
An Asymmetr ic S t ream Communica t ion Sys tem
A n d r e w P. B l a c k

D e p a r t m e n t of Compute r Science , FR-35,
Univers i ty of Washington,

Seat t le , WA 98115

Abstract

Input and ou tpu t are of ten viewed as c o m p l e m e n t a r y opera t ions , and it is ce r t a in ly t rue t h a t the
d i rec t ion of da ta flow during input is the r ev e r s e of t h a t during output . However, in a convent iona l
opera t ing sys tem, the d i rec t ion of cont ro l flow is the same for bo th input and output : the p r o g r a m
plays the active role, while the opera t ing s y s t e m t r a n s p u t pr imi t ives are always passive. Thus
t h e r e are f o u r pr imit ive t r a n s p u t opera t ions , no t two: the co r r e spond ing pai rs are pass ive input
and active output , and act ive input and passive output . This p a p e r exp lores ~he impl ica t ions of th is
idea in the c o n t e x t of an objec t o r i en t ed opera t ing sys t em.

This work is supported in part by the National Science Foundation under Grant No. MCS-8004111. Computing
equipment and technical support are provided in part under a cooperative research agreement with Digital
Equipment Corporation.

O. I n t r o d u c t i o n

In m o s t opera t ing s y s t e m s the pr imi t ives for t r a n s p u t
(i.e. input and output) appea r as s y s t e m calls. P r o g r a m s
a lmos t always t ake the init iative in i n t e r ac t i ons with the
s y s t e m . The m o s t no tab le excep t ion to this genera l i sa-
l ion is t h a t usually t h e r e exis ts some kind of pr imit ive
i n t e r r u p t facili ty whe reby the opera t ing s y s t e m ke rne l
c a n notify a p r o g r a m tha t a ce r t a in event has occur red .

The Eden s y s t e m cu r r en t l y u n d e r c o n s t r u c t i o n at
the Univers i ty of Washington is radical ly d i f ferent f rom
this norm. In Eden it is quite usual for one p r o g r a m to
a s k a n o t h e r for a service, via a m e c h a n i s m cal led /nvo-
vab~on. This des ign natura l ly leads to a s y s t e m in which
m o s t serv ices are provided by " p r o g r a m s " r a t h e r than
by the s y s t e m itself, and each p r o g r a m is a p rovider as
well as a c o n s u m e r of services .

One of the c o n s e q u e n c e s of this des ign is t h a t each
p r o g r a m is p r e p a r e d to receive invocat ions as welt as to
s end them. Communica t ion with the outside world is no
longer the perogat ive of the p rogram; the "outs ide
world" is able to take the init iative in communica t ion .
This capabi l i ty allows a t r a n s p u t s y s t e m for Eden to be
built in a r a t h e r novel way, which this p a p e r explores .
However, before cont inuing it is n e c e s s a r y to provide
s o m e backg round about Eden itself.

1. T h e E d e n S y s t e m

The Eden Pro jec t [11] (cu r r en t l y in i ts th i rd year) is a
f ive-year e x p e r i m e n t in t he design, c o n s t r u c t i o n and use
of an in t eg ra t ed , d i s t r i bu ted comput ing env i ronment .

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, rcquircs a fee and/or specific permission.

(~) 1983 ACM 0-89791-115-6/83/010/0004 $00.75

The d i s t r ibu t ion a s p e c t s of Eden are no t p a r t i cu l a r l y .
r e levan t to this paper . The s ignif icant a spec t of Eden is
t h a t it is usual for p r o g r a m s b o t h to provide and con-
sume services . Using the t e r m objec t in a s ense very
similar to t h a t of the Small talk p r o g r a m m i n g language
[5], we r e fe r to Eden as an "ob jec t o r i en t ed sys t em" .

To dis t inguish our pa r t i cu l a r fiavour of objec t f rom
t h a t of o t h e r s y s t e m s and languages , we r e f e r to t h e m as
Ejects (for Eden Objects). An Eject has the following
ch a rac t e r i s t i c s .
• Each Eject has a unique unforgeable ident i f ier

(UID); one Eject may c o m m u n i c a t e with a n o t h e r
only by knowing its UID. It is not n e c e s s a r y to know
the phys ica l locat ion of an Eject within the Eden sys-
t em.

• Ejects may rece ive and rep ly to invocations f rom
o t h e r Ejects . An invocat ion is a r e q u e s t to pe l ' form
some n a m e d opera t ion , and may be though t of as a
kind of r e m o t e p r o c e d u r e call.

