An Asymmetric Streamm Communication System
Andrew P. Black

Department of Computer Science, FR-35,
University of Washington,
Seattle, WA 98115

Abstract

Ir_lput and output are often viewed as complementary operations, and it is certainly true that the
dlrectl_t)n of data flow during input is the reverse of that during output. However, in a conventional
operating system, the direction of control flow is the same for both input and output: the program
plays the active role, while the operating system transput primitives are always passive. Thus
there are Jour primitive transput operations, not two: the corresponding pairs are passive input
and active output, and active input and passive output. This paper explores the implications of this
idea in the context of an object oriented operating system. :

This work is supportefi in part by the National Science Foundation under Grant No. MCS-8004111. Computing
equipment and technical support are provided in part under a cooperative research agreement with Digital

Equipment Corporation.

0. Introduction

In most operating systems the primitives for transput
(i.e. input and output) appear as system calls. Programs
almost always take the initiative in interactions with the
system. The most notable exception to this generalisa-
tion is that usually there exists some kind of primitive
interrupt facility whereby the operating system kernel
can notify a program that a certain event has occurred.

The Eden system currently under construction at
the University of Washington is radically different from
this norm. In Eden it is quite usual for one program to
ask another for a service, via a mechanism called invo-
cation. This design naturally leads to a system in which
most services are provided by “programs” rather than
by the system itself, and each program is a provider as
well as a consumer of services.

One of the consequences of this design is that each
program is prepared to receive invocations as well as to
send them. Communication with the outside world is no
longer the perogative of the program; the “outside
world” is able to take the initiative in communication.
This capability allows a transput system for Eden to be
built in a rather novel way, which this paper explores.
However, before continuing it is necessary to provide
some background about Eden itself.

1. The Eden System

The Eden Project [11] {currently in its third year) is a
five-year experiment in the design, construction and use
of an integrated, distributed computing environment.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-115-6/83/010/0004 $00.75

The distribution aspects of Eden are not particularly,
relevant to this paper. The significant aspect of Eden is
that it is usual for programs both to provide and con-
sume services. Using the term object in a sense very
similar to that of the Smalltalk programming language
[5], we refer to Eden as an “object oriented system”.

To distinguish our particular flavour of object from
that of other systems and languages, we refer to them as
Ejects (for Eden Objects). An Eject has the following
characteristics. o
e« FEach Eject has a unigue unforgeable identifler

(UID); one Eject may communicate with another

only by knowing its UID. It is not necessary to know

the physical location of an Eject within the Eden sys-
tem.

e Ejects may receive and reply to invocations from
other Ejects. An invocation is a request to perform
some named operation, and may be thought of as a
kind of remote procedure call.

« Each Eject has a concrete type, that is, a fixed piece
of code that defines the set of invocations to which
the Eject will respond. Eden types are similar to the
collection of methods that make up a Smalitalk
Class.

« An Eject may perform a Checkpoint operation. The
effect of Checkpointing is to create a Puassive
Representation, a data structure designed to be
durable across system crashes. The data in a pas-
sive representation should be sufficient to enable
the Eject they represent to re-construct itself in a
consistent state. The checkpoint primitive is the
only mechanism provided by the Eden kernel
whereby an Eject may access “stable storage” Ge.
the disk).

« FEach Eject has its own thread of control and may be
thought of as active at all times. The sending of an
invocation does not suspend the execution of the
sending Eject: the sender is free to perform other
tasks. The programming language used within Eden
is an extension of Concurrent Euclid [8], [9], and
encourages such a programming style. Each Eject

is provided with multiple processes, of which some
may be waiting for incoming invocations, some may
be waiting for replies to invocations, and some may
be running. This is in contrast to the Smalltalk
language, where the act of sending a message
transfers control to the receiver.

In practice, Ejects are not always active, either
because they (or their computers) have crashed, or
because they have explicitly deactivated themselves.
However, if a passive eject is sent an invocation, the
Eden kernel will activate it. When an Eject is activated

by the kernel it will normally attempt to put its internal
data structures into a consistent state. If the Eject had
previously Checkpointed, it can use the data in its Pas-
sive Representation to define this state.

