is prohibited by the principle of
modularity and the scope rules of the language (except in the degenerate case
where a signal is handled in the routine which generates it). This
distinction between program and programmer is well-made by Liskov [62]. While
observing that the CLU mechanism is designed to provide programs with the
information required to recover from undesired events, she points out that
nothing in the design precludes an implementation which reports exceptions
to the programmer, should he be available, before terminating the
activations which generated them. In this way as much state as is required
may be inspected. Moreover, there is no implied restriction that only
unhandled exceptions should be reported to the programmer. It would be
possible for the exception mechanism to be restricted to report a specified

subset of exceptions to the programmer, who could then decide whether to

65

handle them himself or to let them be handled by the program.

None of the above is intended as a claim that the ability to resume
an exception does not add power to the language. That it does so is
indisputable: one may wish to argue only that the extra power is not needed, '
or is not worth its cost in terms of semantic complexities, or should be
provided by some other mechanism. My point is that in putting these
arguments the question of debugging is qﬁite irrelevant.

The Mesa language has beeﬁ in use at Xerox PARC for seven or eight
years, and considerable experience in the use and misuse of signals has been
built up. Such experience is not common, and I think it worthwhile quoting

the following communication from Jim Morris at length (excerpted from [51]).

Like any new. and powerful language feature, Mesa's signal mechanism,
especially the wnwind option, should be approached with caution.
Because it is in the language, one cannot always be certain that a
procedure call returns, even if he is not using signals himself.

Every call on an external procedure must be regarded as an exit from
your module, and you must clean things up before calling the

procedure, or include a catch phrase to clean things up in the event
that a signal occurs. It is hard to take this stricture seriously
because it ‘is really a hassle, especially considering the fact that the
use of signals is fairly rare, and their actual exercise even rarer.
Because signals are rare there is hardly any reinforcement for following
the strict signal policy; i.e. you will hardly ever hear anyone say
"I'm really glad I put that catch phrase in there; otherwise my

program would never work”. The point is that the program wzl7 work
quite well for a long time without these precautions. The bug will

not be found until long after the system is running in Peoria.

. It should be noted that Mesa is far superior toc most languages in
this area. In principle, by using enough catch phrases, one can keep
control from getting away. The non-local transfers allowed by most
Algol-like languages preclude such control. It has been suggested
that systems programming is like mountaineering: one should not always
react to surprises by jumping; it could make things worse.

Cedar Mesa is a version of the Mesa language being designed and

implemented as part of the Cedar Programming Environment. Associated with

66

the Cedar design effort is a restricted form of the signal mechanism. The
restrictions are not enforced by the compiler but are adopted by convention:
enforcement may follow if it is found that the restrictions are not too
irksome. The aim is to simplify the mechanism and to make it mesh better

with the principle of encapsulation. The restrictions are:

(1) that the ANY catchall be eliminated;

(ii) 1if a signal crosses more than one abstraction boundary it is
changed to a globally known exception denoting a programming
error. This captures the fact that the signal has left the only
abstraction in which it could reascnably be caught.

(iii) There should be a "calling error” signal indicating that a module
has been provided with illegal afguments.

(iv) Neither calling errors nor programming errors should be resumed

or have parameters.

At present I have no information about the effect of these restrictions.
It will be some time before it is known whether they help to alleviate the

problems discussed by Morris.

3.4 Levin's Proposals for Exception Handling

In his Ph.D. thesis [59] Roy Levin made proposals for an extensive exception
handling mechanism. Realising the dangers of adding to any language, he
sought a construct that would be verifidble, uniform over a large class of
exceptions, adequate for real problems in both parallel and sequential
progranming, and <mplementable with reasonable efficiency. The opening
sections of his thesis elaborate these goals and ought to be compulsory

reading for anyone contemplating the invention of a new programming construct.

67

However, by laying such a firm foundation Levin invites a more stringent
evaluation of his mechanism than was appropriate for those designed to
less exacting standards.

The introduction to his thesis admits that thefe is no adequate
definition of "exception”; whether or not a partiéular event should be
classified as an exception depends largely on its context. It is claimed
that the exception mechanism should be used whenever the details of the
handling of a particular case need to be suppressed, so that other (more
common) cases can be emphasised. His mechanism is capable of dealing with
anything from general interprocess communication to interrupt handling.

The chief difference between Levin's mechanism and the others I have
described is in the selection of the modules which may be given an
opportunity to handle an exception. Levin argues that all of the users of a
module should be considered. The classic example supporting this argument
is a storage allocation module used by several other modules which
maintain private caches of sfore. If the allocator canno£ satisfy a
request from one of its users it generates an exception 'Insufficient
Store'. In which module or modules should this exception be raised?
Clearly not just in the module whose request cannot be satisfied. It should
at least be potentially possible for the exception to be raised in all the
modules which have used the allocation system, because any of them ﬁay
be willing to return some of their cache. Of course, it may be that the
first module to receive the exception is able to release sufficient store,
and that there is no need to raise it in other modules. Levin allows such
selective exception raising, but insists that the initial set from which
the selection is made must include all the users of the abstraction which

generates the exception.

68

Another distinguishing feature of Levin's mechanism is that an
exception may be generated on both data abstractions and control abstractions.
The usens of a control abstraction are its callers; in this case
propagation of the exceptio% along the call chain is appropriate. The
users of a data abstraction form a hierarchy independent of the call chain.
A particular invocation may raise either kind of exception. For example,
'ReadfromFile(f)’ may generate 'ProtectedFile’ if the invoker does not
have read permission, and 'Filelnconsistent’ if there is an inconsistency
in the disk structure used to represent 'f'. In the #&rst case the
exception should be raised in the invoker of 'ReadfromFile’, in the second
it should perhaps be raised with all users of 'f’.

Although I have spoken of a hierarchy, Levin is emphatic that
exceptions should propagate through exactly one level. An exception must
be raised with the Zmmediate user of the appropriate abstraction; indirect
users cannot even know that the offending module has been called, still
less how to handle its exceptions.

It may be that a single handler for an exception will be appropriate
for the entire lifetime of a datum. If that datum exists only during the
activation of a single routine (i.e. is a local data structure), then this
situation can be dealt with as in CLU by attaching a suitable handler to
the body of that routine. However, data structures are frequently created

by one module and then passed to others, so their lifetime transcends that

of their creator.* Levin therefore introduces a notation for assocciating

default handlers with data structures, and a convention that, in the absence
of an explicit default handler, a null default handler be assumed to exist.

Unfortunately he uses the same notation for defining these default handlers

as fTor dealing with the exbeptions generated on the control abstractions of

the module itself.

Before proceeding further some concrete syntax and examples may be
helpful. Levin uses the notation and terminology of Alphard [103]1; I have
translated them into a more Algol-like notation. Handlers may be attached
to a statement by appending to it a list of exception conditions and handlers
enclosed in brackets. For example, the 'ReadfromFile(f)’ example might be
written

ReadfromFile(f) [f.FileInconsistent : handler

| ReadfromFile.ProtectedFile : handler 2]
The part of the condition name before the point is the name of the abstraction
on Which the exception is generated; the part after the point is the name of
the exception itself.

If the statement to which a handler is appended is a block, and if the
abstraction on which the exception may be generafed is a routine, Levin’s
interpretation is that a separate copy of the handler be attached to each
invocation of the routine within that block. This is also the interpretation
when the abstraction is a data object, provided that the block is not the

module which defines that data type. Thus the following are equivalent.

* Such structures are often said to reside on a heap, but this term has
connotations of a particular implementation.

70

begin
var x : integer
x := ReadfromFile(f)
WritetoFile(g,x)
WritetoFile(lncrements, x+1)

end [f.FileInconsistent : h1
| WritetoFile.Protected File : h2]

begin
var x:integer ,
X := ReadfromFile(f) [f.FileInconsistent : h1]
WritetoFile(g,x) [Write to File.ProtectedFile : hZ]
WritetoFile{Increments, x + 1)
[WritetoFile.ProtectedFile : h2]

end

In both of the above fragments, the handler 'h1' is attached to the
'FileInconsistent' exception of 'f' only for the duration of the invocation
'x 1= ReadfromFile(f)’, whichArepresents only a small part of the lifetime
of '"f'. If 'f' is local to some routine 'WriteIncrements' which contains one
of the above blocks, then a handler can be attached to 'f.FileInconsistent’

Ffor the remainder of the lifetime of 'f' as follows:

procedure Writelncrements =
begin
var f : File of integer
bhegin
var x : integer
x := ReadfromFile(f)

end [f.FileInconsistent : h1 | wedl
end WriteIncrements [f.FileInconsistent : h3]

When 'ReadfromFile(f)" is invoked both 'h1’ and 'h3' are enabled. However,
'h1' masks 'h3', so only 'h1’ is eligible to handle 'f.FileInconsistent’.
Precise definition of these terms - enabled, masked and eligible - are

beyond the scope of this thesis. The interested reader is referred to

71

[59, Section 4.6]. These definitions are central to an understanding

of Levin's mechanism, and I confess to finding them difficult to
understand. This may be because the deFinitions'are phrased in temns of
~ implementation rather than linguistic concepts, but at least part of

the difficulty lies in the inherent complexity of the mechanism.

Levin’s mechanism becomes interesting when we allow skharing of data
abstractions. At present, sharing is thought to be an important concept in
systems programming. Allowing sharing is equivalent to introducing the
concept of reference* at the semantic level. A simple language such as 3R
[11] needs only names and values and a mapping between them to describe the
actions of parameter passing and assignment. Algol 60 can be described in
this way because of the copy rule for procedure activation. Languages such
as Fortran, Algol W, Algol 68 and Pascal introduce references more or less
explicitly. Their semantics can only be described by introducing a set of
locations and two mappings, the enviromment which takes names into locations, .
and the store which takes locations into values. In these languages
declarations associate a name with a location, and assignments associate a
location with a value. (Algol 68 either simplifies or confuses the issue,
depending on one's point of view, by unifying locations and values.) CLU
does not introduce explicit references but allows sharing by using them
implicitly. In CLU, assignment changes the enviromment, while the store
is changed only by built-in proceddfés that update arrays and records.

Levin'’s storage allocator can now be examined in more detail. Suppose

that the modules 'CachedCommunicateWithDisk' and 'Columnate’ both use the

* Also known as pointer or access value.

12

16

20

24

28

32

36

72

services of 'FreeStore’, which allocates storage from a shared storage pool
'FSPool'; suppose further that a reference to 'FSPool' has been passed to

both of the user modules as parameter. These modules are shown below.

module CachedCommunicateWithDisk
is var CachedPages : IndexedList of DiskPage
var StorageZone : ref pool

procedure ReadPage(PageNr : integer)
is if TsinList(PageNr, Cached Pages)
then ...
else const p : ref Page =
Allocate(StorageZone, DiskPage)

p := BasicDiskRead(PageNr)

EnterinList(CachedPages, p)
[StorageZone.InsufficientStorage: skip]
fi
end of ReadPage [SteorageZone.InsufficientStorage:

ReturnSomebutkeep(CachedPages, PageNr)]
end of CachedCommunicateWithDisk
[StorageZone.InsufficientStorage:
ReturnSome{CachedPages)]

"module Columnate
is var ThisPage : List of Line
var CentralPocl : ref pool

procedure Out(s : ref CharStream, c : char)
is if IsFull(LastlLine(ThisPage))
then const 1 : ref Line =
Allocate(CentralPool, Line)
ThisPage := Append(ThisPage, 1)
[CentralPool.InsufficientStorage: skip]

i

end of Out
end of Columnate [CentralPool.InsufficientStorage:
Compress(ThisPage)]

'Allocate(z,t)’ attempts to find enough storage in the zone referred to

by 'z' to create a location of type 't'. If this is impossible it generates

73

'z', Levin's mechanism assumes that

the 'InsufficientStorage’ exception on
all handlers will return control to the generator of the signal, so after

the appropriate handlers have been invoked ’'Allocate’ can again attempt to
satisfy its caller. (Of course, if this second attempt fails, some other
action should be taken.)

Suppose the 'Allocate’ request on line 9 raises the 'InsufficientStorage’
exception on 'StorageZone'. The handlers on lines 16-17 and 20-21 are enabled,
but that on lines 16-17 masks that on lines 20-21. If ’'CentralPool’ and
'StorageZone' refer to the same ’'pool’, then the handler on lines 37-38 is
also enabled; the eligible handlers are thus those on lines 16-17 and 37-38.

If parallelism is allowed the situation is more complicated, because
it is possible for 'Out’ in 'Columnate’ to be active at the time the exception
is raised in 'ReadPage'. Suppose execution has reached line 33; the handler
attacHed to the invocation of 'Append' would then be enabled, and since it
is not masked, eligible. The purpose of this handler is to mask the handler
on lines 37-38 while the structure 'ThisPage’ is being modified.

Levin distinguisheé two levels of selection in the above process. The
method used to chose which handler in each module is eligible at a given
instant is of secondary importance. He uses a static, single level mechanism
because it is in accord with conventional scope rules, but states that a
different policy could be used if required. What is central to his thesis
is the composition of the set of contexts within which a handler is selected.
He emphasises that every user of a data structure should be able to handle
exceptions raised on that structure, whether or not that particular user
caused the exceptional condition.

Having decided that several handlers in different contexts may be

74

eligible to deal with a condition, which should actually be invoked, and in
what order? Levin answers this question by defining several selection
policies. 'Broadcast-and-wait' indicates that all eligible handlers are
invoked (potentially) in parallel, and that execution of the generator
resumes when they have all terminated. ’'Broadcast' relaxes this restriction:
the generator initiates all the handlers but does not wait for any of them |
to complete. The generator thus executes in parallel with the handlers.

The last policy Levin defines is 'Sequential-conditional’, which associates
a predicate with the raise statement. If the predicate is true or there

are no eligible handlers, the raise statement has completed. If the

predicate is false a handler is selected and initiated, and the handler removed

from the set of eligible handlers. When the handler terminates the raise
statement is re-entered with the reduced set of handlers.

Much of the above assumes that handlers will return to the generator of
the exception. This is indeed a requirement of Levin's mechanism. The
raise statement works exactly like a routine call; it even has a post-condition
which the handlers must satisfy. This is in contrast to the CLU mechanism,
which forbids resumption, and that of Mesa, which allows both termination

and resumption. Levin justifies this in the following way:

Handlers are invoked (in most cases) to process an unusual condition
that cannot be handled entirely within the signalling module. They

have an obligation, expressed by the [postcondition]..., and the
signaller will assume, upon completion of the raise, that the obligation
has been satisfied. If handlers were able to terminate ... the execution
of the signaller [then] the abstractions of the signalling module might
not be maintained. The signalling and handling modules should be
viewed as mutually suspicious subsystems [83]; neither should be able
to influence ... the execution of the other.

75

Although handlers cannot directly alter the flow of control within the
signaller, they may do so indirectly by their effects or by the results they
return. In the storage allocation example, after 'Allocate’ has invoked
the handlers for 'InsufficientStorage’', it is natural for ’'Allocate’ to
look again at the storage pool before deciding how toc proceed.

In contrast, Levin does allow a handler to influence the flow of
control within the block in which it is declared. That block may have been
interrupted byrthe invocation of the handier (if it was executing in parallel
with the generator): the handlerbis not executed in parallel with other
routines in its scope. He devises a mechanism which enablés a handler to
"post” the location at which execution of its enabling block is to resume.
Interested readers should see [59, $4.9].

The above description of Levin’s mechanism is incomplete; it attempts
to illuétrate the distinguishing features of the mechanism rather than to
define anything. The definitive description is much longer and more involved,
and therein lies a major problem. Levin's mechanism is undoubtedly very
complicated. The defence ought to be that at least Levin has given axioms
of conditional correctness for his mechanism, so his definition mugt be
explicit and rigorous even if it is complex. Unfortunately this argument
is unsound, for only the most straightforward part of his mechanism is
actually axiomatised.

Levin's proposals may be roughly sub-divided as follows:

(i) The rules for associating handlers with particular data and
control abstractions;
(i1) The action of the raise statement itself;
(iii) The action of the variousselection policies;

(iv) The synchronization requirements of the handlers.

76

The most complicated part of his mechanism is undoubtedly (i}. This
is also his most significant contribution to the subject because of the
prominence given to the association of handlers with data abstractions as
well as control abstractions. Unfortunately none of this is formalized.

The semantic significance of attaching a handler to a block is explained
only in terms of rewriting rules which copy the handler bodies into the
appropriate statements. The only guide to this process is the informal
definition in terms of activations, instances, loci of control and other
implementation concepts. The single most important idea, that of the user
of an abstraction, is never defined formally. Moreover, this use of re-
writing rules ignores a fundamental principle of the axiomatic method:

one should be able to write the assertions in the program without rearranging
the statements.

What s defined axiomatically is the semantics of the various different
forms of the raise statement, i.e. raise under the various selection policies,
and the semantics of handler invocation. The assumption is made that the
handlers are interference—free, i.e. that their potentially parallel
composition in the case of the broadcast policies will have the same semantics
as sequential composition. The synchronization requirements between the
handlers themselves, and between the handlers and their contexts, are not
formalized.

Levin is, of course, aware of these shortcomings, and points cut that
some of them arise from the weakness of the proof system. He claims that
"the problem of verifying parallel programs is a difficult one and distinct
from the exception handling issues of this thesis”. The first part of that
claim is undoubtedly true, and the problem of verifying programs using

sharing is also difficult. Nevertheless, both of these problems had been

77

treated by various authors at the time that Levin was writing (see [B8] for
a survey). Although such studies were then and remain incomplete, Levin should
perhaps have attempted to use them to shed light on his mechanism.
The alternative is to decide that these ill-understood areas, particularly
parallelism, should be avoided when designing an exception mechanism. It
seems reasonable to try to gain a full understanding of both exceptions
and parallelism in isolation and only then to examine their interactions.
It is much easier to enlarge a language than to make it smaller; perhaps
the temptation to include mechanisms concerning two such volatile topics

as exception handling and parallelism should have been resisted.

3.5 Exception Handling in Ada

Ada [96] is intended as a language for real-time applications requiring a
high degree of reliability and maintainability. To promote this usage, and
to enhance reliability in particular, the designers tried as far as possible
to incorporate only well-understood constructs which had been proved in
practical applications. However, this desire sometimes conflicted with the
contractual requirements set out in the "Steelman” [95] document; in the
areas of interprocess communication and exception handling, Ada goes
significantly further than any existing commercial language.

Exception handling in -sequential Ada is similar in conception to the
proposals discussed above. There are five predefined exceptions generated
implicitly in certain situations: ’'constraint error’, 'numeric_error’,
'select_error’, 'storage error’ and 'tasking;error'. A 'constraint_error’
occurs in many situations including index out of bounds in an array access
and trying to access a non-existent variant of a record. A 'numeric_error’

may be generated when the result of a pre-defined numeric operation does not

78

lie within the implemented range; an'implementation is not compelled to
generate this exception. A 'storage error’ occurs when dynamic storage
space is exhausted; ’'select error’ and 'tasking error’' relate to
interprocess communication, and will be considered later. There is also,
for each task* 't’, an exception 't'failure’ which (although pre—declared)
can only be raised explicitly. In addition to these exceptions the user
may declare his own, which can be generated by the raise statement. Such
user—declared-exceptfon names are subject to the usual scoping rules.

An Ada block** has the form

preamble

declarations
begin

statements
exception

exception handler
end

where the syntactic form of ’'preamble’ varies between the different categories
of block. The 'exception handler’ is like a Mesa catch phrase: sequences of
statements are associated with exception names or with the symbol others.

The execution of a raise statement causes the appropriate exception to be

* Ada uses the term ’task’ to mean an independent, dynamic entity that may
operate in parallel with other tasks, i.e. what is usually called a process.
However, despite the influence of a major U.S. computer manufacturer the
English word task always means the piece of work rather than the agent which
performs it. I will use process in preference to task whenever possible.

** Block will be used in the sequel to include blocks, subprogram bodies,
package bodies and task bodies.

raised within the current block; this is like Mesa rather than CLU. If

there is an exception handler within the block, and if it names the exception
or has an others clause, it is executed. The handler acts as a substitute
for the remainder of the block; if the block is a routine body the handler
may execute a return statement, which will terminate the routine.

If there is no exception clause in the block, or if it does not name
the appropriate exception, the exception is raised again at the point of
invocation of the block; in Ada terminology it is propagated. Exceptions
can be passed through on arbitrary number of levels of the call hierarchy
in this way. The headings of procedures and functions are not required (or
even permitted) to list the exceptions which they may propagéte.

Because a function may raise an exception the designers of Ada had to
decide how to deal with exceptions raised during the elaboration of the
declarations of a block. Arguably the handler in the block body should not
apply because some of the variables it manipulates may not be declared when
the exception occurs. The current Ada dé?inition [96] accepts this argument
and limits the scope of the exception handler to the statements of the block.
An exception generated within the declarations is raised with the invoker of
the block; the handler in the body of the block is ignored. (Interestingly,
[55, §12.5.2] states that this arrangement was "rejected for implementability
reasons”.)

Unfortunately the rules outlined above do not apply in all situations.
There are undesirable interactions between exceptions, packages and processes.
For example, an exception raised in the declaration part of a task body is
propagated to whoever caused the task activation, whereas an exception
raised in the statement sequence of the same task body (and not handled

locally) is not propagated at all; the task is simply terminated. The

80

very fact that there are eleven separate clauses concerning unhandled
exceptions [936, §11.4.1-2] indicates that it is not always clear just when
an exception will be propagated.

The propagation rules also clash with the scope rules. Since
exception names, like identifiers, are subject to the scope rules of package
and block structure, an excepticn can be propagated beyond the scope of its
name. It can then be caught by an others Handler; it is even possible to
re-raise it.

As was mentiocned in Section 1.5, the rules about cptimization in the
presence of functions which may generate exceptions [96, §11.8] also
substantially complicate the language. They introduce semantic traps of
which the programmer must beware.

The following is a slight modification of the stack package from
Section 12.4 of .the reference manual. A function 'Top’ has been added and,
in the interests of simplicity, the generic clause has been omitted. The

specification* is now:

package StacksforElems

is type ElemStack is private
s procedure Push(s: in out elemstack; e: in elem)
5 procedure Pop(s: in out elemstack; e: out elem)
5 function Top(s: in elemstack) return elem
5 Overflow, Underflow: exception

end StacksforElems

Although this speciFication does not show it, 'underflow' can be raised

* i.,e. syntactic specification, for the benefit of a compiler. For this
reason Ada insists that the representation of ElemStack be given as part
of the "specification”. I omit it.

81

by invocations of 'Pop’ and 'Top'. If one attempts to supply the missing

predicate 'IsEmpty’ it is easy to fall foul of [96, §11.8], for example:

function IsEmpty (s: in elemstack) return boolean
is e:elem
begin e := Top(s)
f return false
exception
when underflow => return true
end

Since 'e' is never used within the function body, the value of the 'Top’
operation 1is ciearly not needed.: Applying the rule that "the operation need
not be invoked at all if its value is not needed, even if the invocation
would raise an exception”, it is clear that an implementation is entitled

to elide the call to 'Top’, and to represent"lsanpty' as the constant
function 'false'. Ada exceptions may be useful when warning of a departure
from the specification, as with an implementation insufficiency. However,
it seems that their semantics are irregular and difficult to formalize, and
that their use to communicate a result required by the specification is ill
advised.

Luckham and Polak [661[67], writing before the promulgation of the above
rules, describe some of the other changes which should be made to Ada to
permit verification of programs using exceptions. I have already mentioned
the lack of a propagation declaration in subprograms; Luckham and Polak
propose the addition of a form of declaration which includes an assertion
describing the state whenever the subprogram terminates by raising that
exception. They also add an assertion to the handler which gives the
precondition for its invocation. With these additicns the precondition for

each raise of a named exception can be determined, and it is possible to

82

check that the handlers achieve the postcondition of the subprogram in
which they appear.

However, various aspects of Ada exception handling are not so easily
axiomatized. Exceptions raised by function invocations cause problems
because the axiomatic method relies on importing functional expressions into
the assertion language. This can only be done if functions in the programming
language emulate their mathematical analogue; a function which raises an
exception clearly does not do so.*

The others clause in a handler also gives rise to difficulties, because
a raise statement in such a handler can propagate an unnamed exception.

The method of Luckham and Polak assumes that excepticns are only
propagated within their scope. They recommend therefore that the raiseing
of an unnamed exception should be avoided, and that a globally known
exception 'error' be raised instead.

There are three pre-defined exceptions that have not yet been considered.
'Select_error’ and 'tasking error’ relate directly to the interprocess
cormunication ﬁrimitives of Ada. They both represent programming errors,
such as trying to communicate with an inéotive process. A 'select error’
is generated when a select statement has all its guards false; a simpler
alternative would have been to reqdire the inclusion of an else part.

The exception 't’failure’ can only be generated by an explicit raise

statement, in task 't’ or in any other task from which the name 't’' is

* Provisional Ada [54] made a valiant attempt to ensure that.Funotions {as
distinct from procedures with results) were really functions. However, this
distinction has been dropped from the Revised language [96].

83

visible. The report advises that a task's failure exception be generated only

as a last resort, when attempts at ordinary communication bave failed.
Because the failure exception may interrupt a process at an arbitrary
point the only sensible action that it can take is some clearing up

followed by termination; however, this is solely at the discretion of the

interrupted process. At the time of writing, the American National Standards

Institute has proposed that the task failure exception be removed from Ada
before it is accepted as a U.S. standard. Forcible termination of another
process could still be performed with the abort statement. The normal
method of achieving termination is of course by co-operation: one process
passes a message to another informing it that its services are no longer

required.

3.6 Summary

There is a great diversity in the intended scope of the exception handling
mechanisms described in this chapter. That of CLU is probably the most
constrained; it can be considered as a way of providing multiple returns.
Levin's mechanism and Mesa signals are the most elaborate, but in different
ways. The Ada designers clearly conceived of a limited mechanism, but the
interaction between it and other features of the language gives rise to

considerable complexity.

Chapter 4

EXCEPTION HANDLING IN ACTION

It is encumbent on anyone who proposes a language feature to show that it
is useful. If a programming language is to remain simple one must be
very cautious about including a new feature. It is well known that any
computable problem can be solved with only an alternative construct and
either an unbounded repetitive construct or the ability to name and call
pieces of program. Anything in excess of this minimum must justify the
complexity it adds to the language by removing even more complexity from
typical programs.

Levin [59] is one of the few authors to take this responsibility at
all seriously. He admits that an exception handling mechanism must be

capable of solving a variety of "real world” problems naturally. But the

requirement is actually stronger: there must be no natural soclution to those

problems without the mechanism, for if there is then we are guilty of en-
larging a language gratuitously.

Any use of an exception handling mechanism to achieve termination of a

routine can be simulated by making the result of the routine a union of types.

Alternatively, it may be appropriate to replace the routine by several

- routines, each applicable to only a part of the domain of the original.
An exception mechanism like that of Mesa, when used toachieve resﬁmption,
is semantically equivalent to the provision of one or more procedure
parameters to the routine which generates the exception. Levin's mechanism
can be similarly replaced, with some complication if the exception is

raised on a data abstraction rather than a control abstraction. In this

84

case procedure parameters to the data structure may be needed. As I will

show, in the presence of multiple processes it may be appropriate to use
inter-process communication in place of Levin's mechanism.

Sections 4.1 and 4.2 of this chapter examine progranming problems
provided by Levin and other authors as illustrations of the utility of
their exception handling mechanisms. Section 4.3 presents some uses
of the Mesa mechanism extracted from real software. Consideration is
given in each case to ways in which the problem might be solved without
an exception handling mechanism. An attempt is made to compare the various
formulations and to decide which is simpler, more natural, easier to modify
and less prone to error. Such judgements must of their nature be
subjective, and it is of course possible that the reader may disagree with
my assessment of these examples. In part, such disagreements account
for the multiplicity of programming languages. But the existence of these
differences of opinion i5>in‘it§el?: an argument in favour of simpler
languages: it is much easier to have two language designers agree on the
structure and features of a minimal language than on a large, eclectic
one with many interactions between its constructs. This principle of
language design may be sunmarised as "if in doubt, leave it out”.

Given two means of expressing a particular concept, and agreement
that one is superior to the other on methodological grounds, it still
may be prudent to choose the inferior construct if it permits a vastly
more efficient implementation. Although a small increase in execution
time may be an acceptable price to pay for methodological advantage, I
must be sure that my proposals for avoiding exception handling do not
introduce major inefficiencies. Section 4.4 examines some actual and
hypothetical implementations.