• Each Eject has a c o n c r e t e type, t ha t is, a fixed p iece
of code t h a t defines the se t of invocat ions to which
the Eject will r e spond . Eden types are s imilar to t he
col lec t ion of m e t h o d s t h a t make up a Small talk
Class.

• An Eject may p e r f o r m a Checkpoint opera t ion. The
ef fec t of Checkpoint ing is to c r e a t e a passive
Retrres~ntation, a da ta s t r u c t u r e des igned to be
durable ac ross s y s t e m c ra shes . The da ta in a pas-
sive r e p r e s e n t a t i o n should be suff icient to enable
the Eject they r e p r e s e n t to r e - c o n s t r u c t i tself in a
c o n s i s t e n t s ta te . The checkpo in t pr imit ive ks t he
only m e c h a n i s m provided by the Eden ke rne l
whereby an Eject may acces s " s tab le s to rage" (i.e.
the disk).
Each Eject has its own t h r e a d of cont ro l and may be
t h o u g h t of as act ive at all t imes . The sending of an
invocat ion does no t s u s p en d the execu t ion of t he
sending Eject: the s e n d e r is free to p e r f o r m o the r
tasks . The p r o g r a m m i n g language used within Eden
is an ex tens ion of Concu r r en t Euclid [8], [9], and
encou rages such a p r o g r a m m i n g style. Each Ejec t

is p rovided with mult iple p roces se s , of which some
may be waiting for incoming invocations, some may
be waiting for repl ies to invocations, and some may
be running. This is in c o n t r a s t to the Small talk
language, where the ac t of sending a m e s s a g e
t r a n s f e r s cont ro l to the receiver .

In p rac t ice , Ejects are not always active, e i t he r
because t h e y (or the i r c o m p u t e r s) have c rashed , or
because they have explicit ly deac t iva t ed themse lves .
However, if a passive e jec t is s en t an invocation, the
Eden ke rne l will act ivate it. When an Eject is ac t iva ted
by the ke rne l it will normal ly a t t e m p t to pu t its in t e rna l
da ta s t r u c t u r e s into a cons i s t en t s ta te . If the Eject had
previously Checkpointed, it can use the da ta in i ts Pas-
sive Rep re sen t a t i on to define this s ta te .

Ejects and invocat ions are the only en t i t i es in the
Eden sys tem. Eden is obviously well-suited to the s e rve r
model of computa t ion , where p rog re s s is m a d e by one
Eject reques t ing ano the r to p e r f o r m some service. For
example , the in te r face to a da ta -base s y s t e m could be
r e p r e s e n t e d by an Eject which r e s p o n d s to invocat ions of
the form "List the records that match the following pat-
tern." What is not immediately clear is how conventional
operating system services like a filing system and
r ed i r ee t ab l e device i n d e p e n d e n t t r a n s p u t fit into the
Eden mode l of computa t ion . These topics are exp lored
in the nex t sect ion.

2. Files and Transput in Eden

In Eden, files are Ejects: they are active r a t h e r t han pas-
sive ent i t ies . An Eden file would i tself be able to r e s p o n d
to open, close, r e a d and write invocat ions r a t h e r t han
being a m e r e da ta s t r u c t u r e ac t ed upon by opera t ing
s y s t e m primit ives. Once a file has been wri t ten, the da ta
is c o m m i t t e d to s table s to rage by Cheekpointing.
Management of the under ly ing s to rage m e d i u m is per -
fo rmed by the Eden kernel , not by the filing s y s t e m
itself.

Once a file has been c rea ted , it is usual to e n t e r it
into some d i r ec to ry and assoc ia te a meaningfu l s t r ing
with tha t ent ry , so t h a t the in format ion con ta ined in the
file can be convenient ly accessed . In Eden d i rec to r i es
are also Ejects; t hey r e spond to invocations like Lookup,
DeleteEntry, ,4ddEntry and List, Each e n t r y in a d i rec-
to ry Eject is in pr inc ip le a pai r consis t ing of a m n e m o n i c
lookup s t r ing and the Unique Identif ier of the Eject. It is,
of course , poss ib le to e n t e r the UID of any Eject in a
d i rec tory , so a rb i t r a ry ne tworks of d i rec to r i es can be
cons t ruc t ed .