Ejects and invocations are the only entities in the
Eden system. Eden is obviously well-suited to the server
model of computation, where progress is made by one
Eject requesting another to perform some service. For
example, the interface to a data-base system could be
represented by an Eject which responds to invocations of
the form “List the records that match the following pat-
tern.” What is not immediately clear is how conventional
operating system services like a flling systemn and
redirectable device independent transput fit into the
Eden model of computation. These topics are explored
in the next section.

2. Files and Transput in Eden

In Eden, files are Ejects: they are active rather than pas-
sive entities. An Eden flle would itself be able to respond
to open, close, read and write invocations rather than
being a mere data structure acted upon by operating
system primitives. Once a file has been written, the data
is committed to stable storage by Checkpointing.
Management of the underlying storage medium is per-
formed by the Eden kernel, not by the filing system
itself. :

Once a file has been created, it is usual to enter it
into some directory and associate a meaningful string
with that entry, so that the information contained in the
file can be conveniently accessed. In Eden directories
are also Ejects; they respond to invocations like Lookup,
DeleteEntry, AddEntry and List. Each entry in a direc-
tory Eject is in principle a pair consisting of a mnemonic
lookup string and the Unique Identifier of the Eject. It is,
of course, possible to enter the UID of any Eject in a
directory, so arbitrary networks of directories can be
constructed.

From the point of view of an Eject trying to perform
a Lookup operation, any Eject which responds in the
appropriate way is a satisfactory directory. For exam-
ple, it is possible to provide a Directory Concalenator
type which is initialised with a list of directories and
which yields the same result as would be obtained from
performing the lookup on all of the directories in turn
until the name is found. Such a concatenator provides a
facility rather like that offered by the Unix®shell and the
PATH environment variable. It may be implemented
either by actually performing the multiple lookups, or by
maintaining some sort of table which represents the con-
catenation of the directories.

There are thus two notions of “type” in Eden. The
behaviour of an Eject is the only aspect that is important
to its users. The Eden type of the Eject, i.e. the identity
of the particular piece of type-code which defines that
behaviour, is irrelevant. Each Eject may be thought of as
an abstract machine. The type-code of the Eject defines
the transitions of the machine; the inputs are the invoca-
tions it receives, and the outputs are the replies to those
invocations. Since this pattern of invocation and reply is
all that other entities can observe about the Eject, all

Ejects with equivalent state machines provide the same
functionality. Because many pieces of code can define
the same transitions, it is quite possible for several dis-
tinct Eden types to behave in the same way. In such a
case the Eden types provide alternative implementations
of the same abstract machine. :

The notion of behavioural compatibility can be
further extended. If a client Eject £ assumes that some
server [Eject behaves according to an abstract
specification S, then not only will £ be satisfiea by any
implementation of S, but also by any.implementation of
S’, where S'is a superset of S. In other words, provided
that S’ contains all the operations of S and that their
semantics are the same, it does not matter to £ that S’
contains other operations in addition.

A tree of abstract machines similar to the above can
be constructed with Simula Classes [2] and Smalltalk
Objects [5]. Observe, however, that the behaviour of a
given Eden type may include that of more than one other
type, so the situation in Eden is more general than in
these languages. In fact, in some ways it resembles
Smalltalk with a multiple class inheritance hierarchy [3].
However, our implementation does not currently enforce
recompilation when inherited code is changed.

3. Filters and Pipes

A large number of utilities in a typical operating system
may be described as fllters. A filter is a program which
takes a single stream of input and produces a single
stream of output; the output is some transformation of
the input. A simple example of a fliter is a program
whose output is a copy of its input except that all lines
beginning with “C” have been omitted. Such a flter
might be used to strip comment lines from a Fortran
program. Most filters may be parameterised: a more
useful program is one which deletes all lines matching a
pattern given as an argument. Text formatters, stream
editors, spelling checkers, prettyprinters and paginators
are all filters.