It is not possible for me to include an examination of every example

which purports to Justify exception handling. I have chosen the examples

which seem to put the strongest case. In the case of Mesa I have included
some examples which have not been previously published. One objection
which may be raised against the material presented here is that all the
examples are small. This is partly because of the inherent limitations of
the medium of presentation. A full examination of a large piece of software
would make excessive demands of the reader, as well as lengthen a chapter
which may already be too long. More importantly, most of the reader’s
efforts would not be directed at the use made of the exception mechanism,
but rather at understanding the overall structure of the system. Once cne's
attention is directed at a single exception-generating routine and its caller,
 the situation in a large example is fundamentally the same as in a small one.
1059 benefit that may accrue from the use of an exception mechanism in
a large system is better design. It is common to use syntactic procedure
interfaces to sketch out the module structure of a system, but it is
unfortunately not yet common to define the semantics of these procedures
during the design stage. If the procedure interfaces are written in a
language like CLU, which requires that all the exceptions a procedure may
raise must be mentioned in the procedure heading, then the system designer
may be encouraged to think of all the cases with which the procedure must deal.
It is only fair to point out that the same benefits can be obtained by
a disciplined use of some other means of communicating exceptional results,
such as union results or procedure arguments, It should also be cbserved
that languages like Mesa and Ada which do not require exceptions to be listed
in the procedure heading encourage the opposite mode of thinking. The less
common cases are likely to be excluded from the design under the belief that

they can be added later using exceptions. The result of doing this is likely

to be a system structure that is, from its very inception, inappropriate for

87

many of the events that will oceur within it.

- I have also excluded some examples because the case they make for
excéption handling is very weak. For example, Wasserman [99] discusses
a'rohtinéucalled 'seafch’ which determines whether a name is in a table.

He presents it in three forms:

(i) as a function with a boolean result;
(ii) as a procedure which raises two exceptions, 'Found's and 'Notfound’;
(iii) as a probedure which always raises 'found', but which returns

a (character!) result indicating whether the name was really found.

Form (i) results in very transparent code which is not improved by the
introduction of exception handling. Wasserman does at least give comparative
examples; unfortunately, the comparison is spoiled by failing to use the
search routines to solve a stated problem. (Incidentally, form (iii) was
an attempt to simulate Zahn's situation—oase statement [104]. I am unsure
which construction benefits by the comparison.)

In attempting to provide comparative examples I am faced with a number
of difficulties. The most obviocus ischoosing a specification and a
programming style which are neutral with regard to exceptions.

Those who advocate exception handling mechanisms sometimes specify
problems by asking for a routine which provides a "normal” service 'A’
and "exceptional” services 'B’' and 'C’'. They then find that such problems
are elegantly solved by their exception mechanism! By posing their problems
in such terms, they disqualify any solution which is symmetric with respect :
to 'A’, 'B' and 'C’', even though such a solution may be just as appropriate

in the surrounding context.

88

When discussions about the merits of the goto statement were popular,
advocates would ask: "How do I get from here tothere without a goto?”
As soon as one attempts to answer such a guestion the argument is lost, for
one is arguing about flow of control rather than how to solve a programming
problem. Such arguments have lead to the introduction of exit, break and
leave statements which do indeed get you from here to there without a goto -
but roses smell as sweet by any name. The only way to deal with such
guestions is to abstract the reguirements away from the implementation and
then to construct a program (wiéhout any jumps) that satisfies them. I
have to do a similar thing with problems illustrating exception handling.
Chosing a programming style is again a subjective problem. The options

are best illustrated by examining a real example.

4.1 The CLU Sum_Stream Example
This example is taken from the CLU Reference Manual [61, §12.31. The.

requirement is to produce a

procedure 'sum stream’ which reads a seguence of signed decimal
integers from a character stream and returns the sum of those integers.
The stream is viewed as containing a sequence of fields separated by
spaces; each fileld must consist of a non-empty sequence of digits, .
optionally preceded by a single minus sign.

The CLU manual then specifies that the heading of the procedure is

sum_stream = proc(s:stream) returns(int)
signals(overflow, badformat(string)
, unrepresentable integer(string)

)

and states the conditions under which the various exceptions are raised.

Another way of looking at this problem is to consider 'sum _stream' as

a procedure which returns one of four different kinds of result under
different circumstances. Specifically, let the result be of type 'SumResult’,

where

type SumResult = oneof(overflow : singleton

H int
unrepresentable_integers : string
bad format : string

— r e

The declaration 'type O = 9229£(T1; Tosenes Tn)’ defines '0' to be the
discriminated union of the types denoted by ’Tq', ’T2’,... and ’Tn'. It

is mot required that all these types are different; if 'Ti' and 'Tj'

happen té denote the same type, the oneof does not collapse in the way a
set-theoretic union would do. That is why I have chosen the symbol oneof
rather than union. It <& required, however, that the 'Ti’ are syntactically
distinct names; to facilitate this some of the 'Ti’ may be renamed by
writing 'ni:Ti'. This requirement arises because thers are '3n’ functions

contained in type '0’, which must have distinct names.

From_Ti : (Ti) =0
To T. : (0) -~ T,

— 1 i
Is_Ti : (0) - boolean

The 'FrDWLTi' functions are the injection operators, i.e. those used to
construct values of the cneof type '0'. Thus a 'SumResult’ can be
" constructed by writing 'From bad format(”-12s4")' or 'From int(256)'. The

projection functions ’TO_Ti' are obviously partial; ’To_Ti(x)' is only

defined if 'x' was constructed from type 'Ti', which is determined by

the predicate 'Ia_Ti(x)'. (These functions are formally defined in Chapter 5.)
The name ’'singleton’ denotes a type which contains only one value.
This value has no explicit denctation; instead operations on a
'singleton’ are applied to an empty parameter list. Thusa 'SurResult’
value can be constructed by the application 'From overflow()'.
Having explained the notation that will be used for types, we can
return to the specification of 'sum stream’. In my formulation ’'sum stream’

has the heading
sum_stream = proc(s:stream) returns SumResult

Should the sum of the numbers in the stream (or an intermediate sum)
exceed the implemented range of integers 'sum stream’ will indicate that an
overflow has occurred. If one of the numbers in the input stream exceeds
the implemented range of integers then 'sum stream’ will indicate that an
'unrepresentable_integer' was found. If the stream contains a string which
does not denote an integer ’'sum stream’ will indicate that its input was
in a 'bad format'. These indications will be provided either by exception
signals or by the oneof result as appropriate.

The CLU version uses the services of two library routines, 'getc’ and

s2i'. The first has type

proctype{stream) returns(char)
signals(end of file, not_possible(string))

and returns the next character from the stream unless the stream is empty,
in which case 'end of file’ is raised. The signal 'not_possible’ is

generated if the operation cannot be performed on the stream, as would be

the case if it were an output stream or did not consist of characters.

The CLU manual assumes that 'getc' is always possible on the given stream.
The procedure 's2i’ converts character strings to integers; its type is
proctype (string) returns(int)

signals(invalid character(char)
» unrepresentable_integer
, bad format
)

The signal 'unrepresentable integer' is generated if the string represents

an integer outside the implemented range; 'invalid character’ is signalled

if the string contains a character which is neither a digit nor a minus sign,
and 'bad format' is signalled if a minus sign follows a digit, if there is
more than one minus sign, or if there are no digits.

My version will assume the existence of some similar routines. 's2i’
will have type

proc (string) returns

oneof(int
; invalid character : char

s bad format : singleton

s unrepresentable integer : singleton

)

For the sake of variety, I will not use a procedure ‘getc' which returns a

oneof result, but will instead use a predicate 'Endof’ and a procedure

"Nextc'. Their types are
Endof : proc (stream) returns boolean
Nextc : proc (stream) returns char

'"Nextc' is only partially defined: if not 'Endof(S)’' then 'Nextc(S)’

returns the next character from 'S'. Like the CLU authors, I will assume

that 'Nextc' is applicable to the given stream: a predicate 'IsNextcPossible’

12

16

20

24

28

32

would permit

this assumption to be checked.

sum _stream = proc(s:stream) returns(int)

sums
nums

signals(overflow
, unrepresentable integer(string)
, bad format(stringl);
int := O T
string;

while true do

end;

o,

skip over spaces between values;
sum is valid, num is meaningless

N o\

cichar := stream$getc(s);
while c = ' ' do

c := stream$getc(s);
end;

read a value; num accumulates new number,
sum becomes previous sum
numn = '';

o
°
[}
%

while ¢ # ' ' do
num := string$append{num,c);
c := stream$getc(s);

end;

except when end of file: end;
% restore sum to validity
sum := sum + s2i(num);

except

end;

when end of file: return(sum);
when unrepresentable integer:
signal unrepresentable integer(num);
when bad format, invalid character(*):
signal bad format(num);
when overflow: signal overflow;

end sum_stream;

Figure 4.01: The sum stream procedure.

The CLU implementation of ’'sum stream’ is shown in Figure 4.01.

outer loop contains two inner loops, the first to skip spaces and the

The

second to accumulate digits. If the end of the stream 's' is encountered

in the second inner loop the raising of the 'end of file' exception causes

a jump out of the loop to the null handler at line 21.

Control then passes

93

to line 23: the ocuter loop is only terminated when 'getc’ is invoked again
at line 12. This raises the 'end of file' exception a second time and

causes the execution of the return statement in the handler on line 26.

proc sum stream = (s:stream) returns SumResult
var sum : int = O
repeat
4 {skip over spaces between values; sum is valid}
var ¢ : char
repeat :
if Endof(s) return From int(sum) fi
8 c := Nextc(s)
when c # ' ' exit
again
{ read a value; num accumulates new number,
12 sum becomes previous sum }
var num : string = '’
repeat
num := string.append(num,c)
16 when Endof(s) exit
c := Nextc(s)
when ¢ = * ' exit
again
20 {restore sum to validity}
if Is_int(s2i(num))
then
const newsum : oneof(int; overflow:singleton)
24 = sum + To_int(s2i(num))
if Is_int(newsum)
then sum := To_int(newsum)
else return From overflow()
28 ' fi
glif Is unrepresentable_integer(s2i(num))
then return From unrepresentable_integer(num)
else return From bad format(num)
32 i
again
end of sum stream

Figure 4.02: sum stream without exceptions.

The discussion in the CLU manual states that most of the handlers

have been placed at the end of the outer loop to avoid cluttering the code.

84

One of the consequences of this is that 'num’, which is otherwise used only
between lines 16 and 23, must have a much larger scope so that it is
available for the handlers. This is the reason for the comment at line 9.

My formulation of ’'sum stream’ without exceptions appears as Figure 4.02.
It follows the CLU example line by line as far as is possible. I have used
the return statement in four different places to exit from what would
otherwise be an infinite loop; these four cases correspond to the four different
exception handlers in the CLU version. I also wished to avoid the use of a
while ... do construction for loops in which the test does not naturally
come at the beginning: I have used a loop delimited by repeat ... again

within which when 'b' exit clauses may appear.

All the exceptions generated by the CLU version of ’sum_stream” originate
as exceptions raised by lower-level routines. 'Sum stream’ passes them on
to its caller: although some of the names may be the same, the meaning of
the exceptions is different at the different levels. For example, the
'bad_format' exception generated by 'sum stream’ has a broader meaning than
the 'bad format’ exception signalled by 's2i’ (it also has a result value).
The 'overflow’' exception is generated by the '+’ operator; for consistency
I have assumed in my version that '+' returns a result of the type
'oneof (int 3 overflow:singleton)’.

The type 'SurResult = oneof(overflow : ...)' and the type of 'newsum’,
that is ’oneof(overflow : singleton; int)’' both have operators
'From overflow()'. Allowing distinct types to use the same operator name
is known as overloading and occurs with many built in types. For example,
'+ is usually overloaded with definitions betwsen reals and between
integers, and may also have other definitions such as between vectors or

matrices. The potential ambiguity thus introduced is resolved either

95

implicitly by examining the types of the arguments and result, or
explicitly by qualification, as in 'SumResult.From overflow()'. (CLU
uses $ instead of the point.) How much overloading is allowed, and in
which situations gualification is required, varies from one language to
another; no difficulty should be found in resolving the examples.

Comparing the two versions of sum stream, the main difference is that
in mine an explicit test must be made for each exception. I consider this
to be an advantage because it forces the progranmer to think about all the
possible cases.

To illustrate this, suppose that the specifier or programmer had
forgotten to consider the case where the last number in the stream is not
followed by a space. In the CLU version this would lead to the omission
of the 'end of file' handler at line 21. If this program were then applied
to an input stream without trailing spaces, the effect would be to exclude
the last number in the stream from the total. This would happen because the
'end of file’ exception raised by 'getc’ on line 19 would be caught by the
handler at line 26; this handler performs an immediate return without adding

'num’. If the same oversight were made when

in the digits collected in
constructing my version, the effect would be to omit line 16. If this program
were applied to the same input stream, 'Nextc' at 1ine17 would be called
when no characters remained in the stream. This would cause an inmediate
abort. In this sense my methodology increases robustness*.

The robustness arises because of the explicit association of "handler”
code with the routine which discovers the problem. Indeed, the existence
of a call of 'Nextc' not guarded by a test of 'Endof' ought to alert the

programmer to check the problem specification. However, the fact that

partial functions were used rather than routines which return oneof results

* This sense of the word is that adopted by Dijkstra [23],p. 56 , Hehner
[42]1,p. 278 and Bron and Fokkinga [12al.

96

is irrelevant. The end result is the same if, instead of 'Nextc’ and

'Endof’, the library bad supplied a routine

getc : proc(stream) returns oneof(char
s end of file:singleton
3 not possible:singleton

)

The loop which accumulates characters would then have appeared as

repeat
num := string.append(num, To char(c))
c 1= getc(s) B
when Is end of file(c) exit
when To char(c) = "' exit
again

and omission of the 'Is _end of file’ test would have lead to an illegal

invocation of the 'To char’ function, which would also cause an abort.

This argument does not apply in the case of CLU signals. CLU expressly
permits a call that raises an exception not to be followed by a handler;

in such a situation, the handler from the surrounding lexical scope is used.

It may be that the reader is worried by the introduction of a loop
construction with exits. This is the inevitable consequence of trying to

imitate a program which uses exceptions to achieve premature termination of

loops. If the program is written in a top down manner without reference to
the CLU version no exists or returns are necessary because no loops are
used. This alternative formulation is shown in Figure 4.03. It uses
Dijkstra’s guarded command notation [22] and call and refinement [42]; both
of these techniques produce programs which occupy a greater number of lines,
but one should not be mislead into thinking that this implies greater
complexity. In my view Figure 4.03 is easier to understand than Figure 4.02.
However, the object of this thesis is to argue the merits of exception
handling, not of loops. The remaining examples in this chapter will be

written (without exception handling) in a way that follows as closely as

97

proc sum stream = (s:stream) returns r:sumresult
var sum:int = 0
var c:char
var Num: string

Add Numbers in stream to sum

where Add Numbers in stream to sum is
if Endof(s) => r := FronLint(sdﬁT
1 jEndoF(s) =>

c := Nextc(s)

1? c="" = Add Numbers in stream to sum
T c# ' ' =>Read number and add it to sum
fi

k23

where Read number and add it to sum is

Num := ! '——
Append Non_space chars to Num
if Is int(s2i(Num)) =>

Add Num and Numbers in stream to sum
0 Is unrepresentable integer(s2i(Num)) =>

r From unrepresentable_integer(Num)
0 Is bad Format(521(Num))

or Is 1nva11d character(s2i(Num)) =>
= From bad format (Num)

fi
where Append Non_space chars to Num is
num := string.append(Num,c)
if Endof(s) => skip
0 ﬂEth?(s) =>

c := Nextc(s)

_i_fc = ' = skip

0 c# ' ' =>Append non space chars to Num
fi

fi
where Add Num and numbers in stream to sum is
const NewSum:oneof(int; overflow:singleton) = sum + s2i(Num)
1F Is int(NewSum) =>
sum := To int(Newsum)
Add Numbers in Stream to Sum
0 Is overflow(NewSum) =>
r := From overflow()

i

end of sum stream

Figure 4.03: Sum stream without exits or exceptions.

98

possible the original solution (with exception handling); return and exit

statements will be used where necessary to contrive the similarity. I feel
that the proponents of exception handling will be inclined to favour such a
style; in any case it facilitates the comparison of the two versions. It
should be clear from the above that this method of presentation neither
means that exits are necessary if exception handling is removed, nor that

I support their use.

4.2 Levin's Examples

In Section 7 of his thesis [59] Levin presents five examples to demonstrate
the "practical applicability” of his mechanism. He claims both that his
solutions are naturael and that the problems cannot be successfully handled
by other mechanisms. In this section I discuss each of his examples in
turn. In the case of arithmetic exceptions I examine the CLU formulation as

well as Levin’s.

4.2.1 The Symbol Table PTobZeh
For his first example Levin presents the symbol table data type. Looking up
a name in a symbol table is representative of a common class of operations
which may return different kinds of results.

Levin defines a 'symbol table' to be a set of pairs '<name, value>’
where the first elements of the pairs are distinct. The cardinality of the
set is at most 'n’, i.e. the symbol table is of bounded size. If+- the pair
'<s,v>' has previously been inserted into 'st’, the result of 'lookup{st, s)’
is 'v', otherwise it is a notification that 's' is absent. If an attempt is
made to insert.a new name into a table which is already full then provision -

for some "exceptional” action must be available.

Levin's specification is in a style close to that of Alphard [103];

it is reproduced as Figure 4.04. Considering first the 'lookup’ function,

it will be seen that it may generate two exceptions, 'absent’ and 'present’,
and that the latter has a parameter of type V', The preconditions of

these exceptions tell us that each invocation of ’'lookup’ will generate
exactly one of them. No pre- or postconditions are given for 'loockup’
itself. Levin states that an omitted precondition is identically 'true’, and
that the omission of a postcondition means that "all parameters remain

unchanged”. Thus 'loockup’ is a total function in the mathematical sense.

form symbol table(n:integer, T:form<=, :=>, V:formx=, :=>) =
beginform
specifications
requires n z 1;
let symbol-table = assoc: {<s:T,v:iV>};
Tnvariant
cardinality(assoc) < n
and a,b e assoc => (a.s = b.s => a.v = b.v);
initially symbol-table = {};
functions
lookup(st:symbol-table, str:T)
raises
absent on lookup policy broadcast
pre = aest => a.s#str;
present (v:V) on lockup policy broadcast
pre = dasst st a.s=str and a.v=v
endraises T

insert(st:symbol-table, str:T, val:V)
raises
full on insert policy broadcast
pre = cardinality(st)=n and (aest => a.s#str)
endraises
post normal

"

if Jaest st a.s=str

then st = st - {a} U {<str,val>}
else st = st' U {<str,val>}
post full = st=st’;

Figure 4.04: Levin's symbol table specification.

100..

I have tried to interpret this specification according to the
verification methodology set out in [59].

The reader will recall that after an exception is raised and handled,
control returns to the procedure which generated the exception.
Section 6.2 of [59] states that "a module that defines a particular exceptional
condition on its abstraction alsc defines two predicates that hold before and
after the condition has been handled”. I would therefore expect the
specification of 'lookup’ to provide postconditions for 'absent' and 'present’
as well as preconditions. In the absence of explicit postconditions I can
only assume them to state that "all paremeters remain unchanged”. But
which set of parameters, those of the exception or those of 'lookup’?
If the former, then the postcondition of 'absent' is vacuously 'true’
(because it has no parameters) and so the postcondition of ’lockup' must
alsgc be "true'. This contradicts the previcus assumption. So I must assume
the latter interpretation, that the implicit postcondition for an exception
states that all of the parameters of the operation remain unchanged. This
means, for example, that the handler for 'absent' is debarred from changing
the symbol table: in particular it cannot insert the name which was found
to be absent. I do not believe that Levin intended to define such a
restrictive mechanism but see no other way of interpreting his specification
and verification methodology.

Similar problems arise with 'insert’. Levin tells us that the last
four lines represent the postcondition for ’'insert’. The notation is
intended to separate the part of the postcondition which applies in the
"normal” case from the part which applies when 'full’ has been raised. The

actual postcondition is stated to be

(-raised(full) and post normal) or (raised(full) and post full)

101

where 'raised(c)’ if and only if 'c’ was generated by 'insert’. There
seems to be no advantage in separating the terms in this way because
'raised(full)’ is not available in the program. Nevertheless, it seems

clear that the handler for 'full’ is prohibited from altering ’ét'.

representation
unique
names:vector(T,1,n),
values:vector(V,1,n),
last:integer ‘
init last := O;
rep(last,names,values) =
T {<names[i],values[i]> | i e [1,last]};
invariant
last ¢ [0,n] and ((i,j e [1,1last] and 1 # j)
=> names[i] # names[j])

implementation
body lookup =
first J:upto(1,last} suchthat names[j]=str
then raise present(values[j])
else raise absent;
body insert
out normal = Fie[1,last] st
T (names[i]=str and values[i]=val and
viel1,last’] Jke[1,last] st
(names[j]’ =names[k] and 1 # j =>
values[j]' =values[k])) ‘
out full = last’=n and Vie[1,last’] names[i] # str
begin
first j:upto(a,last) suchthat names{j]=str
then values{j] := val
else if last<n

then last := last+1; names[last]:=str;
values[last] := val

else raise full

fi

end
endform

Figure 4.05: Levin'’s symbol table implementation.

102

The implementation of Levin’s symbol table is reproduced as Figure 4.05.
The out assertions are the concrete versions of the appropriate
postconditions. All the statements which generate exceptions are the last
actions of the procedures in which they occur; Levin's resumption mechanism

is used to simulate a termination mechanism.

shared t:symbol-table(47, string, integer)
unigue r,s:string, v,w:integer

1l:begin
< set s >
lookup(t,s) [present(x): vi=x | absent: v:=0]
< use v >

< sget rand w >
insert(t,r,w) [full: - leave 1]

end

¢

Figure 4.06: Sample use of Levin’s symbol table.

Figure 4.06 shows a sample use of the symbol table. Its action is

described in [59]:

The invocation of ’'lockup' sets 'v' to the value associated with 's’,

- if any, or zero if 's' does not appear in 't’. The invocation of
'insert’ expects to enter the pair '<r,w>’ into 't’, but will leave
the block labelled ’'1’ if the table is full.

In seeking to provide a similar example which does not use an exception
mechanism one is faced with a number of choices. 'Lookup' is naturally
represented by a function with a result of type 'oneof(V; absent:singleton)’.
Using a union for the result of ’'lookup’ enables the symbol table abstraction

to treat both results on an equal footing and leaves it to the user of the

108

abstraction to decide which result, if either, is "exceptional”. It was to
gain the same advantage that Leyin introduced two exceptions rather than
Jjust one.

Such symmetry is not required when inserting a new name into a possibly
full table. One technically sound (but inefficient) way OF‘dealing with
this sventuality is to ﬁake 'insert’ a partial operation and to provide a
predicate ’Is_insertabie[st,n)' which is true if and only if
'insert(st,n,v)' is permitted.

Another method of dealing with a full table is to invcke a prdoedure
parameter. Such a pareameter could be provided either when’the table is
first created or on each call of 'insert’. if the first course is adopted
it might be wise to provide an operation on symbol tables which changed the
handler procedure. This is very similar to what was done in the AED Free
Store package (see Section 2.1). My formulation of 'insert' uses a procedure
parameter to deal with full tables. This has an implementation advantage
over the use of partial operations: it is easier to check that a total
operation is provided with the correct number of parameters than it is to
check that a partial operation is invoked only from valid states. It also
has the didactic advantagé of introducing a new technigue - that of
notification procedures - into our list of alternatives to exception handling
mechanisms. This technique requires only a minimal transformation of

Levin's code.

104

type symbol-table{n:integer; T:type with
; Vitype with =, :=)

nu
. i

is
specifications

requires n = 1

let SymbolTable = assoc {<s:T, v:V>};

invariant cardinality(assoc) < n

and a, b:e assoc => (a.s=b.s => a.v=b.v);
initially symbol-table = {};
operations
function lookup(st:symbol-table; str:T)
returns r:oneof(V; absent:singleton)
post = if dJaest st a.s=str

then r = From V(a.v)
else r = From absent()
procedure insert(var st:symbol-table; str:T; val:v; h:proc())

let tablefull = (cardinality(st)=n) and (agst => a.s#str)

pre = tablefull => pre h

post = if tablefull

then post h
else if 4 aest st a.s = str
then st = st - {a} u {<str, val>}
else st = st’ u {<str,val>}

mwon

Figure 4.07: Revised symbol table specification.

The revised specification is shown in Figure 4.07. The ’'lookup’
function has a single postcondition and the default precondition of ’true’.
Procedure ’'insert’ has an extra parametsr 'h’, a parameterless procedure.
The precondition of ’insert’ is that the precondition of 'h' should be
satisfied whenever the table is full. The let declaration simply defines'tablefull’
as an abbreviation. The postcondition of *insert’ depends on that of 'h'; I
feel that this is a more realistic formulation than Levin's which debarred

the handler for 'full' from altering 'st’.

105

representation

unique

names : vector(T,1,n),

values : vector(V,1,n),

last : integer

init last := O;

rep(last,names,values) = {<names[i],values[i]> | ie[1,last]};
invariant
' &8st [0,n] and ((i,J € [1,1ast] and 1 # J)

=> names[i] # names[j])

implementation
body lookup =
first jrupto(1,last) suchthat names[j]l=str

then r := To V(values[j])
else r := To _absent();
body insert

out = (Fie[1,last] st
(names[i]l=str and values[i]=val and
v jel1,last’] 3 k&[1,last] st
(names[j]'=names[k] and i#j =>
values[j]’ =values[k]))
) or post h
begin
first j:upto(1,last) suchthat names[j]=str
then values[j]l:= val
else if last<n

then last := last+1; names[last]:=str;
values[last] := val

else h()

fi

end
endform

Figure 4.08: Symbol table without exceptions

My symbol table implementation is presented in Figure 4.08. Two of
Levin's raise statements have become assignments to a result variable; the
third has become a procedure call. The out assertion has been modified

in a similar way to the abstract specification.

106

shared t:symbol-table(47, string, integer)
unigue r,s:string

s V,w:integer

, u:oneof(integer; absent:singleton)

l:begin
<sgt s>
u := lookup(t,s)
if Is integer(u) then v :
else v

To integer(u)
0

i
<use v>

<set r and w> |
insert(t, r, w, proc:leave 1)

end

Figure 4.09: Using the revised symbol table.

Comparing Figures 4.06 and 4.09, it does not seem to me that the use
of an exception mechanism produces a 'lookup' function whose use is easier
to understand. Moreover, Levin’s example violates his own restriction that
handlers must be procedure calls; if the two assignments to 'V' are turned
into procedufe calls his example is considerably more difficult to understand.
This is perhaps unfair, beo@use the handlers are abnormally simple; if they
were more complicated I would have wanted to use procedure calls in the
limbs of my if statement.

Nevertheless, these considerations lead us to ask why Levin's handlers

are so simple. Assigning 'v' to zero and continuing with the computation is
sensible in two kinds of situation. The first occurs when zero is not wvalid
as a value to be inserted in the table. This implies that

the table abstractioh should have been instantiated

with some other 'V', say 'Nautral'. Thus 'v' is really of a union type: it
is either a 'V' or it is zero. The program fragment represented by

'<use v>' will presumably test 'v' to see if it is zero before deciding

107

how to proceed.

There is nothing new or surprising about this use of zero as an
"impossible” value: it has a history going back to the days of assembly
language and Fortran. However, the advantages of languages like Pascal,

CLU and Alphard is that one can construct types containing just the values
one needs and thus obtain clearer code and more checking at compile time.
Using union types preserves these benefits at the cost of having to make
explicit checks and type conversions. Adding "impossible values” to existing
types allows those conversions to be avoided, but negates many of the

benefits of strong typing. I return to this question in Chapter 6.

The second kind of situation in which it is sensible
for 'v' to be assigned to zero occurs when zero is some sort
of default value, and the computation which follows can be
performed with equal validity on both zero and non-zero values.
This is an unlikely possibility when a compiler's symbol table
is involved, but imagine for a moment that Levin’s exceptiaon
mechanism has been used to implement a sparse array. Failure
of a lookup function to find the requested element raises an
exception; at the next level of abstraction the handler for
this exception substitutes the appropriate default value (in
this case zero).

In this second situation, the result of the operation which
accesses an element of the sparse array is clearly of type
integer, and not of any union type. I cannot therefore object
to Levin's 'v := 0’ handler on methodological grounds. However,

an implementation of 'lookup’ which returned a union result

108

would be in this case too just as readable as one which
raised an exception. The relative efficiency of the two

mechanisms is considered in Section 4.4.

4.2.2 The Inconsistent String Problem

Levin's second example is based upon his first but is intended to demonstrate
a different kind of use for his exception mechanism. He shows how

exception handling can be used to repair a data structure which has become
inconsistent because of a failure of "memory” (i.e. a malfunction of the
computer store).

He assumes that the strings stored in the symbol table are values of a
user-defined data type and that their representation céntains some redundant
information. If this redundancy reveals an inconsistency the string module
generates an exception. This exception is raised in the module using the
string, which in this case is the symbol table module. In order that the
symbol table may perform some recovery action Levin alters it to maintain
a duplicate list of strings in the vector 'dnames’.