F rom the point of view of an Eiect t rying to p e r f o r m
a Lookup operat ion, any Eject which r e s p o n d s in the
app rop r i a t e way is a sa t i s fac to ry d i rec tory . For exam-
ple, it is poss ible to provide a /~ rec t0 ry Concaten~tor
type which is ini t ial ised with a list of d i r ec to r i e s and
which yields the same resu l t as would be ob ta ined f rom
per forming the lookup on all of the d i rec to r i es in t u rn
until the n a m e is found. Such a c o n e a t e n a t o r provides a
facility r a t h e r like t ha t offered by the UnixSshell and the
PATH env i ronmen t variable. It may be i m p l e m e n t e d
e i the r by actual ly pe r fo rming the mult iple lookups, or by
main ta in ing some sor t of table which r e p r e s e n t s the con-
ca t ena t ion of the d i rec tor ies .

There are thus two not ions of " type" in Eden. The
beh-viour of an Eject is the only a s p e c t t ha t is i m p o r t a n t
to its users . The Eden type of t he Eject, i.e. the iden t i ty
of the pa r t i cu l a r piece of type-code which defines t ha t
behaviour, is i r re levant . Each Eject may be though t of as
an a b s t r a c t machine . The type-code of the Eject defines
the t r ans i t ions of the machine; the inputs are the invoca-
t ions it receives , and the outputs are the repl ies to those
invocations. Since this p a t t e r n of invocation and rep ly is
all tha t o the r ent i t ies can observe about the Eject, all

Ejects with equivalent s t a t e mach i n e s provide the s ame
functionali ty. Because m a n y p ieces of code can define
the s ame t rans i t ions , it is quite possible for several dis-
t inc t Eden types to behave in the s ame way. In such a
case t he Eden types provide a l te rna t ive i m p l e m e n t a t i o n s
of the same abstract machine.

The notion of behavioural compatibility can be
further extended. If a client Eject E assumes that some
server Eject behaves according to an abstract
specification S, then not only will E be satlstleu by any
implementation of S, but also by any.implementation of
S', where S'is a superset of S. In other words, provided
tha t S ' conta ins all the opera t ions of S and t h a t t he i r
s eman t i c s are the same, it does not m a t t e r to E tha t S '
conta ins o the r opera t ions in addit ion.

A t ree of a b s t r a c t mach i n e s s imilar to the above can
be c o n s t r u c t e d w i t h Simula Classes [2] and Small ta lk
Objects [5]. Observe, however, t ha t the behaviour of a
given Eden type may include t h a t of m o r e than one o t h e r
type, so t he s i tua t ion in Eden is m o r e gene ra l than in
t hese languages. In fact , in some ways it resembles
Smail talk with a mult iple class i nhe r i t ance h i e r a r chy [3].
However, our i m p l e m e n t a t i o n does no t cu r r en t l y enforce
r eeompi la t ion when inhe r i t ed code is changed.

3. Filters and Pipes

A large n u m b e r of uti l i t ies in a typical opera t ing s y s t e m
may be d e s c r i b e d as filters. A fi l ter is a p r o g r a m which
takes a single stream of input and produces a single
stream of output; the output is some transformation of
the input. A simple example of a filter is a program
whose output is a copy of its input except that all lines
beginning with "C" have been omitted. Such a filter
might be used to strip comment lines from a Fortran
program. Most filters may be parameterised: a more
useful program is one which deletes all lines matching a
pattern given as an argument. Text formatters, stream
editors, spelling checkers, prettyprinters and paginators
are all filters.

In a conventional operating system, a filter F per-
forms two functions. In addition to applying a transfor-
mation to the da ta s t r e am, it ac t s as a data purrtp, t ha t
is, it causes da ta to flow from the input to the output .
The pumping funct ion ar i ses b ecau s e bo th input and out-
pu t are p e r f o r m e d actively. By this I m e a n t h a t F t akes
the initiative in both input and output; it is F w h i c h calls
the Read and Wr/2e opera t ions . The r@le of the opera t ing
s y s t e m is me re l y to r e s p o n d to the r e q u e s t s m a d e by the
filter. If F calls a Read operat ion, the r e s p o n s e of the
opera t ing s y s t e m is in some sense a kind of output ,
b ecau s e da ta flows f rom the s y s t e m to F. However, t he
s y s t e m does not i t se l f call a }fr/te operat ion: it r e sponds
to the Read tha t is a l ready in p rogress . I will call this
r e s p o n s e passive output. The adject ive passive ind ica tes
tha t the opera t ing s y s t e m is r e spond ing to an init iative
of F ' s ; passive ou tpu t is by definit ion the c o m p l e m e n t oi
active input. In general , da ta will flow f rom en t i ty A to
en t i ty H if /? p e r f o r m s active input and A r e s p o n d s with
passive output. Because they communicate with each
o the r l will r e f e r to active input and pass ive ou tpu t as
coT'responding operations.