In a conventional operating system, a fliter F per-
forms two functions. In addition to applying a transfor-
mation to the data stream, it acts as a date pump, that
is, it causes data to flow from the input to the output.
The pumping function arises because both input and out-
put are performed actively. By this I mean that F takes
the initiative in both input and output; it is F which calls
the Read and Write operations. The réle of the operating
system is merely to respond to the reguests made by the
filter. If F calls a Read operation, the response of the
operating system is in some sense a kind of output,
because data flows from the system to F. However, the
system does not itself call a #rite operation: it responds
to the Read that is already in progress. I will call this
response passive oufpuf. The adjective passive indicates
that the operating system is responding to an initiative
of F's; passive output is by definition the complement of
active input. In general, data will flow from entity 4 to
entity B if B performs active input and 4 responds with
passive output. Because they communicate with each
other 1 will refer to active input and passive output as
corresponding operations.

When F performs active output, the response from
the operating system is passive input. Thus data can
also flow from entity 4 to entity B if 4 performs active
output and B responds with passive input. Passive input
and active output are also corresponding operations.

One very useful facility provided by the Unix operat-
ing system is the ability to connect filters Fi Fp woid F
together so that the output of F, becomes ihe input of
F. This is done by interposing an entity called a pipe

irl”

® Unix is a tredemark of Bell Laboratories.

direction of data flow

data
sink

data
source O3 Lt }(’ﬂ Py 1
\
i
.
active active
input output

F,, Fyand F; are filters. The shape of the connectors on'the fllters indicate that-they are performing active in-
put and active output. The circles represent facilities provided by the Unix kernel. p, and P, are pipes; data

source and data sink may be files or devices.

Figure 1: A Pipeline in Unix.

between F, and F, ; Unix refers to the whole arrange-
ment as an n-stage pipeline. The function of a pipe is to
perform passive transput in response to the active tran-
sput operations of the fiiters. When F, performs a Write
operation, the pipe to which it is connected responds by
accepting the data, i.e. it performs passive input. When
F,,, performs a Read operation, the pipe responds by
supplying data it has previously received from F, ie. the
pipe performs passive output (see Figure 1). Because
entities like Unix pipes perform both buffering and pas-
sive transput, I will refer to them as passive buffars.

It should now be clear why passive buffers are
necessary. Even though filter F, performs active output,
and filter F, performs active input, they cannot be con-
nected directly because these operations are not com-
plementary. The passive buffer provides the active tran-
sput operations with the necessary correspondents. In a
conventional operating system, the only transput opera-
tions made available to user programs are the active
ones. The passive transput operations are always per-
formed by the system itself.

In Eden the invocation of the read or write operation
of some other Eject represents an active transput opera-
tion. Responding to such an invocation is a passive tran-
sput operation. All four operations are thus available to
any Eject. As was observed above, data can be made to
flow from one entity to another using only two of the
operations, provided that they form a corresponding
pair. Thus data can moved from Eject 4 to Eject B either
by A initiating a Write invocation to which B responds, or
by B initiating a Read invocation to which A responds. It
thus seems to be possible to construct a transput sys-
tem in which there is no active output, just passive out-
put and active input. In other words, the write primitive
is apparently unnecessary.

It is interesting to compare this implementation
with input and output in Hoare’s CSP [7] and in
Browning's Tree Machine Notation [4]). In these
languages transput occurs when one process executes an
output (/) operation and its correspondent executes an
input (?) operation. This interaction may be regarded in
several different ways. Both / and ? may be regarded as
active, and the (software or hardware) interpreter as the
passive connection which transfers data from one to the
other. Alternatively, input may be regarded as active
(“get me data!”) and output as passive (“wait until I am
asked for data”). The converse interpretation is also
possible: input may be regarded as a passive wait for

data, and output as the active operation which generates
data. This last interpretation corresponds to Hoare's
decision to allow input commands in guards but to
exclude output cormnmands.

4. Programming with Read-Only Transput

It is worthwhile considering just how a transput system
without active output be constructed and used. 1 will
refer to such an arrangement as a "read only” transput
system.