Figure 4.10 is part of Levin’s string module; the function which tests
equality is emphasised. It generates the exception 'bad-string’ if one of

its argument strings has a negative length. If the handler for 'bad-string’

109

does not correct the condition, it sets the erstwhile inconsistent string

to the null string and generates a second exception, 'reset-string’.

module string(n:integer)
begin
private length:integer, chars:vector(character,?,n)
init length := 0
condition reset-string policy broadcast
condition bad-string(var s:string)
policy broadcast-and-wait

function =(s1,s2:string) returns b:boolean
raises reset-string on s1,s2
raises bad-string on s1,82

begin
if s1.length<0
then
raise s1.bad-string(s1)
if s1.length<0
Then s1.length := 0; raise sl.reset-string;
' return
fi
i
1T s2.length<0
then
raise s2.bad-string(s2)
if s2.length<0
Then s2.length := 0; raise s2.reset-string;
return
fi
fi

if sl.length = sZ.length
then

first i:upto(1,s1.length)
suchthat s1.chars[i] # s2.chars[i]
then b := false '
else b := true
else := false
fi
end
end ~

Figure 4.10: Levin’s string module with exception detection.

110

condition lost-entry policy broadcast-and-wait

function lookup(st,s)
raises lost-entry on st
raises ahsent on lookup
raises present(v) on lookup
begin

for i:upto(1,last)

da

if =(names[i],s) [names[i].bad-string(str):str := dnames[i]]
then raise present(values[i]); return
F -
od [names[i].reset-string: fixtable(st,i) -+ return]
raise absent
end

routine fixtable(st:symbol-table, i:integer)
begin

names[i]:= names[last]

dnames[i]:= dnames[last]

values[i]:= values[last]

last := last-1

raise st.lost-entry
end

Figure 4.11: Re-implementation of lookup.

This string module is used by the revised 'lookup’ operation shown in
Figure 4.11. If 'bad-string’ is raised on a name in the symbol table the
value of the appropriate string in the duplicate vector 'dnames’ is copied
into it. If the copy is also bad then 'string’ will raise 'reset-string’.
This will be handled by the routine 'fixtable', which uses local
information to remove the corrupted entry from both 'names’ and 'dnames’.

It then generates the exception ’'lost-entry’ so that the users of the symbol
table know that it is not reliable.

Despite its heading 'loockup’ is not a function: it is liable to alter its

symbol-table. parameter. Moreover, if an irrepairably damaged entry should be

111

found in the table neither 'absent’ nor ’'present' will be generated even
though the name 's’ supplied as a parameter to 'lookup’ is present in
"names’. Similarly, not only is the string equal operation not a function
(because it may alter its parameters), it is not even symmetric. Levin's
exposition doss not bring out these difficulties because it does not provide
a specification.

I cannot believe that this example illustrates an excepticn handling
problem that might arise in a real-world system. It is unrealistic for at

least three reasons.

First, remember the assumption that the negative string length arises
from "memory failure”. On a conventional machine, any unreliability in the
store will be at least as likely to corrupt the duplicate strings and the
code of the program (and thus the exception handlers) as it is to cause a
negative string length in the name table. Levin's example begins to be
realistic only with a programming language and architecture that allow one
to specify that the code, duplicate strings and name table reside in

different physical stores.

Second, why does the representation of strings reserve a bit faor the
sign of the length, when it must always be positive? Is it solely for

error detection? If so, it would be better to use it as a parity bit.
Third, the separation of the detection and correction of string errors
into two different levels of abstraction is a design error. And it is
this very error which gives rise to the need for exception propagation
between levels. If the string module is going to operate with an unreliable
store, and if a duplicate list of names is going to be maintained, it
should clearly be the string module which maintains it. This increases the
likelihood of error detection as any corruption in either of the strings
can be detected. Levin's formulation detects a change in the sign bit only.
On the other hand, since errors in the duplicate strings are presumably just
as likely as errors in the original strings, the available error correction

is minimal. With one hundred per cent redundancy it is possible to do a

112

lot better than this,

Despite the artificial nature of the problem it is instructive to
see how it might be solved without exception handling. Since the 'bad-string’
and 'reset-string’ exceptions relate to an individual string, it is natural
to replace them by notifioation procedures private to each string. Such
procedures might be provided as parameters to the 'MewString' routine, or
they might more conveniently be "frozen” into a ’NewStringWithStandardReCovery'
routine. In either case routines to retrieve and change the notification
procedures must be provided. Paft of a 'string' module is shown in
Figure 4.12. The routines 'BadStringRt' and 'SetBadStringRt' are provided
to access the badstring notification procedures within the 'string’ module it
can be accessed as a component of the representation, but this is assumed
to be hidden from users of ’string'. If the string equality routine finds -«
a negative length it first assigns the corrupted string variable to the
result of applying the 'Badstr’ procedure. If the length is still negative
it is zeroed and the 'Reset’ procedure of the string is applied. This
parallels exactly the action of Levin's equality routine.

When the routine is used, instead of enabling exception handlers one
must set the appropriate recovery procedures. This is illustrated in
Figure 4.13. Before the strings are compared for equality, 'lookup' changes
the bad string routine of the appropriate element of 'names'; after the
comparison it is reset. This resetting could be accomplished more
conveniently if each string contained a stack of recovery procedures.
If this change is made then my equality and lookup routines are essentially
identical to the implementation Levin gives for his mechanism. This would:
seem to boost Levin's claim that his exception handling mechanism is a high

level feature which reduces the amount of code the programmer must write.

Figure 4.12: String module with notification procedures.

module string
defines =, BadStringRt, SetBadStringRt, NewString.
, ResetRt, SetResetRt, NewString, ...
representation is
record(chars:array 1:n of character

; Badstri:proc() refurns string
3 Reset:proc()
3 length:integer

)

function BadStringRt(s:string) returns p:proc() returns string

is p := s.Badstr
end of BadStringRt

proc SetBadStringRt(var s:string; p:proc() returns string)

is s.Badstr := p
end of SetBadStringRt

function ResetRt(s:string) returns p:proc()
is p := s.Reset
end of ResetRt

proc SetResetRt(s:string; p:proc())
is s.Reset := p
end of SetResetRt

roc =(var sl:string; var s2:string) returns b:bool is
if sT.length < 0 ~ '_—
Then s1 := (s1.Badstr) ()
if s1.length < O
then s1.length := 0
(s1.Reset) ()
return

fi

i

if s2.length < O

Then s2 := (s2.Badstr)()
if s2.length < O
Then s2.length := 0
T (s2.Reset) ()

return

fi

fi

if s1.length = s2.length

Then first i:upto(1,s1.length)
suchthat s1.chars[i] # s2.chars[i]
then b := false

else b := true
else 1= false
fi
end of =

114

proc Lookup(t:symboltable; s:string) returns
r:oneof (Value; Notfound:singleton)

for i:upto(1,last)
do
proc FixTable() is
names[i] := names[t.last]
dnames[i] := dnames[t.last]
values[i] := values[t.last]
last := last-1
t.LostEntry()
end of FixTable

proc UseDuplicate() returns s:string is
5 := t.dnames[1i]
SetResetRt(s, FixTable)

end of UseDuplicate

const 0ldBadStringRt : proc() returns string
= BadStringRt(names[i])

SetBadStringRt (t.names[i], UseDuplicate)

if =(t.names[i], s)

Then SetBadStringRt(t.names[i], 0ldBadStringRt)
r := From Value(t.values[i])

return

fi ‘

SetBadStringRt (t.names[1], 0ldBadStringRt)

od
r := From Notfound()
end of Lookup

Figure 4.13: Lookup using inconsistent string module with notification

procedures.

There are two defences against this argument. The first is that there
is very little extra code present in my version. Two fields and their
access routines have been added to the string module, and three routine
oalis to 'lookup’. Given that the example was constructed specifically to
demonstrate the advantages of Levin's mechanism I was surprised that the
same effect can be achieved with very little extra effort. Do similar
examples occur often enough to justify the complexity of Levin’s mechanism?

The second defence is that the use of an exception handling mechanism,

115

by hiding what is really happening, actually #inders our understanding.
This is a bold claim which I will justify through my experiences in
constructing Figures 4.12 and 4.13.

Having written the code fragments shown, I naturally looked for ways
of simplifying them. The repeated setting and re-setting of the notification
procedures i1s displeasing and could be avoided. The same bad string routine
is applicable anywhere in the symbol table module after a name has been
inserted: the routine could be set just once and never changed. However,
if I did that I would lose the exact parallel with Levin’s routine which
does indeed set up the exception handler just for the duration of the
equality test.

It is also clear from the figures that the original 'Reset’ routine
of "names[i]’' is never used. Before 's1.Reset’ is called, 'dnames[i]' has

's1'. Similarly, the 'Badstr' routine of 'dnames[i]’ is

been assigned to
never applied: 'dnames’' is only accessed as a consequence of applying the
bad string routine of ’'names’. Further, the preconditions established by
'Lookup'’ before calling these routines are identical: in both cases the
string has a negative length. It is thus possible to simplify the representa-
tion of string and to provide more levels of recovery by using just one
notification procedure.

Part of a string module which takes advantage of this simplification
is shown in Figure 4.14. The local routine 'IsOK(s)' returns 'true' if
the length of its parameter is positive or zero. If it is negative, the

' is applied. The result of this routine is either the

recovery routine of 's
singleton ’'Unrecoverable’ or a new string value. If the former, 'IsOK’

returns 'false'; if the latter, the new string is assigned to 's'. Because

116

type string ...
representation is

record(chars:array 1:n of char
; Recoveryiproc() returns
oneof (string; Unrecoverable:singleton)
3 length:integer
)

proc =(var s1:string; var s2:string) returns b:bool is
proc c 1s0K(var s:string) returns b:bool is
var r : oneof(string; Unrecoverable:singleton)
if s.length < 0

then r := s.Recovery()
if Is_string(r)
then s := To_string(r)
b := IsOK(s)
else b := false
fi
else b := true
fi
end oF IsOK

if IsOK(s1) and IsOK(s2)
then if s1.length = s2.length
then first i:upto(1, si.length)
suchthat s1.chars[i] # s2.chars[il]

then b := false
else b := true
fi
else b := false
fi
end of

Figure 4.14: String module with single notification procedure.

117

the new string itself contains a Pecovery procedure, the recovery

procedure of 's’ is overwritten by this assignment. When 'Is0K’ invokes
itéelf recursively to test if ’'s' is now consistent, a further inconsistency
will cause the new recovefy procedure to be invoked.

In this way users of the revised string equality routine can provide
as many levels of recovery as they wish, from zero upwards, rather than
being constrained to supply exactly two. As far as I can see this solution
cannot be programmed with Levin’s mechanism; only one handler could be
provided for a 'recovery' exception generated by =1, (Of course, it would
be possible for that handler to apply the value of a routine variable, but
Levin's excepfion mechanism was presumably designed to make such variables
unnecessary.) ‘

This, gain in simplicity was not due to a flash o% insight. It was due
to the discipline of having to write out exactly what was happening in
lLevin’s example. I obtained a simpler version because I did not use an
exception handling mechanism rather than in spite of not using one. And
this is true even though the example was inverted specifically to

demonstrate the utility of Levin’s mechanism.

4.2.3 Arithmetic Exceptions

Arithmetic overflow and underflow must bear much of the responsibility

for creating the subject of exception handling. It is interesting to see

how these exceptions are handled both with Levin's mechanism and in CLU.
Levin presents part of the specification of a form Fof floating point

arithmetic. The exception handling is ihdirept because the handlers return

to the operation with a result. For example, the 'overflow’ exception

118

generated by 'add’ has a var parameter: in the call
z := add(x,y) [overflow(v): v := maxfp]

the assignment of 'v' in the handler causes 'z to become 'maxfp’.
The specification given for real in the CLU Reference Manual [61]
defines a type which is easier to use in simple cases. The types of two

of the operations are

add: proctype(real, real) returns(real)
signals(overflow, underflow)

div: proctype(real, real) returns(real)
signals(zero_divide, overflow, underflow)

Axioms are given to define the results of these operations when the exceptions
do not occur. The excepticns are generated in the situations one might
expect; an exact definition is unnecessary for our purposes.

Typical calls of these routines might be

z := add(x,y) except when overflow: z := Real Max
end
z 1= div(x,y) except when underflow:
if sign(x) = sign(y)
then z := Real Min
glse z := -Real Min
end -

end-

How can such a data-typé be represented without the use of exceptions?
Note that 'add’' will return either an approximation to the sum of its
arguments or an indication that the sum is outside the range of real.

Similar observations hold for 'div’ and the other operators. A natural

representation for this seems to be a oneof result: the headings of the

'add' and 'div’ operations would then become

proc add(a:real; b:real) returns c:
oneof(reals underflow:singleton; overflow:singleton)

proc div{a:real; b:real) returns c:

oneof(real; zero_divide:singleton
; underflow:singleton; overflow:singleton)

I will omit the full specification because the characterization of

approximate arithmetic is not my goal. Instead I will illustrate how these

operators might be used:

var o:oneof(real; underflow:singleton; overflow:singleton)

0 := add(x,y)

if Is_pverFlow(o) then z := Real_Max else z := Tq_real(o)
1

if Is underflow(div(x,y)).

then If sign(x) = sign(y) then z := Real Min
else z := -Real Min
fi
else z := to real(div(x,y))

fi

These examples are very close parallels to those written in CLU.

In the first, if ’add(x,y)’ results in an overflow, 'z' is assigned to the

value of 'Real Max'. If it results in an underflow the CLU code will

generate the exception 'failure("unhandled exception: underflow”)’ (assuming

that there is no handler for 'underflow' on an enclosing block). In my
version the function 'To Real' will fail and one can expect the message

"5 is of type underflow, not real”. I assume that this is what the

120

progranmer intended: he may know that two very large positive numbers are
being added and that underflow cannot occur, and that 'Real Max' (rather
than, say, '-Real Max') is a suitable result in the case of overflow.
Similar context considerations could make the second example realistic.
My version assumes that the implementation will optimize the two identical
function calls 'divix,y)'s; this avoids the introduction of a temporary
variable and is a trivial optimizaticn because 'div’ is a pure function.
The most common use of these operations would be where no exceptions
are expected and no sensible continuation is possible should cne occur.
The occurrence of an exception would indicate a programming error in some

other module. Suitable diagnostics are obtained in CLU by simply writing
z = add(x,y)

which would generate the failure exception should underflow or overflow
occur. This will provide the appropriate alarm provided that no enclosing
block has a handler for underflow and that no higher level module handles
the 'failure' exception.

With my functions one would have to write
z := To_real(add(x,y))

which would apply the 'To_real’ function outside of its domain if underflow
or overflow occurs. This will provide an implementation dependent alarm
which cannot be intercepted at a higher level.

Of course, I do not expect every addition to be written with such a
cumbersome syntax. There are several ways of abbreviating it. One is to

introduce implicit coercions, i.e. to allow 'add(x,y)’ to be written in

contexts where a 'real’ is expected and for the 'To_real’ projection to be

provided implicitly. Another is to provide two sets of arithmetic operators:

partial functions such as
P_add: (real; real) returns real

and total functions such as 'add’ with the oneof result. The total functions
would be used when the programmer was prepared to deal with the exceptions,
and the partial ones when he was not.

I‘Favour the second sclution because I consider implioif coeroions to be
dangerous, but the choice is one for the language designer to make after
considering how it will'afFect other aspects of the language. A third
possibility is available in CLU because infix operators are considered to be
syntactic sugar for invocations. For example, if 'expr1' is of type 'T’,
the syntactic form ’exprt + expr2’ is defined to be shorthand for
'T$add (expr1, expr2)’. There are no semantic constraints: the shorthand
form is legal exactly when the corresponding invocation is legal. The
expansion could equally well have been chosen to be 'To_T(T$add(x,y))’
and the desired syntactic brevity could then be obtained without altering
the semantics of the underlying language.

Another way in which an exception handling mechanism helps the
programmer achieve brevity is by permitting a handler to be attached to a
whole sequence of statements' rather than just one. Levin's mechanism is
easier to use in this way'because it is parameterized and always returns
control to the routine raising the exception. For example, suppose that
zero is an acceptable result whenever 'div’ detects underflow within a

pumerical routine. With Levin’s mechanism one can write

begin

««« body of routine using div ...

end [underflow on div(v}: v := 0] .

In CLU this is not possible both because there is no parameter to set to
zero and because the division routine is terminated before the handler is
invoked.

The solution to this problem in CLU (and using my oneof notation) is
to declare a local division function with the required specification.

In CLU one would write

begin
Localdiv = proc(a:real, b:real) returns real
return (div(a,b))
except when underflow: return 0.0 end
end Localdiv

«»» body of routine using Localdiv ...
end .

Using my notation the routine would be similar except for the

definition of 'Localdlv’, which would be

proc Localdiv(a:real, bireal) returns r:real is
if Is underflow(div(a,b))

Then T := 0.0
else r := To_real(div(a,b))
f1i

end of Localdiv . .

Both of these code fragments contain a few more lines than those which

use Levin's notation. What this modest extra expenditure has bought us is

123

greater security. We can be sure that only those divisions which are
performed by 'Localdiv' will return zero when an underflow is detected; there
is no possibility of inadvertently handling other exceptions. In my

opinion this is a worthwhile exchange if one is attempting to write reliable
software. If brevity is the most ifportant consideration one might be

better using APL.

4.2.4 The Storage Allocation Problem
Storage allocation was mentioned in Chapter 3 as an example where exception
propagation should not be along the call chain. Levin presents a module
'pool’ which provides 'allocate' and 'release’ functions. I will abstract
a little from his example (because it makes unrealistic assumptions about .
the management of the pool) but preserve its essential features. |

I will first assume that only one process is active. The 'pool’
module will make use of a lower level module 'FreeStore’ which deals with
untyped blocks of store. The function 'MaxBlockSize(f)' returns the size of
the largest contiguous block of store available in the FreeStore 'f'. The
procedure 'NewBlock(f,n)' returns a reference to a new storage area of size
'n < MaxBlockSize(f)', and the procedure 'ReturnBlock(f, p, n)' makes the
block referenced by 'p' available for reuse. Some type conversion functions
will also be introduced. With these modifications Levin's 'pool’ module

appears in Figure 4.15.

124

module pool
condition pool-low policy sequential-conditional
condition pool-empty policy broadcast

proc Allocate(p:pool; t:type) returns d:ref t
raises pool-low on p
raises pool-empty on Allocate

const f:FreeStore = p.FS

function adequate returns b:bool is
b := Size(t) < MaxBlockSize(f)

end of adequate

if not adequate()
then raise pool-low until adequate()
if not adequate
Then raise pool-empty
return

fi
fi
d := Forcetotype(t, NewBlock(Size(t)))
end of Allocate
proc Release(p:pool; d:ref any) is
ReturnBlock(d, Size(Type(d)))

end of Release
end of pool

Figure 4.15: Pool module for a single process, after Levin.

I will ignore details of how the pool is created originally. 'Allocate’
accepts a 'pooi’ and a type as parameters, obtains sufficient storage from
the 'FreeStore' associated with that pool to represent an object of the
required type, and returns a reference to it. If adequate storage is not
available to do this the excebtion 'pool-low’ is generated. It is raised
in turn with each of the users of the pool until either adequate resources
become available or there are no more handlers. If the handlers do not
succeed in releasing enough store the exception 'pool-empty' is generated.

The 'Release’ operation is straightforward.

Note that the 'pool-empty' exception is raised only with the caller of

'Allocate’, and not with all the users of the pool. This is because the
pre-condition of the exception, 'Size(t) > MaxBlockSize(f)', is meaningful
only to that caller.

A use of the 'pool’ module is illustrated in Figure 4.16. The normal
handler for 'pool-low' invokes 'squeeze' to try and compact 'm'. However,
this handler is masked while 'AddtoStructure’ and 'AnotateStructure’ are

applied to 'm’.

module Usepool
var p:ref pool
var m:structure
condition impossible policy broadcast

proc Update(info:data) raises impossible is
var d1:ref obj1
var d2:ref obj2
Eroc local-clearup is
release(p, d1)
raise impossible
end local-cleanup
d1 := Allocate(p, obj 1) [pool-empty: raise impossible - return]
d2 := Allocate(p,obj2) [pool- empty local-cleanup ~ return]
va. st fields of d1 and d2 using info ...
begin
AddtoStructure(m, d1)
AnotateStructure(m, d2)
end [pool-low:]
end Update

proc Sgueeze is
| performs compaction of m, calling release(p, d)
|| to return any d removed from m
end of Squeeze
end of Usepool [pool-low: Squeeze()]

Figure 4.16: Levin's use of the pool.

128

Equivalent program fragments which do not use exceptions are easy to
formulate. The pool-empty exception is replaced by a oneof result to
'Allocate’, and the ’'pool-low’ exception by a notification procedure.
Whenever 'Usepool’ assigns 'p' to a reference to the pool it also adds
'Squeeze’ to the pool’'s list of notification procedures. The compaction
could be inhibited while 'm’ is being updated either by temporarily removing
'Squeeze’ from the list or by setting a variable which 'Squeeze’ tests.

For the sake of variety I have chosen the second alternative. Code composed

according to these considerations is presented in Figures 4.17 and 4.18.

module pool
representation is
record(FS:FileSystem; poollowrts:List proc())

proc Allocate(p:pool; t:type) returns
d:oneof (Descriptor:ref t; Empty:singleton)
is const f:FreeStore = p.FS
Ffunction adequate returns b:bool is
b := size(t) > MaxBlockSize(f)
end of adequate

if not adequate()
then for r in p.poollowrts until adequate do r()
I not adequate()
then d:= From Empty()
return

fi
fi T
d := From Descriptor(Forcetotype(t, NewBlock(Size(t))))
end o? Allocate

proc AddPoollLowRt(p:pool; riproc()) is
Append(p.poollowrts, r)
end of AddPoollowRt

proc RemovePoollowRt(p:pool; r: oc()) is
Removeframlist(p.poollowrts,
end of RemovePoollLowRt
end of pool

Figure 4.17: The pool module without exceptions.

module Usepool

var p:ref pool

var m:structure

proc Update(infor:data) returns-
r:oneof(Possible:singleton; Impossible:

singleton)

Allocate(p, obj1)

Allocate(p, obj2)

is var dl:ref obj1
var d2:ref obj2
const qdT:onecf(Empty:singleton
3 Descriptor:ref obj1) =
if Is Empty(qd1)
then r 1= From Impossible(); return
else d1 := To_Descriptor(qd1)
f1i
const qd2:oneof(Empty:singleton
5 Descriptor:ref obj2) =
if Is Empty(qd2)
then r := From Impossible(); release(p,d1); return
else d2 := To Descriptor(qd2)
I
02 St fields of d1 and d2 using info «..
begin
m.Updating := true
AddtoStructure(m,d1)
AnotateStructure (m,d2)
m.Updating := false
end
end update

proc squeeze is
if m. Updating
then skip

else

fi
end of squeeze
end of Usepool

|| performs compaction of m, calling
|| release(p, d) to return any d removed

Figure 4.18: Using the pool module without exceptions.

So far this example has been similar to the inconsistent strings

problem. Howesver, it is often necessary to perform resource allocation

in what Levin calls "a fully parallel environment”.

He presents thg

problem in such a context. I have not done so initially because I first

wanted to develop comparative examples in the sequential case.

127

In a parallel environment 'pool' is a data structure shared by a

number of different processes. 0One might therefore expect it to be
protected by a monitor. Unfortunately this would lead to deadlock. If a
call of 'allocate’ generates the 'pool-low' exception and a handler
attempts to call 'release’, the handler will be suspended awaiting completion
of the 'allocate' request. However, 'allocate' cannot complete until each
of the handlers has done so. Levin cannot therefore use monitors and is
forced to do his synchronization "by hand”. He introduces two semaphores,
'inner' and 'outer'. ’'Allocate’ signals 'inner' before the 'pool-low’
exception is generated. It waits again on 'inner’ after the handlers have
completed, and signals both semaphores before returning. The 'release’
procedure waits on 'inner' before commencing, and signals it on completion:
it does not use 'outer’. The skeleton of 'pool' with these semaphore

operations in place is shown in Figure 4.19.

module pool
inner:semaphore
outer:semaphore
proc allocate(...) ... is
P(outer); P(inner)
if not adequate()
then
V(inner)
raise pool-low ...
P{inner)
if not adequate()
then V(inner)s; V(outer) ... return
i
fi
V(inner); V(outer)
end of allocate

proc release(...) is

P(inner)
V(inner)
ggg.gﬁ release
end oF pool

Figure 4.19: Pool with semaphores.

The clutter that the 'P' and 'V' operations introduce is considerable.

Although it is fairly easy to see whether ’'pool’ will work correctly as it
is written, it is not at all clear how to generalize this method to a
module with several access procedures each capable of generating several
exceptions. It seems as though a complexity explosion cannot be avoided.

Levin hopes to solve these problems by an appeal for "more
~ sophisticated constructs”. I wish to appeal for simplicity, not
sophistication. I alsoc believe that parallelism is a more fundamental
concept than exceptions. I will therefore consider the parallelism first
and afterwards see how to deal with the case of inadeqguate rescurces.

Let us first assume that monitors are indeed the chosen method of
interprocess communication. Condition variables and the associated 'wait’
and 'signal' operations were introduced to deal with resource scarcity
[46]. Although these operations are not as simple as they first appeared
[1], they are considerably easier to reason about than semaphores.

Suppose, then, that 'pool' has a condition 'MoreStoreAvailable’, and
that ’Allocate’ executes a 'MoreStoreAvailable.Wait’ command when it cannot
satisfy a request. This will release the moﬁitor locks and enable other
processes to invoke 'Release'. When some store has been returned to the
pool 'MoreStoreAvailable.Signal’ is executed by 'Release’, and 'Allocate’
can again attempt to satisfy the request.

Of course this arrangement does not inform the users of the storage
allocator that there is a shortage of resources. It is a trivial matter
to provide a monitor entry 'StorageScarce’ which delivers true if a process
is waiting on 'MoreStoreAvailable', or even if the available storage drops
below a certain threshold. User processes could then test 'StorageScarce’

at convenient intervals. and compact: their local data structures if necessary.

Nevertheless, such voluntary co-operation seems to be different from the

exception handling in Levin's example where the handlers are invoked by
the allocator, éven though they execute in the environment of the users.
In some sense Levin achieves tighter coupling.

However, the price of this tight coupling is that monitors cannct be
used to control the synchronization. The monitor concept requires that the
only calls which affect the data of another process are monitor calls. But
Levin wishes handler calls to do just that: a handler invoked under the
control of one process manipulates the data structures of another process.
Levin is prepared to sacrifice monitors in order to use his exception
mechanism for interprocess communication. In order to simulate the
communication he thus obtains, I must also abandon monitors. However,
rather than resorting to semaphores I will adopt disciplined communication
primitives.

For the purpcses of this example I will use Communicating Sequential
Processes (CSP) [47] [B8]. Although not ideal for this example because the
number of users to the allocator must be bounded, the emphasis placed by
CSP on communication as a primitive is appropriate. CSP assumes that
each process has its own local store, but there seems to be no objection to
a storage allocator controlling access to a central shared store.

The allocator in Figure 4.20 differs slightly from those discussed
above. It is more persistent: if an allocate request cannct be satisfied
immediately it continues to signal 'pool-low()’ to all the user processes
until enough store is available. During this time no further 'Allocate’

requests will be accepted, but 'Release’ requests will be handled correctly.

Figure 4.20: The storage allocator in CSP notation.

Pool is [FreeStore :: AandR || Chooser :: CHOOSE]

AandR is
*[' (i:1..n) p:pools t:type; User(i)?Allocate(p,t) - A
0 (i:1..n) p:poocl; d:ref any
;3 User(i)?Release(p,d) = R
]

A s
done:bool; done := false;
*[not done +
[adequate() =
User(i)!Forcetotype(t,NewBlock(Size(t)));
done := true
I not adequate - MORE
1

1
R is ReturnBlock(d, Size(Type(d))j
MORE is

[T *[(J:1..n) d:ggf anys User(j)?Release(p,d) + R]
| i:integer; Chooser?i; User(i)!pool-low()

CHOOSE is | |
*[siset of integer; s := {1..n}
5 *[s # {} > iiinteger; i := oneof(s);

8 1= s-13 FreeStore!li

]

Figure 4.21: A pool user in CSP notation.