When F performs active output, the response from
the operating system is passive input. Thus data can
also flow f rom en t i ty A to en t i ty B if A p e r f o r m s act ive
output and B r e s p o n d s with pass ive input. Pass ive input
and active ou tpu t are also co r respond ing opera t ions .

One very useful facility provided by the Unix opera t -
ing s y s t e m is t he ability to c o n n e c t f i l ters F,, F~ F n
t o g e t h e r so t h a t the ou tpu t of Fi b e c o m e s the input of
F~÷ 1. This is done by in te rpos ing an en t i ty cal led a p/pc

• Unix is a trademark of Bell Laboratories.

direction of data flow
>

active active
input output

F t, F e and F s are fi lters. The shape of t h e c o n n e c t o r s on%he filters indicate tha t they are per forming act ive in-
put and act ive output . The c irc les represent facilities provided by the Unix kernel, i0 t and Pe are pipes; da$~
sot$~'ce and do~ta s'~nk, m a y be files or devices.

Figure i: A

be tw een F~ and F~+1; Unix r e f e r s to the whole a r range-
m e n t as an ~-s tage tr~peline. The func t ion of a pipe is to
p e r f o r m passive t r a n s p u t in r e s p o n s e to the act ive t ran-
s p u t ope ra t ions of t he filters. When F~ p e r f o r m s a Wr/~e
opera t ion, the pipe to which it is c o n n e c t e d r e sp o n d s by
accep t ing the data, i.e. it p e r f o r m s passive input. When
F~+, p e r f o r m s a Read opera t ion , the pipe r e s p o n d s by
supplying da ta it has previously r ece ived f rom F¢ i.e. the
pipe p e r f o r m s passive ou tpu t (see Figure 1). Because
en t i t i es like Unix p ipes p e r f o r m bo th buffering and pas-
sive t r anspu t , I will r e f e r to t h e m as passive buffers.

It should now be c lear why passive buffers are
neces sa ry . Even though fi l ter F~ p e r f o r m s active output ,
and fil ter F~+, p e r f o r m s act ive input, t hey canno t be con-
n e c t e d d i rec t ly because t h e s e opera t ions are no t com-
p l emen ta ry . The pass ive buffer provides the act ive t r an -
spur ope ra t ions with the n e c e s s a r y c o r r e s p o n d e n t s . In a
convent iona l opera t ing sys tem, the only t r a n s p u t opera-
t ions m a d e available to u se r p r o g r a m s are the active
ones. The pass ive t r a n s p u t opera t ions are always per -
f o rm ed by the s y s t e m itself.

In Eden the invocat ion of t he r e a d or wri te ope ra t ion
of some o the r Eject r e p r e s e n t s an active t r a n s p u t opera-
tion. Responding to such an invocat ion is a passive t ran-
spu t opera t ion: All four opera t ions are thus available to
any Eject . As was obse rved above, da ta can be m a d e to
flow f rom one en t i ty to ano the r using only two of the
opera t ions , p rovided t h a t they fo rm a co r r e spond ing
pair. Thus da ta can moved f rom Eject A to Eject B e i the r
by A ini t iat ing a Wr/te invocation to which B r e sponds , or
by B init iat ing a Re~d invocat ion to which A r e sponds . It
thus s eems to be possible to c o n s t r u c t a t r a n s p u t sys-
t e m in which t h e r e is no active output , jus t passive out-
pu t and active input. In o the r words, the write pr imit ive
is appa ren t l y unneces sa ry .

It is i n t e r e s t i ng to compa re this i m p l e m e n t a t i o n
with input and output in Hoare ' s CSP [7] and in
Br6wning's Tree Machine Notat ion [4]. In t h e s e
languages t r a n s p u t occurs when one p r o c e s s execu t e s an
ou tpu t (i) opera t ion and its c o r r e s p o n d e n t execu t e s an
input (?) opera t ion. This i n t e r ac t ion may be r e g a r d e d in
severa l d i f ferent ways. Both : and ? may be r e g a r d e d as
active, and the (sof tware or ha rdware) i n t e r p r e t e r as the
passive connec t ion which t r a n s f e r s da ta f rom one to t he
other . Alternatively, input may be r e g a r d e d as active
("get me data!") and ou tpu t as passive ("wait unti l I am
asked for data") . The converse i n t e r p r e t a t i o n is also
possible: input may be r e g a r d e d as a passive wait for

Pipeline in Unix.

data, and ou tpu t as the active ope ra t ion which g e n e r a t e s
data. This last i n t e r p r e t a t i o n c o r r e s p o n d s to Hoare ' s
decis ion to allow input c o m m a n d s in guards bu t to
exclude output commands.