COutput devices such as terminals and printers would
provide a potentially infinite supply of Read invocations.
Connecting a terminal to a filter Eject would be rather
like starting a pump; it would suck data through the
filter and generate a partial vacuum (in the form of out-
standing read invocations) on the far side. A file opened
for input would respond to read invocations with the
appropriate data, and eventually with an indication that
the end of the file had been reached. A file opened for
output would immediately issue a Read invocation, and
would continue reading until it received an end of file
indicator. It is possible to create pipelines of arbitrary
length without any need for intermediate buffering; the
only requirement is that each pipeline must start with a
data source and end with a data sink.

As should be apparent from the discussion of Eden
types, any Eject which responds to Read invocations is
by definition a source, and any Eject which generates
them is a sink. The null sink is an Eject which reads
indiscriminately and ignores the data it is given. An
Eject which responds to a read invocation by returning
the current date and time is a source. Eden Directories
also behave as sources; in addition to Lookup and
DeleteEntry, they respond to an invocation called List.
The effect of a List invocation is to prepare the directory
to receive a number of Kead invocations, which transfer
a printable representation of the directory’s contents to
the reader.

There is a certain similarity between a transput sys-
tem constructed in this way and a lazy implementation
of Lisp [8]. In both cases no computation need be done
until the result is requested. There is, of course, a
difference in the origin of the laziness; in the case of an
applicative language it is designed into the implementa-
tion, whereas in the case of the transput system each
Eject may be programmed so as not to do any work until
it is asked for output. A consequence of this is that the
filter Ejects are pure transformers: they do not also

pump data (unlike Unix programs). No data flows until a
sink is connected to the pipeline.

Laziness, however, is not desirable in a system
which permits parallel execution. Instead, one would
prefer that each Eject does a certain amount of compu-
tation in advance, in anticipation that it will eventually
be asked for the fruits of it's labours. Typically, each
Eject in a pipeline should read some input and buffer-up
some output, and then suspend processing pending a
request for output. In this way all the Ejects in a pipe-
line can run concurrently.

The interconnexion of the elements of the pipeline is
easily accomplished in Eden. A filter is initialised by an
invocation which supplies it with arguments. Most of
these arguments parameterise the behaviour of the filter
in the usual way, but one of them is the Unique Identifier
of the Eject from which it is to obtain its input. Note
that it is not necessary to tell a filter where the output is
to go: it will be sent to whatever Eject requests it (by
performing a Fead). A file could be printed simply by
requesting the printer server to read from, the file. If a
paginated listing were required, the printer server would
be requested to read from the paginator, and the pagina-
tor to read from the file. Since files are active entities,
there is no distinction between input redirection from a
file and from a program. (This is not so in Unix, for
example, where the shell uses different syntax and a
different implementation in the two cases.)

One advantage of the “read only” system just out-
lined is that a sequence of » filters, a source and a sink
can all be implemented by n+2 Ejects. This means that
only n+1 invocations are needed to transfer a datum
from one end of the pipeline to the other. Conversely, if
each fllter were to perform active output as well as
active input, 2n+2 invocations would be needed, as would
n+1 passive buffer Ejects. Thus considerable savings of
communications overhead and process switching can be
realised with long pipelines. Figure 2 illustrates the
same pipeline as Figure 1, but constructed according to
the “read only” model.

.One way of visualising the origin of these savings is
as a merging of each passive buffer with its source. In
doing this merge, two Ejects are turned into one, and the
inter-Eject communication link between them is turned
into internal communication. Without any further
refinement, this implies that the filter must be written
so that it looks for incoming Read invocations pending
from other Ejects instead of performing write opera-
tions.

It is possible to adopt a more conventional style of
programming by adding an extra process to the filter.
The standard I0 module obtained from a library would
implement the usual Write operations that put charac-
ters into a buffer. However, that buffer would be shared
with a process that receives invocations which request
data and services them. The filter process itself would
be programmed in the conventional way and make use of
the Write operations whenever necessary.

In some sense, then, the cost of “read only” tran-
sput is that the programmer (or her language implemen-
tor) is given the burden of providing the processes and
communication primitives that are no longer necessary
at the system level. Is this good or bad? Answering this
question requires more experience with “read .only”
transput than we currently have, but the following obser-
vations are relevant.