Usepool is
*[info:data; client?Update(info) - Updater
0" pool?pool-low() =+ sguseze

]

Updater is
[[dl:ref obj1; d2:ref objZ;

poollAllocate(p, obj1); pool?di

pool!Allocate(p, obj2); pool?d2

[
3 «v« 5t fields of d1 and d2 using info ...
]
[

Il

]
3 AddtoStructure(m, €7)
5 AnnotateStructure(m, d2)

]

pool?pool-low() - squeeze]

A user is shown in Figure 4.21. Normally it is prepared to accept

either 'Update’ requests from its client or 'pool-low’ requests from
'pool’ (and requests for its other services, represented by the elipsis).
Whilst obfaining and filling-in 'd1’ and 'd2’, *pool-low’ requests are
still accepted and acted upon, but whilst 'm' is being updated they are
not. Requests arriving at that time will be dealt With after the updating
has been completed; in Levin’s example they would be ignored. (It would be
possible to accept and ignore 'pool-low’ signals while 'm’ is updated, but
unless this takes a very long time there seems to be no reason to do so.)
The purpose of this excursion into CSP is to illustrate that Levin's
example is a problem in parallelism rather than exception handling. I
could have avoided this issue by adding semaphores to the solution with
notification procedures, thus producing a program with the same effect as
Levin's which would bear line-by-line comparison. I have refrained from
doing so because that introduces more problems than it sclves. The notion
of co~-operating processes has permitted great advances in the way we think
about systems. It is applicable to a wide range of problems and seems to
be more fundamental than that of exceptions. The exception handling in the
example becomes just one more communication; synchronization cannot be

subsumed by exception handling with the same ease.

4.2.5 The Real-Time Update Problem

The final example in Levin's thesis is undoubtedly the strangest. Whereas
all of the preceding exceptions can be characterized by Parnasfs phrase
undesired event [76], the events considered in this example are essential
for normal progress. In other words, they are not in the least exceptional.

The events concerned are Znterrupts from another process indicating

that input of data from an external sensor has been completed. Levin shows

that his mechanism can be used to implement such communication. He
deduces from this that "it is sufficiently robust to handle situations in
the gray area between exceptions and communication”.

The specific problem which Levin poses is that of a collection of
processes which maintain a display of data computed from external sensors
and changing in real time. A concrete example is an aircraft control system
which displays altitude, latitutde and longitude, cabin pressure and

temperature, and so on. The need for exceptions is introduced by assuming that

(i) there are fewer processes than items to be displayed, so each
process must compute more than one display item;
(ii) some of the calculations are more important than others. If new
sensor data arrives while the less important parameters are being
calculated, then those calculations should be abandoned and the more

important ones recommenced.

Levin's solution is shown in Figure 4.22. Sensor data is collected
in 'buf' which broadcasts the "exception” 'new-data’ to all its‘users.

All the 'grind' routines share 'buff'; they also share an output structure
into which the results are placed, called 'display’.

Two kinds of computation are shown in 'grind1’. Those which can be
abandoned at any point associate the leave ’'l’ handler with 'new-data’:
lines 12 and 16 are examples. Computations which must be completed use a
handler which sets a variable as on line 14 and a subsequent test as on
line 15. Typically this will be necessary while related results are
transmitted to 'display’, so that, for example, the latitude and longitude

relate to the same instant in time.

12

16

20

24

134

module crunchers

begin
shared buf:sensor;buffer
shared display:screen

function grindl ="
while true

do
l:begin
private restart:boolean
restart := false
< perform computation 1 >
< perform computation 2 >
[new-data: restart := true]
if restart then leave 1 fi
< perform computation 3 >
end [new-data: leave 1]
od ASIRS) LEave
function grind?..= ‘ .

<.similar to the above >

end

Figure 4.22: lLevin's real-time computation module.

Levin admits that such a problem could be (and probably has been)

solved without an exception handling mechanism. The incentive for me

to produce such a solution is thereby removed. Instead I will make some

observations on Levin's solution.

(i)

Some. synchronization is necessary between the 'grind' routines and
'buf’ to prevent the data changing while related values are being read.
Levin glosses over this problem, presumably because it is not amenable
to solution by exceptions. If 'StartRead’ and 'EndRead' primitives
are introduced and used by 'grind' to bracket all related accesses to
'buf' then the situation reduces to the well known readers and writers

problem [15][56].

135

(ii) There is only one 'new-data' exception but several different sensors
will be providing 'buf' with data. If 'new-data’ is generated
whenever any of the data change then most of the calculations will be
aborted for no good reason. One solution to this problem would be to
introduce a different exception for each datum, and for the grind
routines to set up handlers for just those exceptioﬁs whose corresponding
datum was of a high enough priority. The resulting code would become
quite difficult to follow.

(iii) A system structured as Levin suggests is very fragile: it depends
crucially on the relative speeds of the processes. If more efficient
sensors are fitted to the aircraft so that data is supplied to 'buf' more
frequently, less information would appear on the display. In the limit
the 'new-data’ exception could be generated so frequently that the
pilot is supplied with no information at alll This scenario is
particularly dangerous because it is counter-intuitive: one would

expect that a more efficient sensor would provide more informaticn, not less.

All of these problems can be avoided if interruption is abandoned and the
'erind’ processes ask 'buf’ if there is any.new data. There is no need
for 'buf' to remember when a particular 'grind’
process last gueried a particular datum: the determination of whether
the datum is new is most easily carried out by the interested 'grind’
process asking 'buf' for the current value and comparing it with that it
last obtained. A general communication mechanism such as CSP is quite adequate
both for the solution of the readers and writers problem associated with

'buf' and the determination of when to re-start a computation with new data.

136

I presume that Levin presented this example because he considered
it desirable that his mechanism be used for interprocess communication.
I consider it undersirable that such a use is even possible. Some of
the dangers and difficulties of using his mechanism in this way were
indicated above. However, there is another, more general, objection.

It is obvious, and freely admitted by Levin, that his mechanism is
not adequate for general interprocess communication. This implies that
some other mechanism is required. Progranmmers are immediately faced with
the problem of reasoning about programs which use two disparate mechanisms
to achieve the same end. Dealing with the semantics of parallelism is
difficult encugh without having to consider the interactions between two
mechanisms which impose different constraints on the communications they allow.

A reason for objecting to Levin’s mechanism in particular is that
interrupts seem to be a very intractable communication device. Despite ten
or fifteen years' experience with interrupts, it was only with the discovery
of more constrained facilities for communication and synchronization that
technigues for reasoning about parallelism have been developed. The
invention of mathematical techniques which permit one to prove theorems
about parallel programs must be considered as a major advance [6] [48]
[49]. Although it is possible that technigues could be found to help us
reason about interrupts, Levin does not offer any guidance. The
synchronization aspects of his mechanism are defined only informally.

In 1975 Jack Dennis said that "interrupts are an example of a very bad
programming construct which one simply should not be using at all” [98,

p. 33]. I wish to take the weaker position that interrupts should only be

137 .

used when they provide a clear, simple and correct solution to an otherwise

intractable problem. Levin's example does not illustrate such a problem.

4.3 Experience with Mesa Signals

In [51] Horning describes the Mesa signal mechanism (see Section 3.3)

and states that in his experience there are situations where the use of

Mesa signals greatly simplifies what would otherwise be a thorny programming
problem. I wrote to Dr Horning asking if he coyld show me one such example.
My query was circulated to many people at Xerox Palo Alto Research Center
and resulted in some very interesting correspondence.

Horning's own response was to admit that it is very difficult to give a
convincing specific example that demonstrates the utility of signals. He
attributed this to the fact that signals are a mechanism for the control of
complexity. In simple examples there is not enough complexity, and more
complex systems are too big to be good examples. This seems to be a weak
argument. Précedures and abstract data types both exist to control
complexity: the literature is nevertheless full of simple examples illustrating
their usefulness. My own feeliné is that a facility will be of little use
in a real system if it is not even of use in a specially constructed example.

The other responses covered the whole spectrum of opinion, from those
who found signals very useful at one extreme to those whoideprecated them

at the other. One of the less enthusiastic responses was from Crowther:

I do not use signals. That is a long standing policy of mine. I

cite two exceptions: I use signals freely to get to the Debugger, and
usually provide provisions for resuming them. I used a signal in the
BTree package ... I now consider this to be an error in design; the
resulting code was quite cbscure, and there were other straightforward
ways to work around the problem...

138

It one accepts the need for run-time debugging then using signals to access
the debugger seems to be unobjectionable. As was pointed out in Section 3.3,
Mesa signals are implemented in such a way that all the relevant information
is still on the stack when an otherwise uncaught signal is intercepted by
the debugger. Of course, the same would be true if the debugger were simply
calleds I do not know if this is prohibited in Mesa.

Some of the more positive conments restate the arguments in favour of
exceptions that have already been discussed elsewhere. I will consider

here three of the more novel applications.

4.3.1 Dealing with Oversights in Existing Software
Consider the file enumerator

ListFiles:PROCEDURE[d:directory
. 3 TakeFile:PROCEDURE[FileHandle]

]
'ListFiles’ applies 'TakeFile’ to every 'FileHandle’ in 'd’. Such procedures
exist in standard packages at Xerox, and can be used but not changed.

The problem is how to convey information from 'TakeFile' to the invoker
of 'ListFiles', such as details of archived files or file titles. 'TakeFile’
returns no results. For our purposes we would prefer the declaration of
'ListFiles’ to use the Mesa type ANY, a union of all types, and have a
heading

ListFiles:PROCEDURE[d:directory

3 TakeFile:PROCEDURE[FileHandle] RETURNS ANY
] RETURNS SEQUENCE ... OF ANY

where the result of 'ListFiles’ is formed by concatenating all of the

results of the individual calls of 'TakeFile'. ’'ListFiles' cannot be

redefined because it is in a standard package. However, because Mesa signals

139

are not part of a procedure’s type, the same effect can be obtained by a
'TakeFile' procedure which signals its results to the caller of 'ListFiles’.
Signals can pass right through the intermediate level.
Of course, there are other ways of solving this problem, the most obvious
being to adopt the amended design suggested above. However, the number
of possible 'ListFile' procedures is large. Suppose it is required to
terminate the enumeration before the directory is exhausted. A procedure
ListFiles:PROCEDURE[d:directory

3 TakeFile:PROCEDURE[FileHandle 1
RETURNS[halt:BOOLEAN 1
]

might then be appropriate. Perhaps it is impossible to ensure that there
are enough procedures in the library to satisfy every user.

The problem arises because procedure parameters blur the distinction
between levels of abstraction. The caller of 'ListFiles’ is in some sense
the direct caller of 'TakeFile': it is the only procedure to know the
identity of the actual procedure which is provided for 'TakeFile’. One
way of exposing this relationship is to reformulate the 'ListFiles’ procedure
either as a process which outputs 'FileHandles', or as a stream. The
latter alternative was adopted for file enumerators at the Programming
Research Group nearly ten years ago and have proved very flexible [91].

Briefly, one applies the procedure 'EntriesfromFile’ to a directory:
the result is a stream, say 'S’'. Streams are objects to which the procedure
'"Next' and the predicate 'Endof’ are applicable. Succéssive calls of 'Next’
return successive file handles: the user may do whatever he wishes with
them. A call of 'Reset[S]’ will restart the enumeration from the beginning;
when termination is required the stream can be disposed of by calling

'Close[S]’.

140

Whether a language should directly support the use of streams is a
question open to debate. CLU [61] [64] includes them in a restricted form
as iterators. Whatever one's opinion on this matter, it is unconvincing to
advocate Mesa signals because they provide a means of patching up design
errors. Furthermore, this usage is only possible because Mesa does not
require signals to be specified in routine headings. Most other advocates

of exception handling insist on full specification.

4.3.2 Using Handlers to Clean Up Test Code
J. Morrison reports that in test code it is common to have Zong lists of
test operations. Using handlers instead of procedures can help to clean up
the code.

Consider a procedure 'Try[TrialProc, ...]’ which calls 'TrialProc’
from an environment within which its behaviour can be debugged. (This is
necessary because of the large number of exceptions which may be generated:
there is no way in Mesa for the compiler to check that only the expected ones

will be propagated.) A test program might therefore contain code like:

test1:PROC = {stuff1};
test2:PROC = {stuff2};
test3:PROC = {stuff3};

Try[testl, ...1;
Try[test2, ...1;
Try[test3, ...];

Morrison finds this code very messy. His solution is to construct and
use another version of 'Try’ that doesn’t take a procedure argument:
Try2[... | Test => Stuff1};

Try2[.ve | Test => Stuff2];
Try2[.«s | Test => Stuff3] .

Instead, 'Try2' generates the exception 'Test’. This invokes the trial
operation ’Stuffi’.

Again, the problem here has nothing to do with exception handling;
Morrison is really complaining about an asymmetry in Mesa. The original
code was "messy” because Mesa insists that procedures must be named. The
problem would not arise if Mesa allowed lambda expressions to appear in
contexts where procedures are required. In contrast, handler bodies are
arbitrary statements and are written where required rather than being named
and then used later. This particular inconsistency in Mesa is deprecated

in [26].

4.3.3 Implementing Dynamic Binding
The binding of signal values to handler bodies in Mesa resembles the binding
of atoms to values in Lisp. Geschke and Satterthwaite point out [2B6] that
signals can be used to implement dynamic binding for variables.

Suppose one wishes to dynamically bind an identifier 'Id’. This

may be achieved by defining a signal
FetchId: SIGNAL RETURNS[value:T] .

The body of each procedure which declares a local variable 'Id' must enable

the handler
FetchId => RESUME[Id];

the signal call 'FetchId[]’ will then return the dynamically bound value of
'Id’.

This scheme would be very inefficient because of the high overheads of
the exception handling mechanism. Efficiency can be improved by caching

'Id’ or by a method closer to a "shallow binding” implementation of Lisp.

o142

Interested readers should see [26] which contains an elaborate example of
an application.

Most modern applicative languages (e.g. Lispkit Lisp [43]) use lexical
binding precisely because dynamic binding often produces unpleasant
surpriées. Nevertheless, dynamic binding. appears to be useful on occasions,
and a language designer might consider that this usefulness counteracts
the dangers sufficiently often to warrant the inclusion of dynamic binding
as a language option (B-g. Lisp/370 [53]). However, going on from there
to include exception handling because it provides a means of simulating

dynamic binding does not seem to be sound reasoning.

4.3.4 Assessing the Use of Mesa Signals

Since the publication of Dijkstra's famous letter warning of the dangérs

of the goto statement [20], practising programﬂeré’have gradually realised
that unconstrained power does nét necessarily make a good programming
language. Features such as untyped variables, non-local gotos and dynamic
binding, although sometimes convenient, were found to be "too much of an
invitation to make a mess of one’s program”. They have gradually disappeared
from programming languages.

Over the same period our ability to reason about programévboth formally
and informally has improved. Both of these changes have sprung from the
growing realization that programs are objects which skould be reasoned about.
Their purpose is not just to command a machine to per*or% some operation in
a minimal number of cycles: it is also to communicate with other human beings.

It seems to be fatuous to design a language without non-local gotos,

with strong typing and with lexical binding, and then to provide a facility

which circumvents these restrictions. Mesa signals are such a facility.

143

The above examples seem toc me to illustrate why unconstrained exception

handling mechanisms are dangerous.

4.4 Implementation Efficiency
An issue often raised in connegion with exception handling is the efficiency
of the code produced by a reasonable compiler. One question of interest
is whether an exception handling mechanism enables exceptional results
to be dealt with more efficiently than would be possible without such a
mechanism., The usual criteria for judging an implementation of an exception
handling mechanism is that its effect on the "normal” case should be
minimal and that exceptions should be handled with reaségégle (but not
maximal) efficiency.

Arithmetic exceptions are sufficiently simple for various different

implementations to be compared in some detail. Let us first consider the

code which might be generated for the CLU phrase
z := real$add(x,y) except when overflow: z := Real Max end

The examples will be worked on a hypothetical stack machine; we will first
assume that it sets condition codes when overflow or underflow occcur. A
compiler for CLU would recognise 'real$add’ as a built-in operation, and

might generate the code that follows.

push x spush the value of x onto the stack
push y spush the value of y onto the stack
add spop the top two stack values, and
spush their sum
jio OHandler sjump if overflow occurred
Jiu Failure sjump if underflow occurred
pop z sstore top of stack in z and pop it
next: ...
OHandler:
topl Real Max ;set the top of the stack to the
sliteral value Real Max
pop z sstore top of stack in z and pop it
goto next sunconditionally ‘

Six instructions are required to perform a non-excepticnal addition. In
the case where overflow cccurs, seven instructions are executed. Note
that the compiler can always determine whether an appropriate handler
exists, and that if one does its address is known. The above code
assumes that the overflow handler is positioned away from the code which
calls it: before the beginning or after the end of the routine would
be suitable places. If it is positioned with the code, an extra instruction
would be necessary to branch around it. It is fairly easy for a compiler
to arrange such remote positioning of the handler, but it does require
buffering space and may necessitate the use of long format jumps under
some conditions.

Now consider the eguivalent phrase using type unions:

o := real.add(x,y)

if Is Overflow(o) then z := Real Max
else z := To Real(o) endif

Remember that the add operation now has the heading

proc add(a:real; b:real) returns c:
oneof (real; underflow:singleton; overflow:singleton)

145

.Following the treatment of CLU, we will assume that 'real.add’ is known

to the compiler and is expanded in line. The following code might be

generated.
push x spush the value of x onto the stack
push vy spush the value of y onto the stack
add v spop the top two stack values, and
spush their sum
7 jno else sjunp if overflow did not occur
then: topl Real Max sset the top of the stack to the
sliteral value Real Max
pop z sstore top of stack in z and pop it
goto next sunconditionally
else: jiu Failure sjump if underflow occurred
pop z ;store top of stack in z and pop it
next: ...

This code is based on the assumption that 'o' is a temporary variable not
used outside the code fragment shown. If saome other part of the program

needs to access 'o' (rather than 'z') then code would have to be added to
set and store an appropriate union value. (Similar code would be necessary
in the CLU case.) The above example also assumes that the underflow
condition code is persistent over an executed jump. This seems to be a

reasonahle assumption: it can be avoided by re-ordering the code so that

the else branch comes first:

146

push X spush the value of x onto the stack
push vy spush the value of y onto the stack
add spop the top two stack values, and
spush their sum
Jjio then sjump if overflow occurred
jiu Failure s jump if underflow occurred
else: pop z ;store top of stack in z and pop it
goto next sunconditionally
then: topl Real Max ;set the top of the stack to the
sliteral value Real Max
pop z sstore top of stack in z and pop it
next: ..

Both of these code fragments execute seven instructions to perform

non-exceptional addition. When overflow occurs, six instructions are
executed., The difference from the CLU code is that the "handler” for
overflow is now in the middle of the code which uses it, and an extra

instruction is needed to branch arcund it. Conversely, no return jump is

needed after the handler completes, so the exceptional case is one instruction °

shorter. Of course, the above code could easily be transformed into the
CLU code by moving the "then” part elsewhere. However, it is not as
reasonable to expect the compiler to do this with half of an "if" statement
as with an except statement, which may be interpreted as an assertion that
one of the execution paths will be much more common than the other,

It is difficult to compare the implementation of Levin's mechanism

with those treated above. The obvious implementation of
z 1= add(x,y) [overflow(v): v = maxfp]

involves calling the handler as if it were a procedure, having previously
set up 'v' as a reference or value/result parameter. The code for the
normal case will be similar to that generated for add with a oneof result.

Because it is not possible in general to locate the correct handler for a

-

147

particular exception until run-time, the code for the exceptional case will
be rather more complicated than the examples presented above. The code
between 'then' and 'next' would be replaced by code which searches for the
correct handler, creates its parameter list, calls it, and finally copies
the value of the output parameter into 'z'. Clearly, the generality of
Levin's mechanism has its price in the exceptional cases unfortunately, it
also has a cost in the normal case. The method Levin prbposes for locating
handlers involves linking handler descriptors to a known part of the stack.
Although the descriptor itself can be allocated at compile time, the linking
must be done dynamically. The cost of link and unlink code must therefore
be added to the normal as well as to the exceptional case. Instead of six
or seven executable instructions, there are ten or eleven. In the particular
example we are considering, the choice of handler can be made statically,
but it is an open question whether a compiler which implemented Levin's
mechanism in its full generality could reasonably be expected to optimise
such cases.

Thus, when handlers need to be attached to individual arithmetic
operations, there is little to choose between the efficiency of CLU
exceptions and type unions, while Levin's mechanism may be considerably more
expensive. When a handler should be attached to a whole sequence of
operations rather than one, as in the examples on page 122 Levin's
mechanism fares better. Using both CLU exceptions and type unions, convenience
dictates the declaration and use of the auxiliary function 'Localdiv’.

If this function is not expanded in line, many extra procedure calls will
take place; if it is expanded, many copiss of the handler will exist.
Levin’s mechanism requires only hne handler, and involves calls only if an

exception actually cccurs.

It is also interesting to compare the execution efficiencies of

exception raising routines written by the user. CLU signals are
implemented by embedding a table in the code of each procedure. Each
handler in the procedure has an entry in the table; each entry lists the
exceptions with which the handler will deal, its code address within the
procedure, its scope (in terms of the addresses of the statements to which
it is attached) and other information connected with the arguments and
results of the exception. When an exception is generated by a signal
statement, the routine which called the generator is first determined*.
The handler table for that routine is then examined, and the handler which
applies to the call which raised the exception is found. Naturally, the
time taken to find the right handler depends on the number of handlers in
the table, and thus in the calling routine. Finally, the stack is adjusted
to allow for the results of the signal, and a "return” is made from the
generator, not to the point from which it was called, but to the appropriate
handler,

Now consider a 'lookup' operation on a symbol table like that
discussed in Section 4.2.1. So that both cases can be treated symmetrically,
Levin made both "absent” and "present” exceptions. A CLU programmer, I

am told, would not do this: instead he would give 'Loockup' the type

proctype(symbolTable, T) returns(V) signals absent

* Since CLU procedures may not be nested, this determination can be made
from a list ofthe start address of each procedure. Such a list does, of
course, occupy space in main store, but it can be argued that it is so
useful for debugging purposes that it ought to be in main store anyway.

149

so that the search for a handler (for 'absent’) would take place only when
the item is not in the table. Whethgr this occurs frequently or
infrequently is, of course, dependent on the use to which 'Lookup’ is put.
If a similar routine is written using a oneof result, the search for
a handler is traded for the extra instructions required to return a tag
with the result and to test it. It is difficult to avoid this tag through
optimisation, because part of the optimisation must take place in the
calling routine and part in the called routine. The CLU signal mechanism
can be regarded as a way of making the optimisations easier by identifying
where they may occur. Whether the code that results from the CLU
implementation is actually faster depends both on the number of handlers
in the caller and the relative frequency with which items are not found. If
the CLU mechanism is used in the way that I have suggested, the verdict
must be "not proven”. In particular, it is important to observe that the
programmer who writes a general purpose library routine such as ’Lookup’
knows nothing about the environment in which it will be used. He can only
guess whether 'present’ or 'absent’ will occur more frequently. Even if
he knows that the lookup procedure will be used in an Algol compiler, he
does not know whether the Algol programs the compiler is called upon to
process will have been written by an ex-Fortran programmer who habitually
forgets to declare his variables or by a block-structure enthusiast who
habitually uses the same names in each block. In some cases, of course, the
progranmer does have a good idea of the relative frequencies of the possible
outcomes of his routine. An example is a disk read routine, where failing
to read the data on the disk is a very rare occurrence. In such a case the

use of a CLU signal can provide a small (but significant) gain in efficiency.

If the CLU signal mechanism is used to emulate Levin's example, i.e.

if a 'Lookup' routine is written which has type
proctype(symbolTable, T) signals absent, present(V) ,

then it seems that using CLU signals would be iess efficient than using
type unions. However, as I mentioned above, this can be regarded as an
unfair comparison because CLU programmers are aware of the efficiency
tradeoffs involved in the current implementation of the CLU exception
mechanism. They would never use it in the symmetric way suggested by Levin,
however éywmetric the application. .

In fact, it is fair to point out that any implementation that makes
exceptions more expensive than normal returns will discourage programmers
from using exceptions in the symmetric way suggested by Levin. Even Levin’s
own implementation suggestions had this property. With such an implementatién,
a programmer 1s pressured into making one of the possible results "normal”
and the other "exceptional”, regardless of whether that classification is
natural. For example, if exceptions were to be used to implement sparse
arrays, pragmatics would suggest that the case of an element being non-zero
be made the "exception”, since zero elements would occur more frequently.

In cases such as this, the use of an exception mechanism is likely to

impair readability.

4.5 Conclusion

This chapter could not include all of the examples I have found which
purport to justify exception handling. However, I believe that I have
illustrated a fair selection; I certainly have not knowingly excluded'any

example because I could not deal with it.

BRE
It must remain a matter of opinion as to whether the inclusion of
an exception handling mechanism in a language is worthwhile. I hope
that this chapter has provided evidence which may be used as a basis for

forming such an opinion.

Chapter 5

EXCEPTION HANDLING AND ABSTRACT DATA TYPES

A data type is a set of values and a set of operations on those values. An
abstract data type is a type whose implementation is hidden; the user has no
knowledge of the representation of the values, or of the algorithms
corresponding to the operations. For such a type to be useful, the user
must be provided with a semantics for the type: he must be told what
operations are available and how they behave. A specification is therefore
an essential part of an abstract data type.

The problem of specifying a data type precisely is difficult because
the values and operations are highly dependent. New values are generated
by the action of the operations, but the operations themselves must be applied
to values. Which should be defined first? One solution to this chicken and
egg problem is to define them both simultaneously by means of axioms.*

The technigue of axiomatic specification of types was proposed by Guttag
[34] [35]. It is closely related to the algebraic approach of the ADJ

group [28]; the differences are beyond the scope of this thesis.

5.1 Errors and Exceptions in Axiomatic Type Definitions
Several papers have dealt with the supposed difficulty of including errors
and exceptions in axiomatic type definitions (e.g. [271, [381, [281, [691).

Some of the proposed solutions appear to be very complicated. This chapter

* There are various other methods of specifying data types which will not be
considered here. A survey will be found in [B5].

152

183

argues that there are no errors in abstract data types, and that "exceptions”
do not need special facilities for their description.

This view is in direct opposition to that of Goguen, who claims [27]

that the specifier of an abstraction must also specify exactly what
error messages are to be produced and under exactly what circumstances;
the error messages should ... not be left to the whim of the
implementer ...

The situation is actually worse than this, in that error states are an
essential and intrinsic feature of certain data types (such as

'stack’, with 'UNDERFLOW'), so that these types actually camnot

be handled correctly at all without some systematic provision for
error states. Previous attempts to specify types like ’stack’

abstractly have either been wrong in this sense, or else unnecessarily
complex. Abstract data types must include abstract errors.

Errors and exceptions have been introduced into abstract data types
as a way of completing the definition of partial operations. The next

section explains why this is difficult, and proposes an alternative solution.

5.2 Defining Partial Operations
In mathematics it is a common practice to avoid partial functions bylnakingbthem §
total. This seems to be easy so long as the domain of the function is
computable; the range is extended so that all previously undefined applications
of the function map to a distinguished value. (If the domain is uncomputable
then the function cannot be made total: to'do so would lead to an immediate
contradiction.)

The same technique was adopted by the pioneers of axiomatic type
definition.. As an illustration, consider the stack of integers, an example
which has perhaps been overworked, but which demonstrates the problem

concisely. A stack provides five operators whose names and signatures are

U

Empty: () - StackofInt

Push: (StackofInt, Int) =+ StackofInt
Pop: (StackofInt) - StackofInt

Top: (StackofInt) = Int

IsEmpty: (StackofInt) - Bool .

I have used a notation closer to progranming languages than mathematics:
'"Push: (StackofInt, Int) ' indicates that 'Push’ takes as argument a
Cartesian produce of 'StackofInt’ and 'Int’'. The meanings of these
operations can be defined by axioms:

Pop(Empty) = Empty

Pop(Push(s,i}) = s

Top(Push(s,i)) = 1

IsEmpty(Empty) = True
IsEmpty(Push(s,i)) = False .

However, this definition is incomplete: it does not say anything
about applying 'Top' to ’'Empty'. Intuitively, this is an impossible oper-
ation, just as is taking the head of a null list. 'Top’ is a partial
function, and is not defined on empty stacks.

In his thesis [34] Guttag attempted to capture this idea by writing

Top(Empty) = error

where "'error’ is a distinguished value with the property that the value of
any operation applied to an argument list containing 'error' is 'error’”.
In other words, Guttag used the standard mathematical technique for making
a partial function total. Unfortunately, this technique gives rise to
various complications, which will be explored in the next section.

An alternative would have been simply to admit that 'Top’' is partial,

and to include in the specification the clause

pre Top(s) = not IsEmpty(s)

One can argue that the same effect could be achieved simply by omitting

the axiom for 'Top(Empty)’'. However, this woul? not only make errors of
omission difficult to detect, but would specify the domain of ;Top' only
implicitly.

An alternative way of indicating the restricted domain of ’'Top' would

be to change its signature to
Top({s e StackofInt | not IsEmpty(s)}) = Int .

One could even argue that by so doing one renders 'Top' total. Two reasons
for not using this notation are that it confuses datatypes with sets of
values, and that it is not always sufficiently powerful., For example,

subtraction over the natural numbers can be characterized by
-1 (Nat, Nat) + Nat pre a-b = a 2 b,

whereas there is no convenient signature which defines the restricted domain.
For these reasons I prefer tofspecify partial functions by means of
preconditions.