4. P r o g r a m m i n g w i t h R e a d - O n l y T r a n s p u t

It is worthwhile considering just how a transput system
without active output be constructed add used.] will
refer to such an arrangement as a "read only" transput
system.

Output devices such as terminals and printers would
provide a potentially infinite supply of Reed invocations.
Connecting a terminal to a filter Eject would be rather
like starting a pump; it would suck data through the
fil ter and g e n e r a t e a par t ia l vacuum (in the fo rm of out-
s tanding r ead invocat ions) on the far side. A file opened
for input would r e s p o n d to r e a d invocat ions with t he
app ropr i a t e data, and eventual ly with an indica t ion t h a t
the end of the file had been r each ed . A file o pened for
ou tpu t would i m m e d i a t e l y issue a Read invocation, and
would cont inue reading unti l it r ece ived an end of file
indicator . It is possible to c r e a t e pipel ines of a r b i t r a r y
leng th without any n e e d for i n t e r m e d i a t e buffering; t he
only r e q u i r e m e n t is t ha t each pipel ine m u s t s t a r t with a
da t a source and end with a da ta sink.

As should be a p p a r e n t f rom the d iscuss ion of Eden
types, any Eject which r e s p o n d s to Read invocat ions is
by definit ion a source , and any Eject which g e n e r a t e s
t h e m is a sink. The null sink is an Ejec t which reads
ind i sc r imina te ly and ignores the da t a it is given. An
Eject which r e s p o n d s to a r ead invocat ion by r e tu rn ing
the c u r r e n t da te and t ime is a source . Eden Direc tor ies
also behave as sources ; in addi t ion to Lookup and
I)eleteEntry, t hey r e s p o n d to an invocat ion cal led List.
The effect of a List invocat ion is to p r e p a r e the d i r ec to ry
to rece ive a n u m b e r of Reed invoeat iohs, which t r a n s f e r
a p r in tab le r e p r e s e n t a t i o n of the d i r e c t o r y ' s c o n t e n t s to
the r eader .

There is a ce r t a in s imilar i ty be tween a t r a n s p u t sys-
t e m c o n s t r u c t e d in this way and a lazy i m p l e m e n t a t i o n
of Lisp [fl]. In bo th cases no c o m p u t a t i o n need be done
unti l the resu l t is r eques t ed . There is, of course , a
d i f ference in t he origin of the laziness: in the case of an
appl icat ive language it is des igned into t he i m p l e m e n t a -
tion, whereas in the case of the t r a n s p u t s y s t e m each
Ejec t may be p r o g r a m m e d so as not to do any work unt i l
it is asked for output . A c o n s e q u e n c e of th is is t h a t t he
fi l ter Ejects are pure t r a n s f o r m e r s : t hey do no t also

p u m p d a t a (u n l i k e U n i x p r o g r a m s) . No d a t a flows un t i l a
s i n k is c o n n e c t e d to t h e p ipe l ine .

L a z i n e s s , h o w e v e r , is n o t d e s i r a b l e in a s y s t e m
w h i c h p e r m i t s p a r a l l e l e x e c u t i o n . I n s t e a d , o n e wou ld
p r e f e r t h a t e a c h E j e c t d o e s a c e r t a i n a m o u n t of c o m p u -
t a t i o n in a d v a n c e , in a n t i c i p a t i o n t h a t i t will e v e n t u a l l y
be a s k e d for t h e f r u i t s of i t ' s l a b o u r s . Typica l ly , e a c h
E j e c t in a p i p e l i n e s h o u l d r e a d s o m e i n p u t a n d b u f f e r - u p
s o m e o u t p u t , a n d t h e n s u s p e n d p r o c e s s i n g p e n d i n g a
r e q u e s t for o u t p u t . In t h i s w a y al l t h e E j e c t s in a p ipe -
l ine c a n r u n c o n c u r r e n t l y .