« The programming language used in the construction
of Ejects needs to support parallelism regardless of
the transput protocol. An Eject which provides a set
of services to clients will typically be organised as a
“goordinator” process that receives incoming invo-
cations, and a number of “worker” processes that
actually perform the processing necessary to satisfy
them.} The use of a separate process to service read
requests from the next stage of the pipeline is only
a special case of a more general programming
methodology.

+ Processes provided within the programming
language are likely to be more efficient than the
processes of the underlying machine or system on
which the Ejects are based. Similarly, interprocess
communication within an Eject is likely to be much
more efficient than invocation.

« By eliminating active output and passive input from
the system (at the level of inter-Ejeci interfaces, if
not internally to the Ejects), a considerable
simplification of Eject interfaces has been achieved.

¢ In comparison with the obvious design incorporating
passive buffers between each pair of active Ejects,
roughly half as many invocations are required to
move data from one end of the pipeline to the other.
The cost of an invocation must inevitably be higher
than that of a system call in an ordinary operating

t Such an organisation is described in [11], where the Eden kernel
was assigned responsibility for its meintenance. Our current implemen-
tation provides processes at the language level; see [1]

direction of data flow

v

data " data
source <71 Fp 7] [—< Fs i sink
active passive
input output

Each box represents an Eject. The filters F| all perform active input and passive output. The sink actively in-

puts and the source passively outputs.

Figure 2: The same Pipeline in Eden with “read only” Transput.

system (because invocation is location-
independent), so such saving may be significant in
Eden.

5. Write-Only Transput; Multiple Inputs and Outputs

The system described so far uses active input and pas-
sive output as its only transput primitives. The dual
arrangement should also be considered; in this case only
passive input and active output would be available. Data
sources would continually attempt to perform write invo-
cations, and sinks would always be ready to accept them.
An Eject would explicitly send data to the next Eject in a
pipeline, but would not in general be concerned with the
origin of the data it processed. Within an Eject, a con-
ventional Fead routine could be implemented by extract-
ing data from an internal buffer; another process wouid
respond to incoming Wrife invocations and use the data
thus obtained to fill the same buffer.

Because the “read only” and “write only” models
are exact duals, both are equally convenient in the case
of a pipeline of pure filters. The differences between the
models become apparent when we start to relax the
assumptions that introduced this discussion. One
assumption that must be examined is that pure filters
occur frequently amongst the utilities of the average
operating system. In fact it is very common for filters to
be impure: many useful programs require multiple
inputs or generate multiple outputs. Examples of pro-~
grams with multiple inputs include file comparison pro-
grams and stream editors that have a command input as
well as a text input. It is also common for a program to
produce a stream of Reports (i.e. monitoring messages)
in addition to its main output stream.

In the “read only” transput scheme the filter Eject
knows the Unique ldentifier of the Eject from which it
requests input data. Because of this feature it is easy to
generalise the “read only” scheme to aliow an arbitrary
number of inputs. If F needs mn inputs, it maintains n
UlDs, each referring to an Eject which responds to read
requests. In contrast, it is difficult to have multipie out-
puts with the “read only” scheme, because output
occurs only in response to an external request. Arrang-
ing for two or more Ejects to make Read invocations on F
does not belp: F cannot distinguish this from one Eject
making the same total number of Fead invocations. As
we have described it so far, “read only"” transput allows
arbitrary fan-in but no fan-out.

The dual situation exits with “write only” transput.
Each filter has (or appears to have) a single source, but
can direct output to as many sinks as is convenient.
There is arbitrary fan-out, but no fan-in. Conventional
transput allows arbitrary fan-in and fan-out because both
reads and writes are active. (However, some operating
systems place restrictions on the number of streams
which mayv be redirected.)

One might attempt to remedy this failing by permit-
ting ¥ to examine the UID of the originator of the
request; however, this introduces more problems than it
solves. Although these UlDs are present in the invoca-
tion message (so that the reply may be returned
correctly) they are in principle private to the Eden ker-
nel. This is because the effect of a particular invocation
ought to depend only its parameters, and not on the
identity of the invoker. Doing otherwise would prohibit
dynamic re-direction of transput streamns. A parallel
may be drawn with programming languages: the effect of
a particular procedure call should not depend on who
makes it. Even though the return address is on the exe-
cution stack and could easily be accessed, procedural
programming language> do not provide a primitive to do
so. The semantics of procedure call would be greatly
complicated by such a provision.