Partial operations occur naturally both in computer science and in the
world outside the computer; we are used to household articles which are
partially applicable. A gas heater is provided with a speci?ioatibn which
states that its operétion is safe provided that ventilation is adequate. An
electric space heater should not be submerged in the bath. Both articles
are useful despite their restricted domains of application. |

For an example from computer science, consider Euclid’s algorithms

for greatest common divisor [23].

156

do x >y =>x 1= x-y
0 x<y=>y:=yx
od

This code fragment achieves 'x = y = GCD(X,Y)' provided both 'X' and 'Y’
are positive. Subtraction defined only over the natural numbers is fully
adequate for this program. 'x' and 'y' are always positive, and the
guards in the repetitive statement ensure that the precondition of '-' is
always true. Nothing whatsocever is to be gained by using a subtraction
operator which is total: if '-' is invoked outside its domain something is
seriously wrong with the implementation of the algorithm, and defining
subtraction for all integers will not set it right.

For these reasons I believe that partial operations are now and will
always be useful; the only caveat is that their preconditions must be
rigorously specified. One practical difficulty is that any implementation
of a partial operation must actually do something if the precondition is not
satisfied. If programmers come to rely on that action then the portability
of programs is severely compromised. This problem can be mitigated by

(1) detecting as many illegal calls as possible before the program

is run, and

(1ii) making it difficult for the programmer to take advantage of the

response to an illegal call.
The second principle is the one which prompted me to state in Section 2.1
that termination éf the program is an appropriate response to Hill's problem.

Of course, these preconditions in no way reduce the responsibility of
the data type designer to require only those preconditions which can be

checked economically and conveniently. A compiler which will only operate

on syntactically correct programs is about as useful as a room heater
which requires the ambient temperature to be above 30 degrees C: neither is
salable. As with the symbol table example, such considerations may lead
the designer to provide a total operation which returns different sorts of
result under different circumstances. However, before presenting a

formal definition of my mechanism for returning such results, it is
instructive to see why Guttag's original approach to the definition of

partial functions is unsatisfactory.

5.8 The Problem with Error
Guttag's original definition of stack [34, p. 29] not only defined 'Top(Empty)’
as 'error' but described the functionality of 'Top' by
'Top: (StackofInt) = Int'. This implies that 'error' is an 'Int’, and is
the cause of several difficulties.

First, it is counter-intuitive. The result of applying 'Top’ to
the empty stack is not an integer: that is why 'error' was introdubed.
Second, if one wishes to distinguish petween different errors, every time
a new data type such as 'QueueofInt’ or 'StringofInt’ is created new
exceptional elements must be added to 'Int’. In general, adding any new
type would require altering the definitions of all the types it uses;
apart from being cumbersome and intellectually unappealing, this would mean
that a library of type definitions could not exist. Third, in attempting to
extend the existing types, -consistency problems arise in thg axiomatization.
A full description of the difficulties is available in {28, §3.5]; what
follows is a brief summary.

If 'error' is an 'Int’ then axioms must be given which explain the

action of "Int” operations on it. The usual philosophy is to ensure that

158

once an error occurs it is propagated, that is, if any argument of an
operation is 'error' then so is its result.* If one attempts to implement
this by adding new axioms one rapidly runs into trouble. One would need
to add rules like
Sum(n, error) = error (1)
Product(error, n) = error (ii)
to the axiomatization of the integers. Of course, it still contains
other rules describing the more conventional properties, such as

Sum(n, 0) = n (iii)
Product(n, 0) = O (iv)

Using the above four rules some interesting results can be obtained:

0 = Product(error, 0) (by iv)
= error (by ii)
and
n = Sum(n, 0) (by 1ii)
= Sum(n, error) (by above)
= error . (by 1)

These derivations show that all integers are equal to *error’. A similar
problem arises within the stack data type; one must add a new constant

'StackError’ of type stack and a new axiom

Push(s, error) = StackError

* Another way of saying the same thing is to assert that all operations are
strict in 'error’.

R R ———T———————————...

159

to ensure that errors propagate. In combination with the more usual axioms
it is easy to show that all stacks are equal to 'StackError’'. This
instance of the problem is dealt with very fully in [69].

Of course, such problems can be resolved; various techniques for
doing so are described in [27], [28] and [69]. Some mechanism is introduced
to ensure that the "normal” axioms are only employed when no "error” axiom
is applicable. I do not intend to criticize the mathematical intricacies
of these approaches; instead I wish to avoid the whole issue, and for two
reasons. First, it is very complicated. Second, partitioning the world
into "error” and "OK” states is inappropriate when one is trying to
Formaiize 'LookUp’ and similar operations. As I have emphasised throughout
this thesis, whether the result of a particular application of "LookUp” is
an error can only be determined by the caller: it is not a property of the
'SymbolTable’ data type.

’"Error algebras” are necessary only if one insists that 'Top(Empty)’
is an integer. If one permits 'Top(Empty)’' to be of some other type one can -
avoid error algebras, consistency problems and the need to augment existing
types when a new one is created.

It seems likely that this was what Guttag originally intended. In
[34, p. 47] he states that ’error’ will not normally be included in any of
the types involved in a definition, contradicting the inference that it was
an integer. In the later papers [36] and [37] the signature of 'Top’ is

given as
Top: (StackofInt) - Int u {UNDEFINED}

where the range is stated to include the "singleton set *{UNDEFINED}'”,

Unfortunately no more details of the meaning are given. The difficulty
is that set operations such as union cannot be applied to types; the next
section defines a data type union operation which can be used to

formalize this definition.

5.4 A Rigorous Definition of Data Type Union
The union operation I will define is exactly the oneof type generator
introduced in Chapter 4 and used there in the examples. First consider

the somewhat more restricted type given in Figure 5.1.

tiEe Uz
operators
Is First: (U2) - Bool
Is_Second: (U2) - Bool
From First: (First) -~ U2
From Second: (Second) + U2
To_First: (U2) » First
re To First(u) = Is First(u)
To_Second: (U2) + Second
pre To_Second(u) = Is_Second(u)

axioms
Is First(From First(f)) = true
Is First(From Second(s)) = false

Is _Second(From First(f)) = false
Is Second(From Second(s)) = true
To First(From First(f)) = f
To_Second(From Second(8)) = s

end of 12

Figure 5.1: Specification of a union of two types.

"2’ is the discriminated union of two data types, 'First'-and 'Second’.
It has six operators with the functicnalities given. The use of 'w»'
in the signatures of 'To First' and 'From First’ indicatesthat they are
partial operations. This is emphasised by the presence of explicit

preconditions. 'f', 's’' and 'u' are free variables with types 'First’,

161 |

'Second’ and 'U2' respectively. Some styles of specification would
declare 'f', 's' and 'u’ explicitly; I have not done so because their
types can be inferred from the signatures of the operators.

The only way values of type 'U2’ can be generated is by application
of 'From First’ and 'From Second’, the injection operations. 'U2' values
can be examined only by application of the two projection functions
'To_..." and the two inspection functions 'Is_...'. Thus 'U2' can be
completely defined by specifying the result of applying the four inspection
and projection operations to applications of the two injection operations.
This reasoning indicates that at most eight axioms are required; in fact,
because the projection functions are partial there is no need to specify the
meaning of 'To_First(From Second(s))' and 'To_Second(From First(f))’.
Indeed, the preconditions emphasize that these expressicns have no meaning.
The six axioms of Figure 5.1 are thus sufficient to completely specify the
type.

'U2' 1s restrictive in two ways: 'First’ and ’'Second’ are not parameters,
and there are only two of them. Both of these restrictions can be lifted,
although there are difficulties in doing so in a completely formal framework.

The simplest way of promoting 'First' and 'Second’ to the status of
parameters is to view 'U2' not as a type but as a type schema: the
meaning of 'U2(a, b)' is then given simply by substituting 'a' and 'b’
uniformly for 'First’ and ’'Second’, as in a macro expansion. The generic
parameters of Ada are given roughly this interpretation [96]. Note that in
doing this the names of the operations remain unchanged: 'U2(a,b)’ has the

two injection operators

162 |

From First: (a) » U2(a, b)

From Second: (b) + UZ(a, b) .
'U2(a, a)' is thus perfectly well behaved, and 'From First(a)' is not the
same as 'From Second(a)'. 'U2' is a disjoint or non-absorbing unionj
set-theoretic union is absorbing in the sense that '{a}lu {a¥ is '{al’. It
is to emphasize this distinction that I have adopted the name oneof for my
type generator.

The shortcomings of the macro substitution definition of

parameterization are illustrated by the recursive type definition
type R = U2(integer, R) .

There are other problems too: each instantiation must be type-checked
independently, and the macro expansion approach cannot deal with recursive
procedures with type parameters [33]. These difficulties can be avoided by
restrictingythe language, or they can be faced by trying to define a semantics
for the concept of type. An apparently successful attempt to do the latter
is the Russell project of Cornell University [24] [18]1 [12] [17]." In the
Russell language 'R’ is perfectly legal and well-behaved.

The full power of the Russell type system is not necessary to relax
the restrictions of 'U2' if one is prepared to permit a little license in
the description. By assuming oneof to be a primitive of the programming
notation I will avoid the question of whetherthe power thus admitted is
available for the definition of the user's own types.

First, oneof will be permitted to take an arbitrary number of argument
types; the only restrictions are that there shall be at least one aréument

and that each shall be represented by a syntactically distinct identifier.

163

Second, the mames of the operators will be parameterized as well as their
functionalities; this is a great help to the reader. The resulting type

schema is shown in Figure 5.2.

type 0 = oneof(Id1; ...3Idn)
operators
Is_Id1: (0) - Bool

Is Tdn: (0) - Bool
From Id1: (Id1) - O

From Idn: (Idn) = O

To Id1: (0) *+ Id1 pre To_Id1(o) = Is Id1(0)
To_Idn: (0)* Tdn pre To_Idn(o) = Ts_Idn(o)
axioms

true Vi e [1.an]
false Vi, je [1..n] st i#]
X ¥Yi e [1..n]

Is Idi(From Idi(x))

Is Idi(From Idj(x))

To Idi(From Idi(x))
Egg.gffbneof -

Figure 5.2: Axiomatic Specification of oneof

The other extension used in Chapter 4 is purely syntactic: the declaration

type 0 = oneof(Id1:T1; Id2:T2)

is shorthand for

type Id1 = T1
Type Id2 = T2

type 0 = oneof(Id1; Id2)

and provides a convenient way of declaring types with distinct names.

164

This proved especially useful for renaming ’'singleton’.

The type 'singleton' itself is trivial to define:

type singieton

operators
: () » singleton

end of singleton

Singleton contains one generatbr which I denote by the empty operator symbol.
No axioms are necessary because there are no enguiry operators whose
results must be defined.

One further point which needs clarification is the meaning of the

type declaration

type Id = T

This introduces a new type known as 'Id’, isomorphic to 'T’ but distinct

from it. Thus, after the definitions

type underflow = singleton
type overflow = singleton

the type checking mechanism will prevent confusion of 'underflow’ with

'overflow'.

5.5 Formal Specification of Two Data Types | -

Having set up the required machinery by defining oneof and ’singleton’, it |
is possible to present a formal definition of a Stack.‘ The added
complexities of defining a generic 'Stack’ will be avoided here hy

remaining with 'StackofInt’.

165

type StackofInt
Uperators
Empty: () -+ StackofInt
Push: (StackofInt, Int) - StackofInt
Pop: (StackofInt) = StackofInt
Top: (StackofInt) + oneof(Int; Underflow:singleton)
IsEmpty: (StackofInt) - Bool

Axioms
Pop(Empty) = Empty
Pop(Push(s,i)) = s
Top(Empty) = From Underflow()
Top(Push(s, 1)) = From Int(i)
IsEmpty(Empty) = True
IsEmpty(Push(s,1))} = False
end of StackofInt

Figure 5.3: Specification of StackofInt

The definition of Figure 5.3 avoids the contradictions which troubled
Majster [69]. In her analysis, the functionality of 'Top’ is .

'StackofInt - Int’. If 'Top(Empty)’ is substituted for ’i’ in the second

axiom, one obtains
Pop(Push(s, Top(Empty))) = s

However, the axiom 'Top(Empty) = error’ and the rule of propagation of

errors give
Pop(Push(s, Top(Empty))) = error .

According to my definition, the troublesome expression is simply a
type error. 'Top(Empty)’ is of type oneof(Int; Underflow) whereas the
second parameter of 'Push' must be of type 'Int’. Moreover, it is impossible
to convert 'Top(Empty)’' to an 'Int’'.

The 'IsEmpty’ operator is actually redundant with the definition of

stack given in the figure: 'IsEmpty(s)’ can always be simulated by the

166

expression 'Is Underflow(Top(s))'. Nevertheless, a designer might include
it for reasons of efficiency or convenience. In contrast, if 'Top’ is a
partial operation then 'IsEmpty’ is essential because it defines the
domain of 'Top’.
type SymbolTable(Ident, Attr)
operations
EmptyST: () ~ SymbolTable
InsertST: (SymbolTable, Ident, Attr) - SymbolTable
LookUpST: (SymbolTable, Ident) = oneof(Attr; absent:singleton)
axioms
LookUpST (EmptyST) = From absent()
LookUpST (InsertST(st,i,a),J) =
if Ident.Equal(i,j) then From Attr(a)

else LookpST(st,j)
end of SymbolTable

Figure 5.4: An unbounded symbol table.

The symbol table of Section 4.2.1 provides an example where partial
functions are inappropriate. A complete axiomatic specification of an
unbounded symhol table is presented in Figure 5.4. ;The type there speciFied
differs from that of Figure 4.07. Most significantly, the latter uses
pfocedures rather than pure functionss; it is also bounded. Figure 4.07 can
be cast into a form where it uses Figure 5.4: the semantics of an ’insert’

procedure which alters its paramekers might be given as
{st=st'} insert(st, id, val) {&t=InsertST(st’, id, val)l}.

However, the details of such a specification of a symbol table are not

relevant to the subject of this thesis, and will not be described further here.

167

5.6 Conclusion
The study of data type specifications has given rise to another instance
of the "abstract errors” myth. Attempting to solve the problems thus
created may be an interesting mathematical exercise, but not one that
seems to be particularly relevant to the production of quality programs.
Specifications like that of the symbol table need oneof results.
Error algebras are not an adequate tool because they require that one of the
results of 'Lookup' be designated an error, and that once an error has
been noted the program remains in an exceptional state [27].
The specification of oneof itself could be done with error algebras.
It could also be done denctationally. I have preferred to usé an axiomatic
definition with explicit preconditions for two reasons, the first of which
is that it avoids the introduction of a lot of extra mathematical machinery.
The second reasoﬁ is that axioms have the unique property of allowing
one to say nothing when there is nothing one wishes to say; in other words,
they enable one to leave things intentionally unspecified. In contrast, a
~ denotational definition insists that all results are defined, even if they
are 1. Allowing the implementor sufficient freedom to optimise seems to
me to be an essential property of a specification. One of the beauties
of the abort statement [23] is that any implementation is correct. The
same benefit accrues to type specifications when explicit preconditions are

allowed.

Chapter 6

PROGRAMMING WITHOUT EXCEPTION HANDLING

The examples of Chapter 4 demonstrate that it is indeed possible to program
without exception handling mechanisms, and to do so clearly in a modular,
strongly typed language. However, the notation I have used is not that of
any existing language, and it is necessary to examine the features I have
introduced and ensure that my cure is not worse than the disease.

The most obvious extension I have used is the oneof constructor for
discriminated unions. In certain of the examples I have also assumed that
procedures and functions are wvalues which can be manipulated within the

language. I will now consider these extensicns in more detail.

6.1 Programming with Discriminated Unions

Unions of different types actually pre-date the inclusion of user definable
data types in progranming languages. In Fortran and Algol 60 a lookup
function would typically.operate on an array, and return either the index
of the array element containing the required value or some integer such as
zero which is not a valid array index. The result of such a function is
indeed a union of distinct types, although Fortran and Algol 60 do not
provide a means of expressing this.

The programming language Pascal [101] [50] was the first to include
types which are subranges of other types. Subranges make it possible to
specify the range of a lookup functionexactly: instead of saying that the
result is an integer, the programmer can express the constraint that it is
in the range '1..n'. This is a desirable thing Fo do because it both makes

the intent of the program clearer and makes it easy for the compiler to

168 |

deduce that no range checks are necessary when the array is accessed.

However, the inclusion of even one value which is not a valid index in
the result type of the lookup function means that it is different from
the subscript domain of the array. The need to use different type names
reduces readability and makes some range checks necessary. Used in this
way the type 'C..n’ is indeed a union of '1..n’ and zero.

A similar situation arises in languages such as BCPL [80] where
structures are accessed by address. A lookup operation typically returns
the address of the appropriate structure. If no such structure exists an
invalid address is returned as result.

This practice was recognized by the designers of Algol 68 and Pascal.
References in Algol 68 and pointers in Pascal may either refer to a value
of the appropriate type or be null, i.e. not refer to anything.

When a Function like a lockup is used the programmer must always bear
in mind the possibility that the key was not found. Usually the result
must be checked to see if it is a valid array index, address, pointer or
reference. However, the context may sometimes be such that the prograrmer
is sure that the key will be found: in some compilers, for example, certain
standard identifiers will always be in the symbol table because they are
inserted by the set-up phase. Unfortunately, even when programmers are sure
of something, they may be wrong: in the compiler example, it is possible
that the set-up phase is not working correctly because of a bug in the
software (or a failure of the hardware).

The above methods of indicating failure of the search share a pleasant
property. Even if the programmer decides that no explicit test of the

validity of the result is required, an attempt to misuse an invalid result

170

will lead to an immediate alarm. At least, the other features.of the language
are such that a reasonable implementation will provide checks which will
catch this mistake. The application of an array with bounds '1..n’

to a subscript of zero ought to generate an alarm, and by using zero to
represent the fact that the key was not found, the programmer is taking
advantage of a built-in check which was already part of the implementétion.
Similarly, in a BCPL implementation there is usually some negative or very
large positive value which the hardware will detect as an illegal address.
Indeed, this hardware characteristic is probably responsible for the
inclusion of nil in Algol 68; it could very well have been omitted, and is
one of the few facilities of that language which are available by otﬁer
means [70]. '

Both Algol 68 and Pascal provide other ways of forming unions in
addition to those mentioned. Indeed, programmers familiar with those languages
and faced with a need to implement my oneof constructor may have immediately
looked to Algol 68's union types and Pascal's variant records without
considering null references and subranges at all, for these facilities are
not often recognized as unions. Yet they should be so recognized, both
because a language should provide one way of representing an abstract
concept rather than three, and because the implementations used are often
particularly e??icient, and should be adopted as widely as possible. Since
the most appropriate implementation for a particular union is governed by
the hardware, its selection ought to be left to the compiler. If there are
three different source language Coﬁstruots which compile intd different
code but which express the same idea, the programmer must know all about
fhe hardware and the implementation to make a rational choice between them.

This is clearly undesirable.

171

The oneof type constructor defined in Chapter 5 is designed to be
convenient in use both when the type of a result is known and when it is
not. Consider the ’'LookUpST’ function defined in Figure 5.4 and assume first
that the programmer has proved, either formally or infarmally, that the
result of ’'LookUpST' will be an 'attr’. He may then use the appropriate

projection function, as in
Attribute := To_attr(lLookUpST(st, Id)) .

This expression is valid exactly when the assertion {Is_attr(LookUpST(st, Id))}
is true. If the argument of 'To_attr’ is not a oneof value injected from

an 'attr’ then the expression is an error. With the example of a standard
identifier in a compiler's symbol table this error would indicate that the
part of the program or computer which initialised the symbol table was not
working correctly. A reasonable implementation of 'To_attr’ will try to

halt the program and generate an error message (but the semantics of oneof
does not require that all implementations are reasonable). The second

case occurs when the programmer is unsure whether an 'Id’ will be in the

table. It is then incumbent on him to write code which deals with both

possible results, as in the following example.

var r : oneof(attr; absent)

r = LookUpST(st, Id)

if Is absent(r) = SyntaxError('Undeclared identifier’, Id)
0 Is attr(r) => Attribute := To_attr(r) -

fi

.

Essentially, the alternative construct reduces the second case to the

first: within the guarded commands it is known whether 'Id' is in 'st’.

172

In Algol 68 the type 'attr’ would be represented by some structured
"mode” attr. One way of representing the result of 'LookUpST' is as a
reference to an attr. This would permit the use of the null reference to
indicate the absence of an item. Because the dereferencing operator is
implicit, the case where the programmer is sure of the result could be

coded as
Attribute := LookUpST(st, Id) .

If 'Id’ was not, after all, found in 'st’ this expression would lead to an
attempt to dereference the null pointer, which is an undefined operation.

On the other hand, if the programmer does not know whether or not
'Id’ is in ’st’, he must test the result, as in the following program
fragment

ref attr r = LookUpST(st, Id)

if r is ref attr (nil)

then SyntaxError('Undeclared identifier', Id)

glse Attribute :=
._F_j;. »

These expressions are fairly clear, but have some drawbacks. Defining
the result of ’'LookUpST' to be ref attr does not make it obvious that a
null reference may be produced, or say anything about what this means: all
reference types contain nil whether or not the programmer wants to use it.
In contrast, 'oneof(attr; absent)’ is clearly used for the express purpose
of allowing 'absent' as a result, and the name 'absent' is itself an aid
to understanding. Another problem with using nil to indicate an "exceptional”
result is that only one such result can be represented: thére is only one

null reference of each type.

173

Using a reference result rather than the structure itself may also be
expensive. Returning a reference requires that the storage referred to
outlasts the invocation of the function. In the particular case of a table
look-up this requirement is fairly easily met because the table entries
will usually be global. But in general it may be necessary to copy a local
structure onto the heap simply so that a reference may be returned.

The use of a null reference may be expensive in another way too. While
the machines of the late 1960's and early 1970's usually trapped attempts
to access an invalid address, this is no longer always the case. Many mini-
and micro-computers have a physical store as large as their address space,
so there is not bit pattern available to represent nil. Others may simply
interpret any address modulo the size of the store.

Any of these difficulties may cause the programmer to look for better
methods of represenfing different types of result than the use of null
references. Most strongly typed languages provide some sort of union
constructor and some way of declaring new types such as ’'absent’.

Algol 68 [97] provides a built-in type constructor union which has

some of the properties of oneof. A type (called a "mode”) can be named, as in

mode AttrorAbsent = union(attr, absent) ;

such a type can be used in exactly the same way as a primitive type.
However, this declaration does not create a new types it names an existing
one. There is no way to create new types in Algol 68; in particular there

is no way to create the singleton enumeration type absent. The declaration

mode absent = void

174

simply provides a new name for void. If one also declared

mode AttrorVoid = union(attr, void)

the two tags AttrorVeoid and AttrorAbsent would identify the same type.

Another difficulty with the union constructor of Algol 68 is that
it is absorbing. In the context of the declarations
mode BadFormat = string;

mode Unrepresentablelnteger = string;
mode SumResult = union(int, Badformat, Unrepresentablelnteger);

the mode SumResult is indistinguishable from both union(int, string, string)

and from union(int, string).

These difficulties are to some extent mitigated by the rule that two
record types ("structures”) are only identical if the field names are the

same. Thus

mode BadFormat = struct(string BadFormat);
mode Unrepresentablelnteger = struct(string Unrepresentablelnteger)

identify two distinct types. However, because of the (gquite unorthogonal)

restriction that a field of a structure cannot have mode void, absent

must be declared as something like EEEHEE(Eggl absent).

In Algol 68, injection (which I have indicated by use of operators
'From ...') is available implicitly as a coercion. In the right context,
such as the result clause of a procedure delivering a union, a value of one
of the component types will be automatically "united” to the required type.
This provides the briefest possible syntax with minimal loss of information
or readability, because the type required is always obvious from the context.

In places where the type is not obvious it can be made so by use of a "cast”,

175

such as 'AttrorAbsent(expr)’.

While this makes operations like 'LookUpST’' easy to write, they are,
unfortunately, difficult to use. This is because the inspection and
projection operations do not have simple realizations in Algol 68. Instead
the language provides a construction called the "conformity clause”: this
is the only means of taking a union apart. It is quite suitable for dealing
with the second example, where the programmer does not know the type of
the result.

case LookUpST(st, Id)

EETTébsent): SyntaxError(’ Undeclared identifier', Id)

, (attr r): Attribute := r
esac

Unfortunately it is hopelessly cumbersome for the case where the programmer

is sure of the type of the result. The simple assignment to 'Attribute’

- must be coded as follows:

Attribute := case LookUpST(St, Id)
in (attr a): a
, (absent): print(’'Impossible happened')

(
5 stop
)

e54aC «

If one is sufficiently confident of the reliability of the program to omit
the alarm, this can be shortened to
Attribute := case LookUpST(st, Id)

in (attr a): a
esac

but this is still very inconvenient if unicn is used as frequently as I have

advocated.

~..176 .

It is possible to define Algol 68 procedures which simulate the
'To_attr’ and 'Is_absent’ operators, but such procedures must be written
for every component of every union, and there is no "procedure schema”
mechanism in Algol 68 to help produce the definitions.

In Pascal [101] [50] the situation is also unsatisfactory. The
problem is compounded by two factors:

(1) the orthogonal mathematical concepts of union and Cartesian product
have been combined into a single linguistic construction, the
"variant record"”;

(i1} functions may not return records as their result; a pointer to a

record must be used instead.

The Pascal variant record is a structure containing an optional fZxed
part and a variant part. The latter consists of a tag field of some
enumerated type and several alternative variants, one for each tag value.
The intention is that only one of the variants should be current and that
its identity be given by the tag. A variant record used to represent::the
result of 'LookUpST' would have no fixed part:

type WhetherAttrorAbsent = (ATTR, ABSENT)

P AttrorAbsentRecord =

record case WhichType: WhetherAttrorAbsent
' .of ATTR: (attribute: Attr)
3 ABSENT: ()
end
3 AttrorAbsent = 4AttrorAbsentRecord

As it stands this construction is not type-safe. The tag field is optional
and can in any case be assigned to independently of the rest of the record,

indeed there is no way of constructing a record without doing so. Variant

records were actually intended to create a loophole in the type system so

177 |

that machine dependent code (such as device drivers) could be written
[102]. For this reason many implementations will not generate any
run-time error message when a non-existent variant is accessed.

When Pascal variant records are disassembled there is a significant
improvement over Algol 68: a case statement need not be introduced if
case analysis is not required. When one knows the type of the result of

'LookUpST' one may write
Attribute := LookUpST(st, Id)+.attribute .
Where enquiry is necessary an if statement can be used, as in

var r : AttrorAbsent;

r := LookUpST(St, Id)+;

if r.WhichType = ATTR

then Attribute := r.attribute

else SyntaxError(”Undeclared identifier”, Id) .
Writing 'LookUpST' is more difficult in Pascal than in Algol 68 because
the result must be explicitly created with the procedure 'new’. To avoid
this inconvenience, and to ensure that the tag field is always correctly
set, injection functions like those of Figure 6.1 could be used. As in
Algol 68, such functions must be written by the programmer for each union
which requires them.

function FromAbsent : AttrorAbsent;

var result : AttrorAbsent;
begin new(result)

5 resultt.WhichType := ABSENT
3 FromAbsent := result
endy

function FromAttr(a:Attribute) : AttrorAbsent;
var result : AttrorAbsent;
begin new(result)

P resultt.WhichType := ATTR
3 resultd.attribute := a

3 FromAttr := result

end;

Figure 6.1: Pascal functions to create union values.

The programming language Ada perpetuates the confusion of product and
union introduced by Pascal. Type safety is improved by making the tag-field
a constant: it can be changed only by updating the whole record.

Ada does not have a facility powerful encugh to permit the declaration
of the oneof type schema as I have defined it. The possibility of "generic”
types is allowed, but only the functionalities of the operators may be
parameterized, not their names. In other words, the generic type 'U2’

(see Section 5.4) can be defined, but not generalized to oneof. So the
result type of 'LookUpST’ will probably be represented as

type WhetherAttrorAbsent is (IsAttr, IsAbsent)

type AttrorAbsent(WhichType: WhetherAttrorAbsent) is

record case Which Type -
is when IsAttr => attribute: Attr
5 when IsAbsent => null

end case
end record

Values of this type are constructed explicitly using record aggregates

such as
(WhichType => IsAttr, Attr => Atable[i]) .

COne might choose to define conversion functions 'FromAttr' and 'FromAbsent’
as in Figure 6.2. Ada allows overloading of function names so that two
different oneof types can both have 'FromAttr’ and 'ToAttr' operators;

this is not permitted in Pascal.

=
~
o

function FromAttr(a:Attr) return AttrorAbsent is
begin return(WhichType => IsAttr, attribute = " a)
end;

function FromAbsent return AttrorAbsent is
begin return(WhichType => IsAbsent)
end;

Figure 6.2: Ada routines for construcing oneof values.

Variants may be disassembled in Ada just as in Pascal. by accessing the
components with the dot notation.* If a component which does not exist is
referanced the exception 'constraint error’ is generated. Unfortunately
it is possible tp suppress this action, thus breaching what would otherwise
be a strong type system.