The i n t e r c o n n e x i o n of t h e e l e m e n t s of t h e p i p e l i n e is
e a s i l y a c c o m p l i s h e d in E den . A f i l te r is i n i t i a l i s e d by a n
i n v o c a t i o n w h i c h s u p p l i e s it w i th a r g u m e n t s . Mos t of
t h e s e a r g u m e n t s p a r a m e t e r i s e t h e b e h a v i o u r of t h e f i l t e r
in t h e u s u a l way, b u t one of t h e m is t h e U n i q u e I d e n t i f i e r
of t h e E j e c t f r o m w h i c h i t is to o b t a i n i t s i n p u t . No te
t h a t it is n o t n e c e s s a r y to t e l l a f i l te r w h e r e t h e o u t p u t is
to go: it will b e s e n t to w h a t e v e r E j e c t r e q u e s t s i t (by
p e r f o r m i n g a Read). A file c o u l d be p r i n t e d s i m p l y b y
r e q u e s t i n g t h e p r i n t e r s e r v e r to r e a d f rom. t h e file. If a
p a g i n a t e d l i s t i ng we re r e q u i r e d , t h e p r i n t e r s e r v e r wou ld
be r e q u e s t e d to r e a d f r o m t h e p a g i n a t o r , a n d t h e p a g i n a -
t o r to r e a d f r o m t h e file. S i nce f i les a r e a c t i ve e n t i t i e s ,
t h e r e is no d i s t i n c t i o n b e t w e e n i n p u t r e d i r e c t i o n f r o m a
file a n d f r o m a p r o g r a m . (This is n o t so in Unix, fo r
e x a m p l e , w h e r e t h e she l l u s e s d i f f e r e n t s y n t a x a n d a
d i f f e r e n t i m p l e m e n t a t i o n in t h e two c a s e s .)

One a d v a n t a g e of t h e " r e a d on ly" s y s t e m j u s t ou t -
l i n e d is t h a t a s e q u e n c e of n f i l t e r s , a s o u r c e a n d a s i n k
c a n all be i m p l e m e n t e d by n + 2 E j ec t s . This m e a n s t h a t
on ly n + l i n v o c a t i o n s a r e n e e d e d to t r a n s f e r a d a t u m
f r o m o n e e n d of t h e p i p e l i n e to t h e o t h e r . C o n v e r s e l y , if
e a c h f i l t e r w e r e to p e r f o r m a c t i v e o u t p u t as well a s
a c t i v e i n p u t , 2 n + 2 i n v o c a t i o n s wou ld be n e e d e d , as would
n + l p a s s i v e b u f f e r E j ec t s . T h u s c o n s i d e r a b l e s a v i n g s of
c o m m u n i c a t i o n s o v e r h e a d a n d p r o c e s s s w i t c h i n g c a n be
r e a l i s e d wi th long p i p e l i n e s . F i g u r e 2 i l l u s t r a t e s t h e
s a m e p i p e l i n e as F i g u r e 1, b u t c o n s t r u c t e d a c c o r d i n g to
t h e " r e a d on ly" m o d e l .

One way of v i s u a l i s i n g t h e o r ig in of t h e s e s a v i n g s is
a s a m e r g i n g of e a c h p a s s i v e b u f f e r w i t h i t s s o u r c e . In
do ing t h i s m e r g e , two E j e c t s a r e t u r n e d i n t o one , a n d t h e
i n t e r - E j e c t c o m m u n i c a t i o n l ink b e t w e e n t h e m is t u r n e d
i n t o i n t e r n a l c o m m u n i c a t i o n . W i t h o u t a n y f u r t h e r
r e f i n e m e n t , t h i s i m p l i e s t h a t t h e f i l te r m u s t be w r i t t e n
so t h a t it l o o k s for i n c o m i n g Read i n v o c a t i o n s p e n d i n g
f r o m o t h e r E j e c t s i n s t e a d of p e r f o r m i n g wr i t e o p e r a -
t i ons .

It is possible to adopt a more conventional style of
programming by adding an extra process to the filter.
The standard IO module obtained from a library would
implement the usual W~te operations that put charac-
ters into a buffer. However, that buffer would be shared
with a process that receives invocations which request
data and services them. The filter process itself would
be programmed in the conventional way and make use of
the W~e operations whenever necessary.

In some sense, then, the cost of "read only" tran-
spur is that the programmer (or her language implemen-
tor) is given the burden of providing the processes and
c o m m u n i c a t i o n p r i m i t i v e s t h a t a r e no l o n g e r n e c e s s a r y
a t t h e s y s t e m level . Is t h i s g o o d or b a d ? A n s w e r i n g t h i s
q u e s t i o n r e q u i r e s m o r e e x p e r i e n c e wi th " r e a d .only"
t r a n s p u t t h a n we c u r r e n t l y have , b u t t h e fol lowing o b s e r -
v a t i o n s a r e r e l e v a n t .