Let us consider how multiple outputs may be
accommodated within the "read only” model. One possi-
bility is to designate one output stream as the “primary”
output, and make all the others “secondary”. Primary
output is supplied in response to Kead invocations in the
way previously discussed, but now secondary output is
volunteered in Write invocations. When such impure
filters are initialised, they must be informed of the desti-
nation of their secondary outputs. Typically these out-
puts will be directed into passive buffers, which will then
be sources for other pipelines. This amounts to aban-
doning the “read only” nature of the transput system for
all filters with multiple outputs — and a large number of
filters produce reports.

On the assumption that more filters have multiple
outputs than multiple inputs, the dual arrangement may
be preferable. In a “write only” transput system each
filter would have a primary input, which is supplied by a
source Ejects performing Write invocations, and a
number of secondary inputs, which are actively read.
These secondary inputs will typically be passive buffers,
filled by the active output of some pipeline, file or device.
Multiple outputs present no difficulty; Figure 3 shows a

direction of data flow

Output
L > .
|, F r_, S Fy s> Fy Window
source 1 w
active pians:l!l\;e
output
/ Report lj Report
Window > Window
> > for F.
for source or Xy
and F,

Once again, each box represents an Eject. The source, F, and Fy produce reports as well es normel output.
The reports:from source and F, are directed to a common destination, perhaps a window on a display.

Figure 3: An Eden pipeline in the write-only discipline, with Report Streams

possible configuration.

Neither of these solutions is very satisfactory, as
each involves re-introducing passive buffers and the
other kind of active transput primitive. A better solution
is to admit the existence of multiple inputs and outputs
explicitly. In the “read only” model, a channel identifier
is associated with each output stream, and each Reod
invocation is qualified by the appropriate identifier. For
example, the specification of a filter F might state that it
will respond to Read requests on channels Report and
Output. When connecting sink Ejects to F, the sinks
must be told not only F's UID but also the channel
identifier that should be used on each request. Figure 4
shows the same set of interconnections as Figure 3, but
uses the “read only” discipline and channel identifiers.

The major disadvantage of this scheme is that the
user who connects filters together now has the added
burden of supplying the correct channel identifiers.
However, this is very similar to the way transput is
redirected in a conventional operating system, where the
command language provides some primitive like ASSIGN
OUTPUT CHANNEL name TO file, or like the Unix shell's “n>"
syntax. It seems to me that once the user is aware of
the existence of multiple channels, the requirement to
provide channel identifiers does little to increase the
perceived complexity of the system.

Because our channel identifiers are supplied to
Ejects (i.e. user code) rather than system code, there is
a risk that a dishonest programmer might read from
someone else's channel. In other words, if £ is told to
read from F’s channel 1, nothing prevents it from read-
ing from F's channel 2 as well. One way of overcoming
this problem is to use UlDs as channel identifiers:
because UlDs cannot be forged, the only Ejects which are
able to make valid ReadonChannel requests of F are
those to which a channel identifier has been given expli-
citly. The cost of this additional security is that more
work is now necessary to connect a sink to its source.
Whoever sets up a pipeline must ask each filter for the
UIDs of its channels, and then pass them on: UIDs cannot
be given in the documentation in the same way as ordi-
nary identifiers. The security of this scheme thus
depends on the honesty of the Eject which performs the
interconnections; in the last resort, a user can always
convince himself of this by writing such an Eject himself.
It does not depend on the honesty of the “system utility”
Ejects. This is fortunate, because it is unreasonable for

the user to have to rewrite all the utilities.§

If Eden addressed its messages to "Ports” rather
than Ejects, arbitrary fan-out would be easy to achieve;
there would simply be one port for each output channel.
Using capabilities as channel identifiers may be regarded
as a way of simulating multiple ports.