The CLU language [61] [B4] provides a type constructor called oneof
which is similar to the oneof used in Chapter 4. The result of ’'LookUpST’

could be declared in CLU as
AttrorAbsent = oneoF[Attribute:Attr, Absent:null]

'Attribute’ and 'Absent’ are labels; 'AttrorAbsent' is different from
another oneof with fields of the same types but with different labels.

The CLU oneof is non-absorbing:

oneof[Integer:int, Bad format:string
» unrepresentable integer:string]

is useful in CLU because it is possible to ask whether a string value indicates

* The first Ada definition [54] did not allow the result of a function call
to be subject to component selecton. This omission has now been rectified.

180

a 'Bad_formati or an 'Unrepresentable_integer’'. For each label 'l' inthe oneof
there is a predicate 'is_1', a function 'make_l', and a précedure 'value_1'
which correspond fairly closely to the 'Is_...', 'From ...’ and 'To_...'
operations defined in Figure 5.2. A minor difference is that in CLU the
operators depend on the labels, not the names of the types. The most
important difference is that the CLU ’'value 1’ procedures generate exceptions
if their argument is not of the correct type, whereas my 'To_ ...’

operators require that their argument be of the correct type.

CLU also provides a control structure called the tagcase statement,
which may be used for dissecting unions when case analysis is required.

The two examples may thus be written in CLU as
Attribute := Value Attribute(LookUpST(st, Id))

and

tagcase LookUpST(st, Id)

tag Attribute(a:attr): Attribute := a

tag Absent: SyntaxError(’Undeclared identifier’, Id)

end :

The CLU oneof provides all the capability necessary for handling results
of differing types. IFf the definition of the CLU oneof did not rely on the

signal mechanism, it would be possible to view CLU exception handling as an

alternative syntax for oneof results.

Few would argue against\some kind of union mechanism in a strongly
typed language. Per Brinch Hansen is one who has done so, and the Edison
language does not include unions in any form [40].

Edison is derived from (but simpler than) Pascal. Variant records

were eliminated because they were both complicated and insecure. Nevertheless,

181 |

when unions are really needed, as they are in the Edison compiler for
describing symbol table entries [39], some way of simulating them must
be found. Hansen used the retyping mechanism of Edison and a knowledge of
the size of the representations of different types to simulate union.
Such implementation dependencies seem to be a high price to pay for the
elimination of a type generator.
I recommend that any strongly typed language should have a built-in
type generator like oneof. Its type mechanism should allow new types to
be created easily. Concise notations should also be available for
constructing values of oneof types and for projecting them into their
component types. In particular, the language should not insist on case
analysis unless there are cases to analyse. A statement like the Algol 68
conformity clause or the CLU tagcase can sometimes be convenient, but it is
never essential, and should not be allowed to cbscure the simplicity of oneof.
The motivation for the Algol 68 conformity clause seems to be the
removal of partial operations. Whereas applications of the projection
operators of, oneof can be undefined, the conformity clause is always total.
Nevertheless, Algol 68 does not shrink from using partial operations in other
places: division, dereferencing and application of arrays to subscripts are

all partial.

6.2 Manipulating Procedures in Programming Languages

In certain of the examples considered in Chapter 4, procedure parameters
were used in lieu of exception handlers. In the inconsistent string
problem (see Section 4.2.2) it was also assumed that record components
could take on procedure values. Are these facilities one would expect to
find in modern, structured languages, and are they more justified than

exception handling?

182

Procedures as parameters are allowed in PL/I, BCPL, Algol 68, RTL/2,
Pascal, Ada and Edison, as well as in Fortran and Algol 60. ' However, they
are not available in Modula, Euclid, 3R and some Pascal dialects,
such as 4 UCSD Pascal [94]. Clearly the designers of these
languages had their reasons for omitting procedure parameters; it is
instructive to speculate about what they might be.

The first reason is'probébly that procedure parameters can be awkward
to implement. In languages with Algol-like scope rules it is possible to
declare both variables and procedures in an inner block. Within the body of
such a procedure sugh variables can be used. However, because they are
neither resident in the procedure’s own staokframe-nor may be allocated
statically, there is some difficulty in compiling code to access them. So
long as all calls of the procedure are explicit, providing a pointer to the
appropriate stack frame is fairly easy: it becomes more difficult if the
procedure may be passed as a parameter.

These problems do not arise in Fortran implementations which allocate
all storage statically. They have been faced and surmounted by Algocl 860
implementors many years ago, and the solutions are well established. BCPL
[80] avoids the problem'altogether by allowing a procedure to access only
its local variables (including, of course, its parameters) and those free
variables of the surrounding context which have been declared to be
statically allocated. In practice these restrictions cause few problems and
permit procedure calls to be implemented very simply and efficiently.

Another reason, which probably applies in the case of Euclid, is the
fear that procedure parameters complicate the semantics. Certainly the

formulae of a semantic description become larger, but I do not think that

183 _

they become much more profound. Consider a procedure which performs numerical
integration of a function: the function and the limits of the integration
must be parameters of the integration procedure because it is impossible
to define integration without referring to them. This is true whether one
interprets the word "define” with mathematical rigour or as a vague mental
image: it is the concept of integration which is parameterized, not any
particular realization of it. It should come as no surprise, therefore, to
discover that the semantics of the procedure is parameterized by the
semantics of the function on which it operates.

When predicates are used as a means of formalizing semantics, the
pre- and postcondition of the calling routine will depend on the pre- and
postcondition of the parametric routine. This is exactly what happened in
my formulation of Levin'’s symbol table example (see Section 4.2.1). The
insert operation took a procedure parameter which was invoked only when the
table was full; its semantics had the form

{ not tablefull or pre proc }

Insert(st, id, attr, proc)
{ (tablefull and post proc)
or (not tablefull and<id,attr> e st) } .

The technicalities of specifying the semantics of procedure parameters are
rather far from the subject of exception handling. Readérs interested in
particular formalisms are referred to [84] or [86l It should be noted,
however, that exception handling mechanisms which permit handlers to resume
the routine which generated the exception also provide a way of parameterizing
the semantics of routines. (The mechanisms of Levin and Mesa have this
property.) If one objects to procedure parameters on semantic grounds, one

must also object to resumption exception handling. In the examples I have

used the former only to provide the latter.

The third objection to procedure parameters is that as provided in
Algol 60, PL/I and Pascal; they make type checking difficult. The forms
of parameter specification included in those languages do not permit the
programmer to specify the types of the parameters of a parametric procedure.
Type checking a call of such a parametric procedure thus involves
examining every call of its parent procedure. The simple way of resclving
this objection is to require full specification, as do Algol 68 and Edison.

The final reason for not wishing to permit procedure parameters is
that they are unnecessary. I have argued strongly that unnecessary features
should not be included in programming languages. Let us see, then, what
happens if procedure parameters are removed from a language.

Suppose procedure 'A’ has a procedure parameter 'P', and that 'A' is
called from 'n' different places in the program, with actual procedurei
parameters 'P1’, 'P2', ..., 'Pn’ in place of 'P'. This program can be
transformed by placing the declarations of 'P1', ..., 'Pn' <nside 'A’, and
replacing the procedure parameter 'P’ with a parameter of an enumeration
type (or an integer) which takes a different value at each call. Inside
'A' the appropriate 'Pi' is selected by tésting the enumeration value., It
should be clear that the semantics of the program are unchanged by this
transformation.

However, what has been drastically changed is the modular structure
of the program: it has been totally destroyed. This should be obvious
when 'A’ is called 'Integrate’ and is available in a numerical analysis
library. My transformation implies that every function it could possibly be
called upon to integrate must be declared inside it, so that the user can

select the function he requires by supplying the appropriate enumeration

value as a parameter! Even in the case where the calling and parameteric
routine are written by the same programmer and compiled at the same time, the
modularity and modifiability of the program are greatly enhanced by using a
procedure parameter rather than an enuﬁeration value. Sincé these are
amongst the most desirable properties of a program, it seems clear that
procedure parameters are indispensable.

A note about Ada is in order here. Ada procedures may have procedure
parameters, but they must be declared as "generic”. Syntactically, the
effect of this is to require that the actual procedure parameter is supplied
in a "generic instantiation”, which creates and names a partially
parameterised procedure. This "instance” is then called in the normal way,
whea ordinary constant and variable parametérs are supplied. Semantically,
Ada generic pfocedure parameters appear to be usable in the same ways as
procedurevparameters in Algol 60: the syntactic alum seems not té affect
the expressive power of the language.

Procedure variables are more difficult to defend than procedure
parameters. All the above objections to procedure parameters apply also to
procedure variables, bﬁt with increasedforce.

The implementation problems of procedure parameters become real
semantic problems when translated into the domain of procedure variables.

A procedure declaration which accesses non-global free variables can be
interpreted in two different ways. The free variables can be evaluated at
declaration time, and "frozen” into the procedure once and for all. The
more usual interpretation is that the free variables are evaluated every

- time the procedure is called. In this case the scope of the procedure

(i.e. the area of the program in which it is meaningful) is the same as that

of the free variables.

The problem with procedures whose scope is restricted in this way is

that if assignment of procedure values is permitted, a procedure with a
given scope may be assigned to a variable with a larger scope. (The same
problem arises if a language permits references to namescoped variables.)
Algol B8 avoids these dangling reference problems by prohibiting the
assignation of any value to a variable whose scope is larger; unfortunately
this restriction is very difficult to enforce at compile time. My first
solution to Levin'’s inconsistent string problem (see Section 4.2.2) breaks
this rule, and would thus not be legal in Algol 68. The restriction can be
circumvented in the same way as in the example of Section 2.5. First, a
local string variable is declared and initialised to the value of the
appropriate element of ’'dnames’. Then the bad string routine of the local
string is set to 'UseDuplicate’ and the local string is compared with the
parameter of 'LookUp'. The code that results (Figure 6.3) is in one respect
simpler than the original (Figure 4.13) because there is no need to save and
restore the old bad string procedure.

Another major difficulty with procedure variables is that it can be
very difficult to determine what will happen when they are invoked. Like
references, procedure values are unprintable: unlike references there is not
even a printable value at the end of the chain. This problem is especially
acute when the variable (or the structure of which it is part) is |
accessed and assigned in many different places. Of course, this objection
applies equally to Levin’s exception handling mechanism: the handler for
a given exception may have been set and reset in various different places.
One way of avoiding this problem is to allow procedure constants but not

procedure variables. When a structured value with procedure valued components

is first created those components are initialized: they may not

subsequently be changed.

proc Lookup(t : symboltable; s : string) returns
r : oneof(Value; Notfound : singleton)
is for i:upto(1, last)
do

proc FixTable() is
names[i]:= names[t.last]
dnames[i] := dnames[t.last]
values[i] := values[t.last]
last := last - 1
t.LostEntry()

end of FixTable

proc UseDuplicate() returns s:string is
s := t.dnames[i]
SetResetRt(s, FixTable)

end of UseDuplicate

var LocalString : string := t.names[i]
SetBadStringRt (LocalString, UseDuplicate)

if =(LocalString, s)
then r := From Value (t.values[i])
return

fi
od
r := From Notfound()
end of Lookup

Figure 6.3: Lookup using inconsistent string module with notification

procedures and Algol 68 scope rules.

The envelope data structure of PascalPlus [13] permits the declaration

ot constant fields. It is based on the Simula class concept, as are many

similar structures in other languages. A 'string'’ might be defined as

in Figure 6G.4.

envelope string(procedure BadStr; procedure Reset)
5 type *strchars = array [1..n] of char
3 var chars:strchars ——'
3 length:integer
procedure *SetStr(var s:string; c:strchars; 1:integer)
3 var J:integer —

begin s.length := 1
3 for j := 1 to 1 do s.chars[j] := c[]j]
end T - =
function *EqualStr(var si:string
3 var s2:string):boolean

3 function IsOK(var s:string):boolean

5 var c:strchars

3 i:integers

5
begin if s.length<0 then
begin s.BadStric,i)
3 SetStr(s, c, i)
f if s.length<0 then
begin s.Reset
3 SetStr(s, c, 0)

3 IsOK := false
end
else IsOK := true

end

else IsOK := true

end
5 var i:integer
5 AreEqual:boolean

begin
if IsOK(s1) and IsOK(s2) then
if sl.length = s2.length then

begin
i:=0

5 AreEqual := true

5 while i<sl.length and AreEqual do
begin

AreEqual := sl.chars[i] = s2.chars[i]

5 i = 1+
end
Equal := AreFqual

end

else Equal := false

else Equal := false

end

begin length := 0; *** end

Figure 6.4: A string envelope in PascalPlus

This string envelope is adequate for the solution of the inconsistent
strings problem. The ’'BadStr’ and 'Reset’ procedures can be initialized
when the strings are first placed in the symbol table, and do not
subsequently need to be changed. Of course, the transformation which
produced a 'string’ with only ome procedure field (see Figure 4.14) relies
on being able to assign procedure values, and could not be applied in
PascalPlus. Nevertheless, one should recall that the simplest solution to
the inconsistent string problem is far the string module to contain the list
of duplicate names; no prdcedure parameters, variables or exception handling
mechanisms are then needed.

I am clearly in danger of becoming toc involved with the pros and cons
of procedure variables. My experience in BCPL and Algol 68 makes me
realize that they can be difficult to use and to debug, but also makes me
appreciate that they can provide a simple, efficient and flexible solution
to certain programming problems. I do not wish to take sides on the
question of whether procedure variables should be included in programming
languages. I have shown that exception handling mechanisms can be replaced
by procedure parameters and procedure constants alone, but that procedure
variables can be very useful. The decision on whether to include them must
be taken by the language designer in the light of the aims and objects of
the language. Procedurs valued fields in structures seem to be an integral
part of languages such as CLU and Mesa which aim to support "object
oriented programming”. By this is meant a style of programming in which one’s
primary concern is with blocks of storage representing objects, which have
the property that their identities remain fixed while their fields may be

changed. Such languages rely on references at the semantic level but can be

implemented very efficiently on certain architectures. On the other hand,

procedure variables are foreign to languages which compute with values.
Indeed, this idea is taken to its logical conclusion in so-called
applicative languages which discard the notions of variable and assignment

altogether.

6.3 Conclusion

In order to program without exception handling I have used procedures which
return results of different types. I have also used procedure parameters when
a procedure needs some assistance. Both of these technigues are more than
twenty years old. gneof results are almost certainly as old as programming
itself: unfortunately many recent strongly typed languages have made them
difficult to use.? The idea of procedure parameters interfering with the
action of a procedure was described by Rutishauser in 1961 [82]; it has
become more important over the years as programmers have realized the
importance of modularity.

In a programming language designed for manipulating "objects”,
particularly "shared objects;, Levin'’s exception handling mechanism provides
facilities which the others do not. These same facilities can always be
obtained by the use of procedure variables, and often by procedure constants.
Whether "object oriented progranmming” is a desirable development is possibly
the subject for another thesis. Nevertheless, procedﬁre variables are
usually found in languages which support this style of programming. Indeed,
the implementation of Levin’s mechanism relies on being able to manipulate
lists and sets of exception handlers, and thus the implementation language

at least must support manipulation of procedures.

Chapter 7

CATASTROPHE HANDLING

One of the central themes of this thesis has been that "exception” is not
a well-defined concept, and that it is therefore not appropriate to
incorporate exception handling into a programming language. In contrast,
the term "catastrophe” can be rigorously defined, and the increasing
emphasis on reliability has made it important to do so.

This chapter investigates the difference between catastrophes and
exceptions, and examines some examples of "catastrophe handling”. Thus
prepared, it becomes clear that the sort of exception handling mechanism
discussed in Chapters 2 and 3 does not address the problem of surviving
catastrophes. Instead it will be seen that the manner in which catastrophes
are detected and handled and the degree of recovery that is possible are
important design attributes of a system. In a database, for example, the
provision made for recovery after failure can influence the structure of the
entire system [31]. N

Having provided a mechanism for surviving catastrophes, it is of course
possible to (mis)use it for other purposes. The chapter concludes with a

discussion of the advisability of this practice.

7.1 Catastrophes, Exceptions, Errors and Faults

A catastrophe occurs when the behaviour of a component deviates from its
specification. This use of the term catastrophe coincides with the meaning
of faiZlure in the literature on reliability [57] [71] [78]. However, writers
on exception handling often use faZlure in a more general sense, and so it

seems worthwhile to introduce a new term.

191

192

The connexion with reliability should be obvious: the reliability of
a system is a measure of its conformance to its specification. An
absolutely reliable system is one which never fails, i.e. in all
circumstances behaves as its speoification requires. Randell [78] emphasises
that without an authoritative specification it is meaningless to talk about
reliability.

It should be clear that Cata§trophes are, of their very nature,
unexpected. If a program invokes a routine which is specified as sorting
an array, but finds that on completion the contents of the array is not a
permﬁtation of its original contents, then a catastrophe has occurred.

That which was specified as impossible has taken place: this must be an
unexpected event.

In contrast, exceptions must represent anticipated and well-defined
events. Exceptions are only generated in the expectation that they will
eventually be handled. For this to be possible, a routine which can
generate an exception must declare this fact as part of its specification.
Full details of all of the consequences of the exception must be provided if
it is to be handled effectively.

The terms error and fault are used subjectively in the reliability

literature. In [78] a state is said to be erroneous

when there exist circumstances (within the specification of the use
of the system) in which further processing, by the normal algorithms
of the system, will lead to a failure which we do not attribute to a
subsequent fault. The subjective judgement ... derives from the use
of the phrases "normal algorithms” and "which we do not attribute” in
this definition.

The term error thus designafes a datum: that part of the state which is

incorrect. A fault isan event: the mechanical or algorithmic cause of an

error.

As an example of the use of these terms, consider a filing system. A
file as an abstraction is a sequence of characters, but its representation
may be a linked list of disk pages. Suppose that because of a mechanical
fault in the disk heads or because of an algorithmic fault in the file stream,
one of the link fields is written incorrectly. An error is thus
introduced. This error will be latent until an attempt is made to read the
affected file. If the representation of files is redundant, e.g. the pages
are doubly linked, then the error may be detected by the system. If it is
not, reading the file will produce gibberish. In either case, the system
has failed to meet a specification which requires that reading a file will
generate the same sequence of characters as was originally written.

The fault in the filing system can be repaired by replacing the disk
head or the stream program. Repairing the error involves changing the
representation of the file from its current erroneocus state to one which

will permit the correct operation of the system.

7.2 Fault-tolerant Computing

A computer system can be viewed as a series of compartments nested
one within the next. Each compartment can be considered as a "block box”
which processes information according to some specification. In a
fault-tolerant system, each box does not assume that inner boxes will
conform to that specification. Instead the performance of subcomponents is
monitored in an attempt to detect errors, and the compartments are made "water
tight” so that the effects of a catastrophe are contained.

The need to detect errors implies that there must be some redundancy in

194

data representations and that some redundant computation is performed. The
error detection capability can be improved by increasing the redundancy,
but one must be aware that this also increases the cost. In certain
applications where reliability is paramount, the whole computer system

has been duplicated; such systems offer an extreme example of the use of
redundancy. Once an error is discovered, recovery may be attempted in
either of two ways. Backward error recovery involves "backing up” the
state of the system to a previous state (which oné hopes is error-free),
and then attempting to continue further processing. Forward error recovery
attempts to make further use of the erroneous state. Both techniques

rely on "watertight bulkheads” or "firewalls” to contain the error and

its consequences.

7.2.1 Backward Error Recovery

In some sense, of course, all recovery must be forward, because time runs
continuously in one direction. Nevertheless, because we reason about complex
systems at one level of abstraction at a time, backward recovery can exist

at a given level of abstraction., Forward progress at an underlying level can
simulate the regress of a higher level, provided that the state of the higher
level has previously been recorded and provision has been made for its

reinstatement. Various techniques have been developed to do this: an
extensive discussion and further refefences Will be found in [78].

An early example of backward recovery is provided by the Algol B0
system of the Elliot 803 computer, in which the compiler remained in core
while the user's program was executing. Ideally the Algol system would have
sealed the user program into a watertight compartment so that the system
sould be protected from even the most wayward programs. However, the
hardware characteristics of the machine were such that this was not possible
at a reasonable cost. Instead, the containment was simulated; when the
program terminated the compiler sumchecked its own code in an attempt to

detect interference. If an error was found the compiler would try to re-load

195

itself from magnetic tape, thus effecting recovery by restoring the system
to the Staté which existed before the offending user program was submitted.

This example illustrates two essential points. On detecting a
catastrophe the system falls back to an environment which expects much less
of its subcomponents: the illegal behaviour is now considered a mere fault.
For this to be possible, all the effects of the failing component which are
significant to its caller must be undoable.

Most operating systems make some provision for surviving an errant user
program. In a simple system designed to run student programs on a
micro-computer, the physical confines of the processor may provide sufficient
containment boundaries and the 're-boot’ switch an adequate recovery
mechanism. The experimental operating system developed at the Programming
Research Group in Oxford provides a somewhat more comprehensive mechanism,
but one which can be implemented economically without special hardware and
is available recursively to user programs themselves.

The recovery block scheme invented as part of the reliability project
at the University of Newcastle upon Tyne is a more elaborate mechanism. It
provides extensive facilities for recovery after failure but at a
substantially greater cost. These two examples of catastrophe handling will

be presented in more detail.

7.2.2 Rumning Programs under an Operating System

One of the functions of an operating system is to provide the means of
loading a program and initiating its execution. It is also usually
expected that the system be able to restore itself to some well-defined
state after the program has completed. Because the specification of the
program is not known to the system, the recovery mechanism must work

independently of whether or not a catastrophe occurred.

196

Recovery can be made to mean restoration of the system's state to
exactly that which existed before the program was ever submitted. But
this definition is inconveniently strong, because it means that no program
can every change the filing system or the state of the main store. Some
weaker definition is usually adopted, with the result that some programs
occasionally produce unpleasant effects, such as deleting an important file.
Other ad %oc recovery processes, usually requiring human intervention, may
then be available, such as restoring the file from a back-up tape.

As Stoy and Strachey observed in 1972 [91], the whole concept of

"program” is only necessary because of the possibility of failure. They
considered a program as that part of the nest of routine activations which
should be abandoned if a catastrophe is detected. This definition was
developed within the framework of the Pr@granming Research Group's
experimental operating system 0OSPRG.* WNevertheless, it seems to capture the
essential meaning of "program”; such matters as whether all of the program
was loaded at one time are irrelevant. Because these concepts are clearly
separated in 0OSPRG it provides a concrete framework within which the
pragmatic business of surviving catastrophes can be discussed.

Despite its experimental nature, OSPRG is a "real” operating system.
Its various incarnations have been in use in Oxford for twelve yearsion
various hardware: the system has alsc been ported to other sites and other

machines [88]. The complete text of a 1972 version is available as [92].

* The system has evolved from 0S1 in 1969 to OSExp16B at the time of writing:
0SPRG 1s a convenient name for a hypothetical system which adopts the
underlying philosophy.

197 |

OSPRG takes the form of a nest of load and go loops. Somewhere near
the tope of the hierarchy'is a virtual machine monitor, but because this
monitor itself provides facilities for the loading and obeying of
programs, it cannot be said to be at the top. In fact, in 0SPRG any
program may load or cbey any octher.

The system provides a primitive routine 'Run’ which takes a
parameterless routine as parameter: 'Runi{p]’ is similar in effect to the
simple call 'p[]’' except that certain parts of the state are recorded before
'p' is applied, and restored after it terminates. The particular values
saved and restored are the state of the free store systems for code and
data, the standard input and output streams, and various values connected
with the production of diagnostics when a catastrophe is detected. This
choice prevents 'p' from returning as a result a structure in main stbre,
because the restoration of the old free store state will erase it. Stoy and

Strachey observe [91]:

This is something of a disadvantage. It is possible to regard the
processor and core store as an evaluating mechanism which always
leaves its results as files in the backing store. But in practice
one wishes to leave results in core, and the desire to do this is
counterbalanced by the desire that the system should not allow any
permanent changes to the core in case they turn out to be mistakes.

In practice this difficulty can usually be overcome because 'Run’ does not
undo all the changes to the store. Global variables which are caused to
refer to routines or constants by the loader are reset when the code is
unloaded, as will happen at the end of the 'Run’. However, globals which
are set by explicit assignment are not reset at the end of the 'Run’: this

is partly ‘for reasons of economy, and partly because it is useful to be

198 -

able to return results from programs.

Itvshould be emphasised that 'Run'’ is not restricted to "supervisor
mode”, indeed there is no such concept in OSPRG. 'Run’ is also fully
recursive: any procedure may 'Run’ any procedure, to any depth, subject
only to the finite size of the machine. A user program implementing a
command interpreter may 'Run’ the programs indicated by its input: this in
noc way affects the degree of protection provided to the underlying system
which in turn 'Run’s the command interpreter.

The execution of a program may terminate for one of three reasons: it
may itself determine that it has completed its task, it may decide that it
has failed catastrophically, or it may be forcibly interrupted. The action
of 'Run’ is the same in all cases: the mere fact that a program completes
normally is no guarantee that it has complied with its specificatiaon.

Normal termination is usually achieved simply by returning from the
routine which was 'Run’, This implies that the writer of routine need
not know whether it will eventually be 'Run’ or simply called. It is a
principle of OSPRG that, as far as the writing is concerned, a program and a
routine are identical [91].

If the program detects that it has catastrophically failed, the
correct thing to do is to call 'GiveUp'. The semantics of 'GiveUp’' are
those of abort, so that the program may assume nothing after calling it.
The implementation of 'GiveUp' is rather more helpful, however.

'GivelUp' is a variable routine and may be freely altered by the
programmer, The value of 'GiveUp' is preserved and reset by 'Run’. It
»is initialized by the system to a default value, which typically prints
some diagnostic information and offers the user the option of a complete

dump of the state of his machine, which may be analysed at leisure. The

199 |

final actionof 'GiveUp' is to abandon all the procedure invocations of the
current 'Run'’ by simulating a return from the top level routine, i.e.
the routine provided as a parameter to 'Run’.

Many system routines call 'GiveUp' if they discover thaf their
preconditions have been violated. For example, the routine which creates
an output stream for overwriting a file requires as its precondition
permission to write to that file. For safety, it checks that writing is
actually permitted, and if not outputs a message and calls 'Givelp’'.

Some system primitives are implemented directly in the "hardware” of
the OSPRG virtual machine. These include not only basic operations like
division but some gquite elaborate buffering primitives intended to speed
up the operation of streams. If any virtual machine instruction discovers
that its precondition is false, a virtual machine error is signalled to the
interrupt routine, which in turn calls 'GiveUp'. Thus, from the user's
point of view, an attempt to divide by zero is treated in exactly the same
way as an attempt to write to a protected file.

If the user forcibly interrupts a program by means of the appropriate

key on his terminal, a similar effect is obtained. The terminal stream

causes an interrupt, which can call 'GiveUp' after some confirmatory dialogue

on the terminal.
The final act of 'GiveUp', i.e. abandoning all the invocations in the
current 'Run’, is accomplished by calling the routine 'Finish[]'. This is

the only non-local* jump available in OSPRG (apart from routine calls).

* Local jumps are available only through "structured” primitives like for
and while: gotc is never used.

It is useful because it enables users to write their own 'GivelUp’ routines,
but it is actually rather dangerous.

It sometimes happens that a program realises its task is completed
when it is deep in routine calls. Most frequently this happens because of
interaction with the user. It is tempting to call 'Finisﬁt]’ in such a
situation, but this has two unfortunate effects. The first of these is
that the placement of 'Run’s now affects the semantics of the program.
Replacing an invocation 'Prog[]’ by 'Run[Progl’ ought to be an invisible
action as far as the semantics of a working program are concerned. The
effect will be visible only if 'Prog' fails, i.e. either aborts by calling
'GiveUp’ or does something more subtle, such as omitting to close a stream
which it creates. However, because this substitution alters the place
to which 'Finish[]' jumps, there will be surprise effects if a procedure
uses 'Finish[]’ to achieve normal termination. Such a procedure is using
information about its environment which it ought not to have: in this case
it is the knowledge that the "firewall” created by 'Run’ for the purposes
of recovery is also a suitable place to which to feturn when the user
requests clean termination.

The second unfortunate effect arises because of the clearup problem
(see Section 2.2). 0SPRG maintains a stack of routines and environménts
called the 'ClearUpChain’. Whenever an activity is initiated which requires
some clearing up should a failure occur, the appropriate concluding action
is entered on the 'ClearUpChain’. If the activity completes normally it
removes the entry from the chain. Any entries remaining on the 'ClearUpChain’
when the program terminates are removed and invoked by 'Run’.

As an example of this action of the 'ClearUpChain', consider the creation

of a file stream. Invoking the routine 'BytestoFile[f]' constructs a
stream for overwriting 'f'. It places on the ’ClearUpChéin' a routine
'FailClose’ which deletes the partially constructed new body of 'f’',
leaving the old body of 'f' intact. 'FailClose’ is removed from the chain
if the stream is closed normally; it will only be invoked if, because of
some catastrophe, the current 'Run’ is terminated without the stream being
closed.