• The p r o g r a m m i n g l a n g u a g e u s e d in t h e c o n s t r u c t i o n
of E j e c t s n e e d s to s u p p o r t p a r a l l e l i s m r e g a r d l e s s of
t h e t r a n s p u t p r o t o c o l . An E j e c t w h i c h p r o v i d e s a s e t
of s e r v i c e s to c l i e n t s will t y p i c a l l y be o r g a n i s e d as a
" c o o r d i n a t o r " p r o c e s s t h a t r e c e i v e s i n c o m i n g invo-
c a t i o n s , a n d a n u m b e r of " w o r k e r " p r o c e s s e s t h a t
a c t u a l l y p e r f o r m t h e p r o c e s s i n g n e c e s s a r y to s a t i s f y
t h e m . ~ The u s e of a s e p a r a t e p r o c e s s to s e r v i c e r e a d
r e q u e s t s f r o m t h e n e x t s t a g e of t h e p i p e l i n e is o n ly
a s p e c i a l c a s e of a m o r e g e n e r a l p r o g r a m m i n g
m e t h o d o l o g y .

• P r o c e s s e s p r o v i d e d w i th in t h e p r o g r a m m i n g
l a n g u a g e a r e l ike ly to be m o r e e f f i c i e n t t h a n t h e
p r o c e s s e s of t h e u n d e r l y i n g m a c h i n e o r s y s t e m o n
w h i c h t h e E j e c t s a r e b a s e d . S imi l a r ly , i n t e r p r o e e s s
c o m m u n i c a t i o n w i t h i n a n E j e c t is l ike ly to be m u c h
m o r e e f f i c i e n t t h a n i n v o c a t i o n .

• By e l i m i n a t i n g ac t ive o u t p u t a n d p a s s i v e i n p u t f r o m
t h e s y s t e m (a t t h e l eve l of i n t e r - E j e c t i n t e r f a c e s , if
n o t i n t e r n a l l y to t h e E j ec t s) , a c o n s i d e r a b l e
s i m p l i f i c a t i o n of E j e c t i n t e r f a c e s h a s b e e n a c h i e v e d .

• In c o m p a r i s o n wi th t h e o b v i o u s d e s i g n i n c o r p o r a t i n g
p a s s i v e b u f f e r s b e t w e e n e a c h p a i r of a c t i ve E j ec t s ,
r o u g h l y ha l f as m a n y i n v o c a t i o n s a r e r e q u i r e d t o
m o v e d a t a f r o m one e n d of t h e p i p e l i n e to t h e o t h e r .
The c o s t of a n i n v o c a t i o n m u s t i n e v i t a b l y be h i g h e r
t h a n t h a t of a s y s t e m cal l in a n o r d i n a r y o p e r a t i n g

Such an organisatien is described in [11], where the Eden kernel
was ass~ned responsfoi]ity for its maintenance. Our current irnp]ernen-
ration provides processes at the langu~e level; see [1]

direction of data flow
>

active passive
input output

Each box r e p r e s e n t s an Eject. The fi l ters Ft all perform act ive input and passive output. The s i n k actively in-
pu t s and the source passively outpu ts .

F i g u r e 2: The s a m e P i p e l i n e in E d e n w i th " r e a d on ly" T r a n s p u t .

system (because invocation is location-
independent), so such saving may be significant in
Eden.

5. Write-Only Transput; Multiple Inputs and Outputs

The system described so far uses active input and pas-
sive output as its only transput primitives. The dual
arrangement should also be considered; in this case only
pass ive input and active output would be available. Data
sources would continually attempt to perform write invo-
cations, and sinks would always be ready to accept them.
An Eject would explicitly send data to the next Eject in a
pipeline, but would not in general be concerned with the
origin of the data it processe d. Within an Eject, a con-
ven~-olrla[/~s~drouti6e could be implemented by extract-
ing data from an internal buffer; another process would
respond to incoming Wr/te invocations and use the data
thus obtained to fill the same buffer.

Because the "read only" and "write only" models
are exact duals, both are equally convenient in the case
of a pipeline of pure filters. The differences between the
models become apparent when we start to relax the
assumptions that introduced this discussion. One
assumption that must be examined is that pure filters
occur frequently amongst the utilities of the average
operating system. In fact it is very common for filters to
be impure: many useful programs require multiple
i~nputs or generate multiple outputs. Examples of pro-
grams with multiple inputs include file corrlparison pro-
grams and stream editors that have a command input as
well as a text input. It is also common for a program to
produce a stream df Repox-fs (i.e, monitoring messages)
in addition to its main output stream.