8. The Place of Stream Transput in Eden

The above discussion is solely concerned with input and
output according to a stream protocol. In many operat-
ing systems, this is the only means whereby processes in
different address spaces may communicate. The design
of the Unix operating system is based on the assumption
that (except for a primitive “software interrupt” facility)
all programs communicate by byte-streamn. Accordingly,
all files are considered to be an unstructured sequence
of bytes.

It is well to remember that the Eden System does
not make this assumption. Any pair of Ejects which com-
municate by invocation need to establish a protocol
which sets out what each may expect from the other.
The Eden transput package is nothing more than such a
protocol designed to support the abstraction of a
Sequence, together with a collection of library routines
which help user Ejects to obey it. Although the Eden
transput protocol attempts to be sufficiently general to
satisfy the input and output needs of most users, it is not
intended to be universal. If two Ejects need to communi-
cate in a way that is difficult or impossible with the tran-
sput package, they are free to create their own protocol
{and perhaps make it available to other users as a
library module). For example, the Transput protocol
does not support random access; a disk file Eject (or an
Eject with a large main store at its disposal) may wish to
define a protocol which supports the abstraction of a
Map. Such an Eject may not support the transput proto-
col at all, or it may support both protocols.

Nothing I have said about Eden transput constrains
Eden streams to be streams of bytes. Streams of arbi-
trary records fit into the protocol just as well, provided
only that they are homogeneous. In fact, because the
Eden Programming Language lacks type parameterisa-

t This is a characteristic of all capability-based systems, not a
special property of “read only” transput. Observe that in & convention-
al operating system there is nothing to stop an editor, say, from delet-
ing all the files in a user's directory.

direction of data flow

: L< H Ogtput
< F, L <e—] Fy Window
e
source
< B)
B passive
l Report output Report
) Window Window
for source / for Fy
1 and F,

| active
\,_// et

The same arrangement as Figure3, but in the “read only” discipli i indi

s pline. The double lines indicate
R?ad(RepoﬂSiream) requests; the single lines indicate Read(Output) requests. It is assumed that the Report
Window is designed to read from multiple sources.

Figure 4: The pipeline of Figure 3 in the read-only discipline

tion, it is a little inconvenient to allow streams of arbi-
trary types; it would be necessary to circumvent the
type safety in the language. For a description of an
operating system (written and '~ programmed in an
untyped language) which provided such streams, see
[12].

Because invocation is itself a powerful inter-process
communication mechanism, and because arbitrary pro-
tocols can be built on top of invocation, it is likely that
byte-stream transput will be less important in Eden than
in conventional operating systems. Nevertheless, we
believe that the provision of a novel object-oriented
environment will not by itself be sufficient for Eden to
attract users who are familiar with a conventional
operating system. Eden must also provide conventional
operating system facilities in a way that compares
favourably with systems such as Unix. Dynamically
redirectable stream transput is an example of one such
facility.

7. Current Status

At the time of writing (May 1983), a prototype distri-
buted implementation of Eden is in service. The
hardware substrate consists of several VAX processors
connected together by 10 Mbit ethernet. The Unix
operating system provides a development environment
and supplies the underlying address spaces, processes
and primitive disk access required to implement the
Eden kernel.

We are experimenting with a “read only” transput
system that uses integer channel identifiers as described
in Section 5. Currently most data of interest is in the
Unix flle system, so a bootstrap Eden transput system
has been constructed. This consists of a “Unix File Sys-
tem" Eject for each physical machine, which responds to
two invocations, NewStream and UseStream. In outline
(and ignoring the channel ids), the bootstrap transput
system works as follows. NewSiream takes as input a
Unix path name, and returns as its result an Eden
stream, i.e. a Capability. The Capability is actually the
UID of a newly created Eject (of type UnizFile), whose
purpose is to respond to Transfer invocations with the
contents of the appropriate Unix file. When the user
closes the stream, the UnizFile Eject deactivates itself
and, since it has never Checkpointed, disappears. UseS-
tream does the opposite; it takes as input a Unix path
name and a Capability for a stream, and creates a Uniz-
File Eject which repeatedly invokes Transfer on the
capability and records the data it receives. When an end
of stream status is returned by Tronsfer, the appropri-
ate Unix file is opened, written and closed.