Using 'Finish[]’' to achieve normal termination means that the normal
closing down actions of the program must be placed on the 'ClearUpChain’.

At worst, this can lead to confusion between those actions appropriate to
catastrophe and those appropriate to normal termination. At best it reduces
the readability of the program, because it is more difficult to check that
the appropriate final action is taken in every circumstance.

The dangers of 'Finish[]' were not fully appreciated when OSPRG was
first designed, and it has become such an accepted part of the system that
its withdrawal would be strongly opposed. Indeed, the philosophy of the
system is to permit a user to access any routine he wishes. Nevertheless,
the decision to use a system routine rather than the BCPL command finish
is quite deliberate: "the meaning of the concept of finishing a program
depends entirely on the particular operating system, and its ad Aoc nature
is quite out of place in the semantics of a language with an hierarchical
structure” [91].

Some authors have proposed 'Exit' or 'Leave’ as an alternative to
'"Finish' [93]. The caller of 'Exit(procedure)’ must be a dynamic descendant
of ’'procedure’; the effect is equivalent to a normal return from 'procedure’.
Such a facility is available in the UCSD Pascal System [S4]. It makes a

nonsense of hierarchical structuring because a routine should not be

202 -

permitted to know that it is a dynamic descendant of another, let alone that
that procedure is an appropriate one to terminate. In contrast, the
raison d'étre of 'Run' is to declare to its dynamic descendants that it is

the place to which return should be made in the event of a catastrophe.

7.2.3 Recovery Blocks

Recovery blocks {52]1[77] are a structuring scheme which provides a means of .
surviving a catastrophe by confining its effects. Whereas in a general
purpose operating system the specification of a program is unknown, recovery
blocks require that it is made explicit.

An essential part of a recovery block is an acceptance test, a
Boolean expression which the action of the block ought to render true. In
general it will be too expensive for the acceptance test to check all of
the block’s postcondition, and some weaker test implied by the postcondition
will be chésen. For exémple, the acceptance test for a sort routine might
check that the array is ordered and that the sum of its elements is the same
as before sorting. Such a test is quite likely to detect faults in the
sorting process whose exact location and significance are unknown. Having
detected such an unanticipated failure, recovery blocks provide a means of
dealing with it.

The recovery block scheme is similar to the provision of "stand-by
spares” in hardware engineering. Having detected that a component has
failed, a spare component is switched in to take its place. Unlike the
hardware analogue, this component is not a mere copy of the one which
failed, but is of independent design. It is hoped that this will reduce
the likelihood that the same data will cause the "spare” component to fail

also. Another difference from the hardware case is that the spare software

component is invoked to deal with only the particular set of circumstances
which caused the main component to fail. This is because such failures are
assumed to be due to residual design faults, and should therefore occur
only rarely.

A recovery block, therefore, consists of an acceptance test which
approximates a postcondition, a normal algorithm intended to satisfy that
postcondition, and zero or more spare algorithms or alternates which are
independently capable of achieving the postcondition, although possibly in
less efficient or desirable ways. The term block is used to refer to the
structuring unit of the program design, be it module, routine, paragraph
or whatever. The text of any particular recovery block may include calls
on subordinate blocks in the usual hierarchical ways

When a recovery block is invoked its first action is to execute the
normal algorithm. If a failure is detected during its execution, due perhaps
to attempting an illegal operation or to the failure of a sﬁbordinate
recovery block, then the next algorithm in the block is attempted. This is
also done if, after completion of the normal algorithm, the acceptance test
does not evaluate to true. However, before the alternate algorithm is
invoked the state of the program is reset to that which existed when the
recovery block was entered. Thus, everything that was done by the failing
algorithm is discarded. If the first spare algorithm does not satisfy the
acceptance test, the state is again reset and the next alternate is invoked;
this process is repeated until either the test is passed or the set of
alternates has been exhausted. In the latter case the recovery block as a
whole fails, and further recovery is only possible at a higher level.

Central to the recovery block scheme is the resetting of the state

before invoking the alternates. Because the mechanism is designed to deal
with unanticipated catastrophes,the only thing known when a failure is
detected is that the state of the program is erronecus. Any assumptions
made about that state are therefore likely to be wrong, and there is
precious little prospect of satisfactory continuation. However, by going
back to a previous state and trying again with a different algorithm there
is a reasonable chance that the specification will be satisfied. Pilot
studies [5] show that a high degree of recovery can be achieved. In part
this is because the assumptioﬁ that all the alternates start from the same
state enables their designs to be independent. The designer of an
alternate need not concern himself with the designs of the other alternates,
or even know if they exist. He certainly should not have any responsibility
for repairing the damage they may have caused.

The automatic resetting of the state is partly accomplished by a
mechanism called a recursive cache. A description of the recursive cache is
beyond the scope of this thesis; essentially it detects assignment to
non-local variables and retains their prior values as well as their new ones.
The interested reader is referred to [52] and [5]. Consideration of the
additional problems introduced by the failing probess communicating with
other processes (be they mechanical or human) will be found in [77] and
[78].

Clearly, replacing simple routine calls by recovery blocks will greatly
increase the size of programs. However, it is argued that this does not
imply any increase in complexity, because of the essential independence of the
alternates [78]. The Foﬁﬂ of failure handling employed is actually very

simple; this would seem to be an essential requirement of any scheme

205

designed to improve software reliability. No attempt is made by the program
to determine what went wrong or why: detected failures are simply logged

for later inspection by the maintenance staff.

7.2.4 Backward Recovery and Programming Languages

Neither OSPRG Runs nor Recovery Blocks are programming language features.

They are means of marshalling programs into a system, and represent a level of
structure above that of the programming language.

The Run mechanism of OSPRG was designed to take up where the routine
mechanism of BCPL left off. In a more conventional operating system 'Run’
would only be expressible in the job control language. The fact that
Run is actually a BCPL routine derives from the decision that BCPL should

be the Jjob control language too.

Similarly, although recovery blocks are often illustrated in a pro-
gramming language-like syntax, they are really a tool for collecting together

programs to form reliable systems. This vital distinction cannot be
stressed too strongly. They are intended to detect and recover from
residual design errors, not as a control structure. The programmer who
'Runs’ a procedure rather than calling it directly, or who replaces a
simple call by a recovery block, does not do so to change the semantics
of the program. His interest is to guard against the "impossible” and

thus improve reliability.

7.2.5 Forward Recovery

Recall that, by definition, recovery is nscessary because the state of the
system is detectably inconsistent. Forward recovery is an attempt to regain
a consistent state by making use of the inconsistent data. This is obviously

a tricky procedure. Randall, Lee and Treleaven comment as follows [787]:

7Tﬁé';éié%gvéisimpliéityrbf badkward error recovery is due to two
facts: first, that gquestions of damage assessment and repair are
treated quite separately from those of how to continue to provide

206

the specified service; and second, that the actual damage assessment
takes virtually no account of the nature of the fault involved. In
forward error recovery these gquestions are inextricably intermingled,
and the technique is to a much greater extent dependent on having
identified the fault, or at least all its consequences.

A forward recovery scheme must be designed as an integral part of a
system, rather thah forming an essentially separate mechanism as with
backward recovery. There is thus a considerable danger that the increase
in the complexity in the system this generates will reduce rather than
increase reliability. However, because certain environments cannct be
backed-up, forward recovery is sometimes necessary. Once a missile has
been launched no amount of backing-up of the control computer will cause
it to return to base. Some positive instruction to the guidance system is

necessary in order to disarm or destroy the missile.

7.2.6 Exception Handling as a Forward Recovery Mechanism

Having recognized that forward recovery is a difficult £ask, we must ask
whether the presence of exception handling mechanisms in the programming
language will make that task easier.

Faced with the problem of recovering from an inconsistent state, the
programmer must ignore some aspects of that state and pay extra attention
to others. How is he to choose which data to use and which to ignore?
There are two possibilities. The first is to apply his knowledge of the
failure modes of the components. For example, it may be that if the two
outputs of a particular routine contradict each other, then the first
should be ignored in favour of the second. However, all of the information
the programmer has about his components ought to come from its specification:

he must not be permitted to write a program which depends on the "secret”

207

behaviour of a component. Why? Because such a program is unmaintainable:
replacing one component with another of identical specification but with a
different "secret” will cause unpredictable changes in the behaviour of the
overall system. In this particular case, the recovery algorithm will
make matters worse instead of better.

If our intent is to constrnict a fault-tolerant system, we are thus
lead to the conclusion that details of the failure modes of each component
must be included in its specification. Observe, however, that once this has
been done, the mode of operation under consideration is no longer a
failure. On the contrary, it is part of the defined behaviour of the
component. However undesirable that behaviour may be, it is now openly
recognized. A programmer using the component now has both the responsibility
of dealing with the undesirable behaviour and the knowledge necessary to do so.

At the start of this section I mentioned that there were two ways
in which a programmer might be helped to proceed when faced with an
inconsistent state. The first, just discussed, amounts to changing the
specification so that the state is no longer inconsistent, i.e. so that
the data the programmer possesses unambiguously tell him all that is
necessary. This approach has been criticised as "defining the problem away”.
In my view it does just the opposite. It insists that all the details of
the problem are openly adnitted. This seems to be an essential first
step in the process of finding a solution.

The second way in which a programmer can be given more confidence in
some aspects of an inconsistent state than in others, is if in some manner
independent of his program he is assured that some data come from a more

reliable source. The recursive cache can be viewed as an example of this:

208

an error in an alternate may well give rise to a state which does not
satisfy the acceptance test, but it is most unlikely to corrupt the data
in the cache. This is because the cache is not administered by the
programmer, but is part of the underlying abstract machine on which the
program runs.,

In backward recovery, the data in the cache is used to rollback the
state en masse. Even if this is not possible, say because some irreversible
action has been performed, it is easy to envision the cached data being
used to determine which aspects of the current (inconsistent) state are
correct and which are incorrect. Notice, however, that before it is
reasonable to use data in this way, one must have a very high degree of
faith in their correctness. |

At the point where a failure is discovered, one has little or no
faith in the correctness of data maintained by the program’s code: it has,
after all, just failed. However, data maintained by an underlying level
of abstraction is unaffected by programming errors at the higher level.
Its correctness is therefore not suspect.

This is the essence of the argument that some form of protection
mechanism is necessary to perform recovery, and that such a mechanism should
not be part of the programming language. An excebtion handling mechanism
embedded in the programming language is irrelevant to the business of
recovering from failure. Exception handling mechanism can assist in the
construction of components which behave in a more complicated way instead
of failing; as was shown in Chapter 4, other language mechanisms can do

this too.

2098

Anather way of exhibiting the difference between recovery and
exception handling is through the observation that recovery is appropriate
when an unanticipated error occurs. This may be a resiéual design error
that was not discovered when the program was specified and constructed,
or it may be due to a hardware failure, the precise éharaoteristics of which
must be unknown until it occurs. In contrast, exception handling
involves predicting faults éﬁd their consequences before they happen,

i.e. when the program is written. Thus, while it may be useful for
dealing with anticipated unsatisfactory behaviour such as the provision
of invalid input, it cannot be used to provide design fault-tolerance.

This rather traditional view is well expressed in [77]:

The variety of undetected errors which could have been made in the

design of a non-trivial software component is essentially infinite.

Due to the complexity of the component, the relationship between any

such error and its effect at run time may be very obscure. For

these reasons we believe that diagnosis of the original cause of software
errors should be left to humans to do, and should be done in comparative
leisure. Therefore our scheme for software fault tolerance in no way
depends on automated diagnosis of the cause of the error - this would
surely result only in greatly increasing the complexity and therefore
the error proneness of the system.

In fact, exception handling and recovery, whether forward or backward, are
distinct techniques designed for dealing with different problems. The following
example is designed to bring out this difference; it is based on the appendix

to [71]. The basic form of the program is the recovery block:

ensure consistent_inventory
by process_updates

elseby refuse_updates

else fail .

210

The program is assumed to manipulate an inventory file whose consistency
must be maintained. The procedure 'process_updates’ invokes another

procedure ’'checknum’ to read and check the updates. 'Checknum' assumes

proc process_updates is
var num:integer

while updates remain

do update_number := update_number + 1
num := checknum()
end do

end of process_updates

proc checknum returns j:integer is
var count:integer = 0
proc message is
count := count + 1
if count < 3
then write(’please try again’)
retry
else write ('three input errors: update abandoned’)
o fail
fi
end of message

read(j) [overflow, underflow, conversion: message()
ioerror: fail]
end of checknum

proc refuse_updates is
write('sorry - last update accepted was number’)

write(update_number)
end of refuse_updates

Figure 7.01: Complementary use of exception handling and recovery blocks.

211

the existence of an exception handling mechanism and a procedure 'read’
which is used to obtain input and may generate exceptions.

In Figure 7 .01 explicit exception handling is used to allow the
user three attempts to produce the correct input. The statemeﬁt retry
specifies that the statement which raised the exception should be executed
again. fail specifies that the current alternate of the recovery block
has failed; the recovery mechanism will then reset the state and attempt
the next alternate. In this example the fail in ’'message’ will cause the
abandorment of 'process_updates’ and the invocation of 'refuse_updates’.
The same thing will happen if 'process updates’' fails to pass the
acceptance test for any reason, including a residual design or progranming
error in its code, or in the implementation of the exception handling
mechanism.

'Checknum’ is actually a slightly simplified version of a routine
of Wasserman's [99]. The simplification is possible because the recovery
block structure will take care of clearing-up. Wasserman introduces
'checknum’ not just as an exercise for his exception handling mechanism
but specifically to Justify the inclusion of the retry primitive. It is
therefore instructive to program 'checknum’ using neither facility.
Figufe §.02 illustﬁgtes the result of this exercise.

The version of ’Checknum’ in Figure 7..02 uses (tail) recursion instead
of retry. It assumes that instead of generating exceptions, 'read(j, r)’
uses two output parameters; 'r' is an enumeration value indicating the

fate of the read, and 'j’ is the result as before.

212

proc checknum returns j:integer is
var count:integer = O

reaq;j

where read j is

var r: oneof (readOK:singleton
overflow:singleton
underflow:singleton
conversion:singleton
iocerror:singleton

el B NE ue e

read(j, r)

if Is readOK(r) => skip

T Is icerror(r) =>fail

0 Is overflow(r) or Is underflow(r) or
Is conversion(r) => message

fi

where message is

count := count + 1

if count < 3 =>

- write('Please try again’)
read j

[count 23 =>
write ('three input errors: update abandoned’)
fail

fi
end of checknum

Figure 7.02: checknum without exception handling

This example is trivial compared to many of those in Chapter 4; it does
however serve to illustrate the difference between exception handling and
recovery. Exception handling is just another language feature, and one
whose function is subsumed by procedures, arguments and results. It is thus
essentially irrelevant to the problem of providing fault-tolerance in
software, the problem which recovery blocks were designed to solve. Any
reasonable response to residual design errors must avoid attempting

automatic diagnosis of the fault, "a task whose complexity is such as to

213

be productive of design faults, rather than conducive to the design of

reliable systems” [78].

7.3 Using a Recovery Mechanism for Exception Handling

I have argued above that exception handling is inappropriate as a recovery
mechanism. But what of the converse: can a recovery mechanism be used

for exception handling? In other words, can a recovery mechanism be used
to deal with events which are not failures (even though they may be unusual
in some subjective sense)?

The answer to this question is "yes”, and fhe availability of
'Finish[]’' in OSPRG (see Section 7.2.2) demonstrates one possibility. It
is also conceivable that recovery blocks could be used to implement backtrack
programming [9] [90]. A more interesting gquestion is whether one should
use a recovery mechanism in this way.

The argument in favour of such a use is simply stated. The recovery
mechanism exists, and happens to help the prograrmmer achieve the desired
effect. Clearly it should be us;d to do so, rather than constructing a
second device to do the same thing.

The argument against can be generalized from fhe above discussion of
'Finish'. Readability is impaired because one can no longer be sure that
invocation of the recovery mechanism implies the occurrence of .a catastrophe.
More importantly, the use of the recovery mechanism for its original
purpose is jeopordized.

My own experience in this area is admittedly limited. Although I
must admit to using 'Finish’, I may at least claim that I always felt

guilty about doing so - without really knowing why. I could not ascribe

214

this feeling simply to a dislike for non-local jumps, because I had no
reservations over the use of 'GiveUp'. One of the benefits of writing this
chapter has been the realization that 'Finish’ and 'GiveUp’ are not
symmetrical primitives, and that the placement of 'Run’s to provide

optimal recovery after a 'GiveUp’ may not correspond to the placement
required by 'Finish’. It is then tempting, and highly dangerous, to adjust
the 'Run’ structure to deal correctly with calls of 'Finish’ and to let
'GiveUp' take care of itself.

The danger is illustrated by an analogy due to C.A.R. Hoare. The
installation of a fire alarm system involves the fixing of loud bells S0
that all the occupants of the building can hear them. It is obviously
convenient to use such bells to indicate the presence of callers at the
front door. A short ring could represent a visitor, and a continuous ring
a fire.

Economical as this scheme may be, there are at least two reasons why it
is prohibited. The first is that the continuous ringing of the fire alarm
might be attributed to a small boy putting chewing-gum into the bell push.
The second is that the professor, tired of being continuously interrupted
by tradespeople, will contrive to disconnect his alarm bell.

The programming notation 3R [11] [2] provides an example of the
consequences of misusing a catastrophe mechanism. 3R is designed for the
production of publishable programs [87]. It is a minimal language, but
originally included the notion that any statement could fail. A basic
operation such as assignment or multiplication might fail because of an
implementation malfunction or insufficiency. A guarded command [22]
would fail if no guard was true; to emphasise this the closing bracket was

represented as otherwise fail rather than fi. An invocation would fail if

any command in it failed.

In order to report on and perhéps clear-up after such catastrophes,
the concept of a tested invocation was introduced. Whereas the simple
invocation 'routine’ would cause the invoking block to fail if 'routine’
itself failed, the tested invocation test 'routine’ would not. Instead
it was possible to examine thelstate of the computation to see whether
'routine’ had failed or not, and to act on the result.

Because no state restoration was performed by test, trying to continue
after a failure was very risky, or indeed impossible in the case of a
machine failure. Attempts to axiomatize fail and test demonstrated this

»

very clearly. However, it had meanwhile been observed in practice that

machines fail rarely, and that deliberate use of the test and fail commands

to simulate a boolean result could sometimes prove to be very convenienf.
By the time I formulated a rigorous definition of 3R [11], fail had become
Just another control construct, completely stripped of any connotation of
catastrophe. If a programmer was using fail to communicate essential
results, it would have been disastrous if a faulty guard might cause the
failure flag to be set unexpectedly. The semantics of the guarded command
were therefore changed so that the failure flag was not set. To reflect
this the closing bracket of the alternative construct was rendered as

otherwise chaos; I hoped this would better convey the consequences of failing

to ensure that at least one of the guards was true. Chaos is the state in
which false is true, in other words the catastrophe state defined at
the beginning of this chapter.

Since this time 3R has been used for further projects by Euro Computer

Systems. They have concluded that, while sometimes very convenient, fail

216

has not earned itself a place in the language. Indeed, it has not been used
in any of the modules written recently. In summary, one sses that what was |
originally intended as a catastrophe mechanism was modified until it

became a primitive exception handling mechanism. As such, it was found

to be insufficiently useful and has been abandoned. In practice, it seems
that attempts to misuse catastrophe mechanisms for other purposes are

likely to fall, or even lead to chaos.

Chapter 8

CONCLUSION

In the preceding chapters of this thesis I have argued that exception handling
mechanisms are both unnecessary and undesirable. I have also argued that
catastrophes, i.e. the totally unexpected, cannot be "handled” but must

be survived, and that a catastrophe is a very different concept from an

exception. It is appropriate here to summarize these arguments.

8.1 Exception Handling <s Unnecessary

Recently the belief has grown up that some form of exception mechanism is
an essential part of both specification and progranming notations. Some
programmers have been led to believe that the awesome responsibility of
dealing with all possible cases could be lifted from their shoulders by
adding a construct to their programming language - if only the right
construct could be found,

I do not share this belief, and one of the principal motivations for
this thesis was my desire to point out both that abstract specifications
can be written without abstract errors (see Chapter 5), and that a
programming language exception mechanism neither prevents the construction
of erroneous programs nor provides a way of dealing with errors that
absolves the programmer from thinking about them.

Nevertheless, because the popular press and the authors of at least one
programming language (see Section 1.5) seem to be confused as to the
capabilities of exception handling mechanisms, let us examine the various kinds
of error that may occur during the construction of a program, and see
whether exception handling mechanisms are relevant to their correction.

217

218

I believe, as ;Dijkstra has so aptly put it [23], that "programming is
a goal directed activity”. I am convinced that one should decide what one
is trying to do before setting out to do it, or in more technical terms,
that specification should precede implementation.

Unce given a specification, the programmer is responsible for
implementing it. Of course, there are specifications which are impossible
to implement.

One hopes that designers will not generate such impossible specifications
frequently, and that programmers will tell specifiers if they have erred.
Indeed, it is one of the functions of an engineer, whether of hardware or
software, to recognize the constraints of Physics and Mathematics. If a
civil engineer is asked to build a railway bridge across the First of Forth
out of bamboo, he should feel free to say that it is impossible. A
software engineer should say the same about a request for a square root
program applicable to all real numbers. Recognizing an impossible
specification has nothing to do with generating an exception - it happens
before or during the construction of the program, not while it is running.

When the program is completed and delivered, it should comply with its
specification: I do not believe that this should be exceptional. If it does
not, it is because the progremmer has made an error, such as overlooking
the consequences of an action or making an unjustified assumption. Such
errors are also not exception occurrences: they should be corrected before
the program is delivered, not handled while it is being run.

Finally, if the program is correct but is invoked from a state which
does not satisfy its specified precondition, what should happen? Anything

at all - for that too is an (implicit) part of the specification.

2189

The ability to leave the action of a component unspecified when it is

invoked from an illegal state is one of the most useful aspects of a
specification: it allows the implementor the maximum freedom to optimise

and to use existing components. If a program is used without first achieving
its precondition, we may deduce that the very reasaoning on which the invoking
program was based is faulty. By the same argument as above, that is not an
exception; it is a programming error. However, because such errors do occur,
it is often appropriate for a program to be suspicious of its inputs and

to provide an alarm if it detects that they are not as specified. Programs

which are written in this way are said to be robust.

It seems necessary to require the specification of a program to define
the conditions (if any) under which exceptions will be generated. If
exceptions are not so specified, an invoking program could never be prepared
to handle them and their existence would be pointless. So an alarm from a
robust program reporting illegal inputs is also not an exception, for such an
alarm is by definition not part of its specified behaviour. In any case,
"raising an exception” is hardly a suitable alarm: there is no ground for
believing that the reasoning behind the invoker's "exception handling”
is any less faulty than that on which the original invocation was based.

From this reasoning it follows that exceptions have nothing to do with
"errors” or "failures”; they are relevant only when a program complies with its
specification, i

The fact remains that exception handling mechanisms have been proposed
and implemented, and we may therefore ask what facility they add to a programming
language. The answer is that they are a new control structure;-ih same
'.lahguages carefully restricted in application, and in others so general as to

replacé»thegoto. Exception handling'mééhanisms'are unnecessary because

220

they can always be replaced by union results, parametric procedures and
partial operations (see Chapters 4, 5 and 6). The question‘ranains whether
an exception handling mechanism is a desirable addition to a modern

programming language.

8.2 Exception Handling <s Undesirable
Programming languages are not just arbitrary notations. If fhey were, then
it would indeed be advisable to éhoose that With the largest and richest
sponsor or the fastest compiler [45]. Buf in fact the choice of notation
has an important influence on the way we reason. The notation of
mathematics is an important aid to logical reasoning: equations can be
manipulated symbolically with an ease and rapidity that would be guite
impossible if their meaning had to be considered at every step.

Similarly, a programming language should be constructed with the aim
of making programs written in it easy to understand and reason about.

Simplicity is one desirable property of such a language. Thus great care

should be taken before any nonessential feature is included.
"Exception handling is just such a nonessential feature.
It is nothing more nor less than an additional control

structure for programming languages. Before adding any such structure it should

be encumbent on language designers to ensure that it encourages clear,

structured and modular programming.

221

The reason that exception handling mechanisms are undesirable is that, -
whereas they are irrelevant to the correction of erroneous programs, |
write reliable programs, they make it more difficult. It is instructive to

look at some of the problems some exception handling mechanisms have introduced.

(1) They permit non-local transfers of control, re-introducing the dangers
of the goto and the problem of clearing-up.

(ii) They can cause parallel processes to interact other than through the
normal communication channels. This greatly complicates reasoning
about the co-operation of those processes.

(1ii) If "functions” are allowed to generate exceptions, a rift is introduced
between the concepts of "function” in the programming language and in
mathematics. This complicates the semantics of the language and makes
reasoning about programs more difficult.

(iv) Recursive exception handling is extremely complex. If an exception
occurs while another exception is being handled, an arbitrary decision
must be made as to which has precedence. The problem arises because
the ultimate action of a handler is often to perform a non-local
transfer of control while transmitting some result. Two conflicting
transfers or result values produced by recursive application of the
exception handling mechanism cannct both be honoured.

(v) An exception handling mechanism may be used to deliver information to a

level of abstraction where it ought not to be available, viclating

222

the principle of information hiding.

(vi) If a list of possible exceptions is incorporated into the syntactic
interface of a procedure, that interface is thereby complicated, and
interfaces are‘the very part of a program which one wishes to keep
as small and simple as possible. On the other hand, if exceptions
are not so specified then the dangers of using them are increased, and

many of the advantages of strong typing are lost.

To be harmléés, an exééption héndling mechanism must be constrained
to avoid these problems. In fact, rather than doing so, many proposals
for exception handling suffer from excessive generality: they are powerful
enough to subsume procedures, paremeters, results, coroutines, gotos,
dynamic binding and abort. The CLU exception handling mechanism is one
of the most constrained. It completely avoids problems (i), (ii) and (v) by
confining itself to one level of procedure call, resolves (iv) by jumping
and delivering results before invoking the handler, leaves resolution
of (iii) to the programmer, and on point (vi) decides that a complicated
specification is better than none at all. This Should not be taken as a
criticism of CLU; on the contrary, CLU's exception mechanism is markedly
superior to most others. For example, the Mesa unwind primitive makes
problem (iv) doubly serious, and the absence of any mention of exceptions
at procedure interfaces is a throwback to the days before type checking.
The Ada mechanism is objectionable on all of the above counts and on

several others.

223

It seems clear, then, that existing exception handling mechanisms
are not a desirable addition to a programming language because of their
interaction with other, more necessary, language features. But how can we
be sure that this implies that exception handling mechanisms are bad per se,
rather than merely that existing mechanisms are insufficiently constrained?

Without a definition of exception it is, of course, guite impossible
to show that a mechanism for handling exceptions can never be useful.
I myself have argued thaf cntastrophe handling mechanisms Cén be very nseFul,
s0 extending the meaning of "exception” to include "catastrophe” would
immediately provide an example of useful exception handling. Nevertheless,
if one restricts exception handling to mean something similar to the
action of the mechanisms described in Chapter 3, then a mechanism which
avoids the problems listed above seems to be necessarily somewhat like that
of CLU. Such an exception mechanism must provide a way of dealing with
"unusual” results. If it is constrained to deal with a single procedure
invocation then there is no gain in brevity or clarity over the use of
results values which may be oneof a number of different types. On the
other hand, if the mechanism may apply a single handler to several
invocations, one achieves brevity but is simultaneously assailed with the
dangers of defaults. It is far too easy to omit a necessary handler and
to have an exception caught by an inappropriate handler from a surrounding
scope. This was clearly illustrated by the example of Section 4.1.

Now that the dangers of large languages with excessively general
features are becoming appreciated, one is entitled to ask why exception
handling mechanisms were ever proposed. The motivation seems to have been

twofold. One aspect of the case was a desire to make available the "full

224

* power of the machine” to the high level language programmer. When PL/I was
designed it was ohserved that the hardware provided "traps” for arithmetic
underflow, and ON conditions were included as a way of allowing the
progranmer to use them. Extending ON conditions to deal also with conditions
detected byAthe run-time system was an attempt to create a homogeneous
interface between the language and the implementation by modelling the

former on the latter.

Since the 1860's our attitude towards computers has matured. Instead
of a programming language being visualised as a tool for controlling a
computer, the computer is considered as a tool for implementing a
language. Language features are now assessed as much on the help they
provide to the programmer as on the ease and efficiency with which they
may be implemented. This is not to say that efficiency of implementation
is unimportant, for however fast and cheap computersbecome it will
always be faster and cheaper to use them efficiently [45]. But efficiency
of the ohject code is not the only consideration: if the costs of programming
are increased or the reliability of programs reduced, then the saving of
machine cycles has been counterproductive.