The preliminary design for the full Eden file system
incorporates nested transactions and atomic updates
[10]. The implementation of a subset which excludes
transactions is underway. The File system Directory
type is in service, and supports the stream protocol as
described in Section 2. -

8. Conclusion

Four distinct transput primitives have been identified:
passive input, active output, active input, and passive
output. Passive input corresponds with active output,
and active input corresponds with passive output. In a
conventional operating system all these primitives exist,
but the passive ones are not available to users: they are
the responses of the system code which implements the
transput system.

In an object oriented system such as Eden, all four
primitives can be made available at the user level.
Indeed, since users are able to generate whatever invo-
cations they desire, there is no way of concealing any
particular subset. Nevertheless, the corresponding pair

10

passive output and active input with channel identifiers
seem to be adequate for_ most applications of stream

transput. Adopting such a “read only” convention
reduces complexity and improves implementation
efficiency.

Redirection of input and output can be provided
very naturally in a system where each entity is referred
to by means of a unique identifier. Special file or stream
descriptors are not needed.

Programs which do not naturally fall into the byte-
stream model exist in all operating systems. It is usually
possible to coerce them into that mold if one tries hard
enough, and generalises the stream model sufficiently.
This need not happen in Eden, because stream transput
is just a special use of the underlying invocation mechan-
ism. Applications which do not fit this special case need
not be distorted: they are free to use some other invoca-
tion protocol.

Acknowledgements

The Eden project currently involves about four faculty
members, fifteen students and five staff members.
Without the cooperation of these people there would be
no Eden system on which to build the Transput protocol
described in this paper. In particular, Jordan Brower
has contributed to the evolution of these ideas by imple-
menting the first Ejects which conform to the asym-
metric stream protocol.

References

[1] Almes, G. A. The Ewvolution of the Eden Mmwvocaiion
Mechanism. Technical Report 83-01-03, Department of
Computer Science, University of Washington. January
1983.

Birtwhistle, G. M., Dahl, 0-J., Myhrhaug, B., and Nygaard,
K. Simula BEGIN. Auerbach, 1973.

Borning, A. H. and Ingalls, D. H. Mulliple Mmheritance in
Smalitalk-80. Technical Report 82-06-02, Department of
Computer Science, University of Washington. June 1982.

Browning, S. A. The Tree Machine: A Highly Concurrent
Comnputing FEnvironment. Technical Report (Ph. D.
Thesis) Computer Science, California Institute of Technol-
ogy. January 1980.

Goldberg, A. J. and Robson, D. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, 1983.
Henderson, P. Punctional Programming: Application and
Implementation. Prentice Hall, 1980.

Hoare, C. A. R. Communicating Sequeniial Processes.
Comm ACM, Vol 21 Nr 8 (August 1978) pp 666-677.

Holt, R. C. 4 Short Introduction to Concurrent Euclid.
SIGPLAN Notices Vol 17 Nr 5 (May 1982) pp 60-79.

Holt, R. C. Concurrent Fuclid, The Uniz System, and
Tunis. Addison-Wesley, 1983.)

Jessop, W. H., Noe, J. D., Jacobson, D. M., Baer, J-L. and Pu,
C. The Eden Transaction-Based File System. Procs. 2%
Symp. Reliability in Distributed Software and Database
Systems. Pittsburgh, PA. (July 1982).

Lazowska, E. D., Levy, H. M., Almes, G. T., Fischer, M. J.,
Fowler, R. J. and Vestal, 5.C. The Architecture of the Eden
System. Procs. 8% Symp. Op. Sys. Principles.
Asilomar, CA. pp 148-159 (December 1981).

Stoy, J. E. and Strachey, C. 0S6: An Ezperimental Operal-
ing System for a Small Computer. Part 2: Input/output
and filing system. Comp. J, Vol 15 Nr 3 (August 1972) pp
195-203.

[2]
(3]

i4]

[5]
(el
t?]
{e]
fe]
f10]

[11]

[12]