An encouraging example of the trend towards simple, programmer-coriented
languages is provided by Edison [40].

The variant of the Edison language for PDP-11 computers, Edison-11,
is implemented by ignoring interrupts completely, even at the machine level.
The only synchronizing primitive is a form of the conditional critical
region. Input and output are controlled by explicitly testing the state

of the appropriate registers in the device. If a process is suspended

225

because a device is not ready it must wait until the other processes (if
any) terminate or are suspended, and then test the device registers again.
This simple scheduling scheme reduces the overhead of process switching to
one-fifth of that of an interrupt drive concurrent Pascal implementation
[39].

Now consider the main loop of an Edison program for backing-up a disk

to magnetic tape described in [41].

while more disk do
i:=D§_t_i ——
cobegin 1 do write tape(x[not i])
also 2 do read disk(x[i])
end

end

——

The cobegin statement denotes concurrent execution. The disk is read and
the tape is written simultaneously, but no communication is necessary
because the two processes operate on disjoint buffers. Since 'i' and
'not 1' must be different, and 'i' is only changed when execution is
purely sequential, the integrity of the program is guaranteed. The simplicity
is achieved by re-creating the reading and writing processes for each
cylinder. This is feasible because the simple form of concurrency used in
Edison makes process creation and termination very cheap. When backing up
a disk on the PDP 11/55, re-creating these processes imposes an overhead of
less than 0.06 per cent.

The lesson to be drawn from this illustration is that trying to make use
of the "full power of the machine” (in this case interrupts) not only makes
programming more difficult by complicating the language but is often quite

unnecessary: efficiency can also arise from simplicity.

226

The second consideration which seems to have motivated exception handling
is a desire to write the code for the normal case first and to avoid
cluttering it with tests for less desirable cases. Considering these other
cases later permits concerns to be separated in a commendable way. However,
the same separation can be achieved by writing the normal case code as a
procedure which is called only when tests have established that the case
really is normal. This method has the additional benefit of making the

conditions for normality explicit.

A related motivation is that checking the results of an operation to see
it a particular event has occurred can be a chore for the programmer. This
is quite true. However, if the action to be taken on discovering the
"unusual” event is the same for several invocations, then procedures provide
a suitable means of abbreviation. On the other hand, if different actions
are required at each invocation then setting up a different exception
handler at each place is even more of a chore than writing the equivalent
1f statements.

The associated complaint that testing is a serious source of
inefficiency [88] seems to be vacuous. Since the result of the operation
will be on the stack, comparing it with a constant and branching on the
result will take very few operations - far fewer, in fact, than the overhead
imposed on procedure calls by the implementation of most exception handling
mechanisms. One implementation which does not place an overhead on calls
is that chosen for the Mesa mechanism; if exceptions are never generated
the only extra costs at run time are increased code size and a single branch
instruction per handler definition. As a consequence, generating an exception
in Mesa is fairly expensive: indicating an unusual event with a signal

costs about four hundred times as much as usimg a result [26].

227

It is nevertheless true that certain conditions may be known to occur
so rarely that there may be an overall saving of execution time in spite of
this ratio. This is even more true with other implementations. As was
shown in Chapter 4, the restricted nature of the CLU mechanism makes it
implementable with little overhead, and a few instructions may be saved
even when frequencies differ by a much smaller ratio. It is my view,
however, that while this sort of argument may have been an appropriate
motivation for the FREQUENCY statement of Fortran II, it should not be
allowed to influence the design of a modern programming language. Methodological

considerations are far more important.

8.3 Exceptions and Catastrophes

In contrast to exceptions, catastrophe is a well-defined abstract concept.
One of the reasons that exception handling is not just undesirable but
positively dangerous is that it encourages the belief that catastrophes and

exceptions differ only in degree, whereas in fact they differ in kind.

A catastrophe occurs when some component fails to meet its sﬁéci?ication.
Even if all software components are proved correct, the possibility that
the hardware may fail is ever present: catastrophes will occur.

Catastrophes differ from exceptions in that they are totally

unexpected. The accepted view of an exception is as an indication that some

event has occurred. Whether or not it is a desirable event is unimportant:
what is significant is that the programmer was aware that it might happen,
was able a priori to fully understand the implications of its occurrence,
and has coded a handler which makes some well-specified response. In

contrast, a catastrophe indicates that the impossible has happened. The

|

228

programmer had no way of sven knowing that this particular impossibility
might occur, and certainly did not understand all its implications.
Because the symptoms of a catastrophe are likely to be totally unrelated
to its cause, it is more appropriate to speak of surviving a catastrophe
than recovering from it. Because the effects of a catastrophe may be
widespread and unquantifiable, the only hope of survival lies in

containment. Catastrophe handling involves dividing a system into secure

compartments protected from each other by "firewalls” which one hopes will
be proof against catastrophes. Firewalls are likely to be strongest when

they are directly supported by the underlying hardware. For example, in a
multiprocessor configuration in which each processor has its own physical

memory, a catastrophe in one processor is unlikely to corrupt the state of
the others. However, if they share a store segmented by software or even

firmware, the possibility of cross-contamination is increased.

It is also important to>remember that there is a cost associated with
establishing a "firewall”. 1In the case of the 'Run’ structure of OSPRG the
cost is small, but the degree of protection provided is correspondingly
limited. Recovery Blocks provide much better containment but at a greatly
increased cost. Because of this cost it is quite inappropriate tb set up
firewalls at each abstraction boundary. Whereas exceptions are supposed
to be trapped as close to their source as possible so that there is
sufficient context for their correct analysis, the handlers for catastrophes
may be quite widely spaced. No automatic analysis of the cause of the
catastrophe is even attempted: from the other side of the firewall only
survival is important. This may take the form of an attempt to re-create

the failed component or a continuation without it.

229

8.4 On Subjectivity and Proof
A potential objection to this thesis is that it is nothing but an expression
of my own opinion. That is an oversimplification. While I have not
hesitated to express my opinion where it seems relevant, I have also
presented the evidence on which it is based. Part of that evidence is the
experience of other programmers with exception handling, and part is the
series of comparative examples., |

It is pertinent to ask how my argument could be made more objective
and rigorcus. The thesis that'thé occurrence of unusual or Uhdesifablebevents
can be dealt with in the same way as any other programming problem is not
susceptible to formal proof. Any decision about what should and should not
be included in a programming language must be subjective because the
language will be written and read by people. Rejecting all subjective
assessment means that any language is as good as any other, only providing
they are all universal (in the sense of a universal Turing machine). Those
who believe this will not be convinced by my arguments; indeed, they will
probably not have read this thesis. On the other hand, my argument can
be disproved by a single counter-example; this thesis could be interpreted
as a challenge to the proponents of exception handling to produce an
example of a well-handled exception.

The qualities of a convincing proof vary from one reader to another.
Even in a mathematical proof it is necessary to make assumptions about the
size of the step that a reader will be able to understand: except in the
most trivial theorems, resorting to proof theory at each stage would
be impossibly tedious for the thecrem proover and would render the
proof incomprehensible to the reader. The same problem faced me when

writing this thesis. Some people may have been convinced of my hypothesis

230

before they read this thesis, while others may find the leaps in intuition
required by my argument are too large. I hope I have made a reasconable
compromise, and that even those who are not convinced by my arguments may
at least be prompted to ask for substantiation of the often unsupported
counter-claim that exception handling mechanisms must be available in

the programming language.

8.5 Suggestions for Further Work
It is conventional for a doctoral thesis which has proposed some new idea
to outline areas where further investigation is required and directions in
which extension might be possible. This thesis, by disposing of a language
feature, disposes also with all need for smoothing its rough edges. What
further work is appropriate to substantiate this thesis?

The most obvious suggestion is that the experiment of writing programs

without exception handling mechanisms should be conducted as widely as

poésible. d%wéburse, this ”experiment" has been in progress for mény

years, and the results to date have been encouraging. Many readable programs
have been written, and some even published, which cope with diverse
behaviours without using exception handling mechanisms. I hope that

language designers encourage the continuation of this experiment by excluding
exception handling mechanisms from their products, and devoting their

efforts to other issues.

Two language design issues which are raised by thisyresearch are the
availability of data type unions and procedure-valued variables. It
certainly seems to be true that unions have not been carefully designed in
many existing languages. As was shown in Chapter 5, there is no difficulty
in determining the semantics of a disjoint union. However, there are

engineering problems in integrating such a facility with the rest of the

231

language. The conventional wisdom is that in order to achieve type security
at an acceptable cost an additional syntactic structure like the CLU
tagcase statement is required. Whether the implementation techniques
suggested in Chapter 6 make this unnecessary is an open question. Whether
or not injecting to (or projecting from) a union should ever be implicit
operations is a decision which can only be made in the context of a particular
language. These questions can only be resolved with experience of the use
of oneof types for representing different kinds of result.

Treating procedures as manipulable values seems to be harmless enough
in isolationl However, when combined with nested procedure declarations,
block structure and free variables, problems are posed for the compiler
writer. Some languages have eliminated non-global free variables in order
to avoid these problems; in ofhers procedure parameters and procedure N
assignment have been omitted. With the development of module structures
which provide for explict exposure of names, it may be that nested procedure
declarations and block structure are the least useful facility. Or perhaps
all these features are sufficiently important to warrant the small increase
in implementation complexity required to accommodate them. It is even
possible that as implementations of applicative languages become more
efficient assignment itself may become an error-prone anachronism.

The trend towards simpler languages presents their designers with both
a challenge and an apportunity. In a baroque design each irregularity is
camouflaged by many others. In a small, compact language every facility
must be manifestly worth its place; any special cases are plainly visible.
The design of a programming notation which is so simple and natural that
its semantics are obvious on inspection provides opportunities encugh for
the exercise of ingenuity and skill. There is no need to search for ever

more sophisticated constructs which will inevitably perplex rather than

enlighten.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

2al

[13]

[14]

[15]

REFERENCES

Adams, J.M. and Black, A.P. 0On Proof Rules for Monitors. Operating
Systems Review Vol. 16 Nr. 2 (April 1982) pp. 18-27.

Alcock, D.G. Readability of Design Programs. Proc. Collog. Interface
between Comput. and Design in Structural Engineering, Bergamo
(Sept. 1978) pp. IIL.1-III.10.

American National Standards Institute. Standard FORTRAN X3.9-1966.

American National Standards Institute. Programming Language PL/I
X3.53-1976.

Andersan, T. and Kerr, R. Recovery Blocks in Action: a system
supporting high reliability. Proc. Int. Conf. Softw. Eng.,
San Francisco, October 1976. IEEE and ACM.

Andfews, G.R. Parallel Programs: Proofs, Principles and Practice.
Commun. ACM Vol.24 Nr.3 (March 81), pp. 140-146.

Atkinson, R. and Liskov, B.H. Aspects of Implementing CLU. Proc.
ACM Annual Conf. 1978, pp. 123-129.

Best, E. and Cristian, F. Systematic Detection of Exception Occurrences.
Technical Report, University of Newcastle upon Tyne (Feb. 1981).

Bitner, J.R.-and Reingold, E.M. Backtrack Programming Techniques.
Commun. ACM Vol. 18 Nr. 11 (Nov. 1875) pp. 651-656.

Black, A.P. Exception Handling and Data Abstraction. Technical
Report RC 8059, IBM T.J. Watson Research Center, Yorktown Heights, New
York. (Jan. 1980).

Black, A.P. Report on the Programming Notation 3R. Technical Monograph
PRG-17, Oxford University Computing Laboratory. (Aug. 1980)

Boehm, H., Demers, A. and Donahue, J. An Informal description of
Russell. TR 80-430, Cornell University (October 1980).

Bron, C. and Fokkinga, M.M. Exchanging Robustness of a program for a
Relaxation of its Specification. Department of Applied Math, Twente
University of Technology, Memo Nr. 178, September 1977.

Bustard, D.W. A user manual for PascalPlus. Department of Computer
Science, Queen's University Belfast (April 1878).

Corbatd,. F.J. and Vyssotsky, V.A. Introduction and Overview of
Multics. Proc. AFIPS Fall Joint Comp. Conf. 1965, pp. 185-196.

Courtois, P.J., Heymans, F. and Parnas, D.L. Concurrent Control

with "Readers” and "Writers". Cormun. ACM Vol. 14 Nr. 10 (Oct. 1971)
pp. 667-668.

232

233

[16] Cristian, F. Exception Handling and Software Fault-tolerance. Proc.
10th Int. Symp. on Fault Tolerant Computing, Kyoto, Japan. IEEE 1980.

[17} DBemers, A. and Donahue, J. The Russell Semantics: an Exercise in
Abstract Data Types. TR80-431, Cornell University (September 1980).

[18]‘Demers, A., Donahue, J. and Skinner, G. Data Types as Values:
Polymorphism, Type-checking, Encapsulation. Conf. Rec. Fifth ACM
Symp. Principles Prog. Lang. (January 1978), pp. 23-30.

{191 DeMorgan, R.M., Hill, I.D. and Wichmann, B.A. Modified Report on
Algol 60. Comp. J. Vol. 19 Nr. 4 (Nov. 1976), pp. 364-379.

[20] Dijkstra, E.W. Goto Statement Considered Harmful. Commun. ACM Vol. 11
Nr. 3 (March 1968). ,
[21]1 Dijkstra, E.W. Notes on Structured Programming. Structured
- Programming. Academic Press, 1972. .

[22] Dijkstra, E.W. Guarded Commands, Nondeterminacy and Formal
Derivation of Programs. Commun. ACM Vol. 18 Nr. 8 (August 1975),
pp. 453-457.

[23] Dijkstra, E.W. A Discipline of Programming. Prentice Hall, 1977.

[24] Donahue, J. On the semantics of "Data Type”. SIAM J. Comput.
Vol. 8 Nr. 4 (November 1979), pp. 546-560.

[25] Geschke, C.M., Morris, J.H. and Satterthwaite, E.H. Early Experiences
with Mesa. Commun. ACM, Vol. 20 Nr. 8 (Aug. 1977), pp. 540-553.

[26] Geschke, C.M. and Satterthwaite, E.H. Exception Handling in Mesa.
Technical Report, Xerox Palo Alto Research Center. (Draft, Sept. 1877)

[271 Goguen, J.A. Abstract errors for abstract data types. -Formal
Description of Programming Concepts. (Neuhold, E.J., Ed.) ‘
North Holland (1978), Pp.. 491-525. : :

[281 Goguen, J.A., Thatcher, J.W. and Wagner, -E.G. - An initial algebra _
approach to the specification, correctness and implementation of
abstract data types. Current Trends in Progranming Methoddlogy
Volume IV: Data Structuring. (Yeh, R.T., Ed.) Prentice Hall (1978),
pp. 80-149, ° - S - o

[291 Goodenbugh, J.B. Structured Exception Hahdling. Conference Record
of the 2nd ACM.Symp. on Principles of Programming Lariguages,. Palo
Alto, California. (January 1975}, pp. 204-224.

234

[30] Goodenough, J.B. Exception Handling: Issues and a propoeed notation.
Commun. ACM Vol. 18 Nr. 12 (Dec. 1975}, pp. 683-696.

[31] Gray, J. et al. The Recovery Manager of the System R Database
‘Manager. Comput. Surv. Vol. 13 Nr. 2 (June 1981), pp. 223-242.

[32] Gries, D. Some Conments on Programming lLanguage Design. Invited
lecture, Fachtagung Uber Progranmiersprachen, Erlangen, Germany
(Marcy 1976).

[33] Gries, D. and Gehani, N. Some Ideas on Data Types in High-level
Languages. Commun. ACM Vol. 20 Nr. 6 (June 1977), pp. 414-420.

[34] Guttag, J.V. The specification and application to programming of
abstract data types. Ph.D. Thesis - Computer Systems Research
Group Report CSRG-59. Department of Computer Science, University of
Toronto. (September 1875), 154 pp. |

[35] Guttag, J.V. Abstract Data Types and the Development of Data
Structures. Commun. ACM Vol. 20 Nr. 6 (June 1977), pp. 396-404,

[36] Guttag, J.V., Horowitz, E., Musser, D.R. Abstract data types and
software validation. ISI/RR-76-48 University of Southern California
Information Sciences Institute. (August 1976), 45 pp.

[37] Guttag, J.V., Horowitz, E., Musser, D.R. The design of data type
specifications. Current Trends in Programming Methodology Volume IV:
Data Structuring. (Yeh, R.T., Ed.) Prentice Hall (1978), pp. 60-79.

[38] Guttag, J.V., Horowitz, E., Musser, D.R. Some extensions to
algebraic specifications. Proc. ACM Conf. Language Design for
Reliable Softw. (Wortman, D.B., Ed.) North Caroclina (March 1977),
pp. B63-67.

[39] Hansen, P.B. The Design of Edison. Softw. Pract. Exper. Vol. 11
Nr. 4 (April 1981), pp. 363-396.

[40] Hansen, P.B. Edison - a Multiprocessor language. Softw. Pract.
Exper. Vol. 11 Nr. 4 (April 1981), pp. 325-361.

[41] Hansen, P.B. Edison Programs. Softw. Pract. Exper. Vol. 11 Nr. 4
(April 1981), pp. 397-414.

[42] Hehner, E.R.C. do considered od: a Contribution to the Programming
Calculus. Acta Informatica Vol. 11 Fasc 4 (April 1979), pp. 287-304.

[43] Henderson, P. Functional Programming: Application and Implementation.
Prentice Hall Int. (1980), 355 pp.

[44] Hill, I.D. Faults in Functions, in Algol and Fortran. Comp. J.
Vol. 14 Nr. 3 (August 1971), pp. 315-316. .

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

235

Hoare, C.A.R. Hints on Programming Language Design. Invited address
at SIGACT/SIGPLAN Symp. Principles Prog. Lang. {(Oct. 1973).

Hoare, C.A.R. Monitors: an Operating System Structuring Concept.
Commun. ACM Vol. 17 Nr. 10 (Oct. 1974), pp. 549-557.

Hoare, C.A.R. Communicating Seguential Processes. Commun. ACM
Vol. 21 Nr. 8 (Aug. 1978), pp. 666-677.

Hoare, C.A.R. A Model for Communicating Sequential Processes.
Technical Monograph PRG-23, Oxford University Computing Laboratory. (1981).

Hoare, C.A.R., Brooks, S.D. and Roscoe, A.W. A Theory of Communicating
Sequential Processes. Technical Monograph PRG-16, Oxford University
Computing Lahoratory. (May 1881).

Hoare, C.A.R. and Wirth, N. An Axiomatic definition of the Programming
Language Pascal. Acta Inf. Vol. 2 Nr. 4 (December 1973), pp. 335-355.

Horning, J.J. Language features for Fault Tolerance. Program
Construction (Eds. Bauer and Broy). Lecture Notes in Computer Science,
Vol. 69. Springer-Verlag 1879, pp. 508-516.

Horning, J.J., Lauer, H.C., Melliar-Smith, P.M. and Randell, B. A
Program Structure for Error Detection and Recovery. Operating Systems,
Lecture Notes in Computer Science Vol. 16, pp. 171-187. Springer-Verlag
1974,

IBM Corporation. LISP/370 Program Desorlptlon/Operatlons Manual.
Form SH20-2076-0 (March 13978).

Ichbiah, J.D. et al. Preliminary Ada Reference Manual. SIGPLAN Notices
Vol. 14 Nr. 6 Part A (3une 1979).

Ichhiah, J.0. et al. Rationale for the design of the Ada programming
language. SIGPLAN Notices Vol. 14 Nr. 6 Part B (June 1979).

Kessels, J.L.W. An alternative to event queues for synchronization in
Monitors. Commun. ACM Vol. 20 Nr. 7 (July 1977), pp. 500-503.

Kohler, W.H. A Survey of Techniques for Synchronization and Recovery
in Decentralized Computer Systems. Comput. Surv. Vol. 13 Nr. 2
(June 1981), pp. 148-183.

Kuo, S.S., Linck, M.H. and Saadat, S. A Guide to Communicating
Sequential Processes. Technical Monograph PRG-14, Oxford University
Computing Laboratory. (Aug. 13978).

Levin, R. Program Structures for Exceptional Condition Handling.
Ph.D. Thesis, Carnegie-Mellon University (June 1977).

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Liskov, B.H. Exception Handling. CLU Design Note 60. Massachusetts
Institute of Technology, Laboratory for Computer Science (Aug. 1976).

Liskov, B.H. et al. CLU Reference Manual. Computation Structures
Group Memo 161. Massachusetts Institute of Technology, Laboratory
for Computer Science. (July 1978), 138pp.

Liskov, B.H. and Snyder, A. Structured Exception Handling. Computation
Structures Group Memo 255, Massachusetts Institute of Technology,
Laboratory for Computer Science. (Dec. 1977).

Liskov, B.H. and Snyder, A. Exception Handling in CLU. TIEEE Trans.
Softw. Eng. Vol. 5 Nr. 6 (Nov. 78), pp. 546-558.

Liskov, B.H., Snyder, A., Atkinson, R. and Schaffert, C. Abstraction
Mechanisms in CLU. Commun. ACM Vol. 20 Nr. 8 (August 1977), pp. 564-576.

Liskov, B.H. and Zilles, S. Specification Technigues for Data
Abstraction. Proc. Intl. Conf. Reliable Softw. (April 1975), pp. 72-87.

Luckham, D.C. and Polak, W. Ada Exceptions: Specifications and Proof
Techniques. Report Nr. STAN-CS-80-7839 Computer Science Department,
Stanford University. (1980).)

Luckham, D.C. and Polak, W. Ada Exception Handling: An Axiomatic
Approach. ACM Trans. Prog. Lang. and Syst. Vol. 2 Nr. 2 (April 1980),
pp. 225-233.

MacLaren, M.D. Exception Handling in PL/I. Technical Report, Digital
Equipment Corporation, Maynard, Mass. Alsc appears (abbreviated) in
SIGPLAN Notices Vol. 12 Nr. 3 (March 1977), pp. 101-104.

Majster, M.E. Treatment of partial operations in the algebraic
specification technique. Proceedings Specifications of Reliable
Software IEEE (1979), pp. 190-197.

Meertens, L. Mode and Meaning. New direcfions in Algorithmic languages
1975. (Schuman, S.A., Ed.) IRIA (1975}, pp. 125-138.

Melliar-Smith, P.M. and Randell, B. Software Reliability: the Role of
Programmed Exception Handling. Proc. ACM Conf. lLanguage Design for
Reliable Software, SIGPLAN Notices Vol. 12 Nr. 3 (March 1977), pp.
95-100.

Mitchell, J.G., Maybury, W. and Sweet, R. Mesa Language Manual Version
5.0 (April 1979) CSL 79-3. Xerox Palo Alto Research Center, Systems
Development Department.

Naur, P. et al. Revised Report on the Algorithmic Language Algol B60.
Conmun. ACM Vol. 6 Nr. 1 (Jan. 1963), pp. 1-17, and Comp. J. Vol. 5
Nr. 4 (Jan. 1963), pp. 349-367.

[74]

[75]

[78]

[77]

[781]

[79]

[80]

[81]

[62]

[83]

[84]

[85]

[86]

[87]

[88]

237

Noble, J.M. The Control of Exceptional Conditions in PL/I Object
Projgrams. IFIP Congress 68, pp. C78-C83.

Organick, E.I. The Multics System: An Examination of its Structure.
MIT Press, Cambridge, Massachusetts and London (1972). xviii + 382pp.

Parnas, D.L. and Wirges, H. Response to Undesired Events in Software
Systems. Proc. Second Intl. Conf. on Softw. Eng. (October 1976).

Randell, B. System Structures for Software Fault Tolerance. Proc.
Int. Conf. on Reliable Softw. (April 1975}, pp. 437-457.

SIGPLAN Notices Vol. 10 Nr. 6. Also in IEEE Trans. Softw. Eng.
Vol. 1 Nr. 2 (June 1975), pp. 220-232,

Randell, B., Lee, P.A. and Treleaven, P.C. Reliability Issues in
Computing System Design. Comput. Surv. Vol. 10, Nr. 2 (June 1978),
pp. 123-165.

Richard, F. and Ledgard, H.F. A Reminder for Language Designers.
SIGPLAN Notices Vol. 12 Nr. 12 (Dec. 1877), pp. 73-82.

Richards, M. and Whitby-Stevens, C. BCPL — The language and its
Compiler. Cambridge University Press (1978).

Ross, D.T. The AED Free Storage Package. Commun. ACM, Vol. 10 Nr. 8
(Aug. 1967), pp. 481-492,

Rutishauser, H. Interference with an Algol procedurs. Annual Review
Automatic Programming Vol. 2. (Goodman, R., Ed.) Pergamon Press (1961).

Schroeder, M. Cooperation of Mutually Suspiciocus Subsystems. Ph.D.
Thesis, Massachusetts Institute of Technology. MIT MAC-TR-104 (1972).

Schwartz, R.L. An Axiomatic Semantic Definition of Algol 68.
UCLA-34P214~75, Computer Science Department, University of California,
Los Angeles. (July 1978), xiii + 218pp.

Schwartz, R.L. An Axicmatic Treatment of Aliasing. Department of
Applied Mathematics, Weizmann Institute of Science. (Sept. 1879).

Schwartz, R.L. An Axiomatic Treatment of Algol 68 Routines. Sixth
Collog. Automata, Languages and Programming. Lecture Notes Computer
Science Vol. 71. Springer-Verlag (July 1979), pp. 530-545.

Shearing, B.H. The Forpa Programmer's Manual. Design Office
Consortium, Guildhall Place, Cambridge (1977).

Wilkes, A.J., Gibbons, J.J. and Singer, D.W. Exception Handling in
BCPL. Rainbow Group Note, University of Cambridge Computer Laboratory
(September 1980).

[891]

[90]

[811]

[92]

[93]

[94]

[95]

[36]

[971]

98]

[99]

[100]

[101]

[102]

[103]

[104]

238

Snow, C.R. An Exercise in the Transportation of an Operating System.
Softw. Pract. Exper. Vol. 8 Nr. 1 (Jan.-Feb. 1978), pp. 41-50.

Stallings, W. An Application of Coroutines and Backtracking in
Interactive Systems. Int. J. Comput. Inf. Sci. Vol. 5 Nr. 4
(Dec. 1976), pp. 303-313. ,

Stoy, J.E. and Strachey, C. 0SB6: An Operating System for a Small
Computer. Technical Monograph PRG-8, Oxford University Computing
Laboratory. Also in Comp. J. Vol. 15: Part 1, pp. 117-124; Part 2,
pp. 195-203. (1972).

Strachey, C. and Stoy, J.E. The Text of 0SPub (Text and Cowmentafy).
Technical Monograph PRG-9, Oxford University Computing Laboratory
(July 1972},

Thimbleby, H. Leave and Recall: Primitives for Procedural Programming.
Softw. Pract. Exper. Vol. 10 Nr. 2 (Feb. 1980}, pp. 127-134.

UCSD Pascal Users' Manual. SofTech Microsystems, Inc., San Diego,
(Feb. 13880).

United States Department of Defense. Requirements for High Order
Computer Programming Languages: Steelman (June 1978). Also in
[1001, pp. 298-315.

United States Department of Defense. Reference Manual for the Ada
Programming Language - Proposed Standard Document. (July 1980).

van Wijngaarden, A. et al. Revised Report on the Algorithmic
Language Algol 68. Springer-Verlag (1976), 236pp.

Wasserman, A.I. (Ed.) Special Issue on Programming Language Design.
SIGPLAN Notices, Vol. 10 Nr. 7 (July 1975).

Wasserman, A.I. Procedure-Oriented Exception Handling. Technical
Report Nr. 27, University of California, Laboratory of Medical Information
Science (February 1977).

Wasserman, A.I. Tutorial: Programming Language Design. IEEE Catalog
Nr. EHO 164-4,

Wirth, N. Revised report on the programming langauge Pascal. Pascal
User Manual and Report. (Jensen, K. and Wirth, N.), Eleventh printing.
Springer-Verlag (1979), pp. 133-167.

Woodger, M. (Ed.) Supplement to the Algol 60 Report. Commun. ACM
Vol. 6 Nr. 1 (Jan. 1963), pp. 18-20.

Wulf, W.A., London, R. and Shaw, M. An introduction to the construction
and verification of Alphard programs. IEEE Trans. Softw. Eng. Vol. 2
Nr. 4 (Dec. 76), pp. 253-265. ~

Zahn, C.T. A Control Statement for Natural Top-down Structured Program-
ming. Programming Symposium (Ed. Robinet, B.). Lecture Notes in Computer
Science, Vol. 19. Springer-Verlag (1974), pp. 170-180.

	Exception Handling: The Case Against
	Abstract
	Acknowledgements
	Contents
	Introduction
	Ch 1—What are Exceptions?
	Ch 2—A Historical view of Exception Handling
	Ch 3—"Structured" Exception Handling
	Ch 4—Exception Handling in Action
	Ch 5—Excpetion Handling and ADTs
	Ch 6—programming without Exception Handling
	Ch 7—Catastrophe Handling
	Ch 8—Conclusion
	References
	The End