In the "read only" transput scheme the filter Eject F
knows the Unique Identifier of the Eject from which it
requests input data. Because of this feature it is easy to
generalise the "read only" scheme to allow an arbitrary
number of inputs.]f F needs xz inputs, it maintains
U]Ds, each referring to an Eject which responds to read
requests. In contrast, it is difficult to have multiple out-
puts with the "read only" scheme, because output
occurs only in response to an external request. Arrang-
ing for two or more Ejects to make Need invocations on F
does not help: F cannot distinguish this from one Eject
making the same total number of Rs~d invocations. As
we have described it so far, "read only" transput allows
arbitrary fan-in but no fan-out.

The dual situation exits with "write only" transput.
Each filter has (or appears to have) a single source, but
can direct output to as many sinks as is convenient.
There is arbitrary fan-out, but no fan-in. Conventional
transput allows arbitrary fan-in and fan-out because both
reads and writes are active. (However, some operating
systems place restrictions on the number of streams
which may be redirected.)

One might attempt to remedy this failing by permit-
ting F to examine the UID of the originator of the
request; however, this introduces more problems than it
solves. Although these UIDs are present in the invoca-
tion message (so that the reply may be returned
correctly) they are in principle private to the Eden ker-
nel. This is because the effect of a particular invocation
ought to depend only its parameters, and not on the
identity of the invoker. Doing otherwise would prohibit
dynamic re-direction of transput streams. A parallel
may be drawn with programming languages: the effect of
a particular procedure call should not depend on who
makes it. Even though the return address is on the exe-
cution stack and could easily be accessed, procedural
programming language.-, do not provide a primitive to do
so. The semantics of procedure call would be greatly
complicated by such a provision.

Let us consider how multiple outputs may be
accommodated within the "read only" model One possi-
bility is to designate one output stream as the "primary"
output, and make all the others "secondary". Primary
output is supplied in response to Reed invocations in the
way previously discussed, but now secondary output is
volunteered in W1-ife invocations. When such impure
filters are initialised, they must be informed of the desti-
nation of their secondary outputs. Typically these out-
puts will be directed into passive buffers, which will then
be sources for other pipelines. This amounts to aban-
doning the "read only" nature of the transput system for
all filters with multiple outputs -- and a large number of
filters produce reports.

On the assumption that more filters have multiple
outputs than multiple inputs, the dual arrangement may
be preferable. In a "write only" transput system each
filter would have a primary input, which is supplied by a
source Ejects performing Wr~fe invocations, and a
number of secondary inputs, which are actively read.
These secondary inputs will typically be passive buffers,
filled by the active output of some pipeline, file or device.
Multiple outputs present no difficulty; Figure 3 shows a

s o u r c e

direction of data flow

~ Output

I , ~ . _ _ ~ _ ~ Report
Window
for F~

Once again, each box:represents an Eject. The source, F I and F s produce reports as well as normal output.
The reports:from source and F i are directedto a common destination, perhaps a window on a display.

Figure 3: An Eden pipeline in the wrRe-only discipline, with Report Streams

p o s s i b l e c o n f i g u r a t i o n .

N e i t h e r of t h e s e s o l u t i o n s is v e r y s a t i s f a c t o r y , a s
e a c h invo lves r e - i n t r o d u c i n g p a s s i v e b u f f e r s a n d t h e
o t h e r k i n d of a c t i v e t r a n s p u t p r i m i t i v e . A b e t t e r s o l u t i o n
is to a d m i t t h e e x i s t e n c e of m u l t i p l e i n p u t s a n d o u t p u t s
exp l i c i t ly . In t h e " r e a d on ly" m o d e l , a channel identi f ier
is a s s o c i a t e d wi th e a c h o u t p u t s t r e a m , a n d e a c h Read
i n v o c a t i o n is qua l i f i ed by t h e a p p r o p r i a t e i den t i f i e r . Fo r
e x a m p l e , t h e s p e c i f i c a t i o n of a f i l te r F m i g h t s t a t e t h a t it
will r e s p o n d to Read r e q u e s t s on c h a n n e l s Report a n d
Oubput . When c o n n e c t i n g s i n k E j e c t s to F, t h e s i n k s
m u s t be to ld n o t on ly F ' s UID b u t a l so t h e c h a n n e l
i d e n t i f i e r t h a t s h o u l d be u s e d on e a c h r e q u e s t . F i g u r e 4
s h o w s t h e s a m e s e t of i n t e r c o n n e c t i o n s as F i g u r e 3, b u t
u s e s t h e " r e a d only" d i s c i p l i ne a n d c h a n n e l i d e n t i f i e r s .

The m a j o r d i s a d v a n t a g e of t h i s s c h e m e is t h a t t h e
u s e r who c o n n e c t s f i l t e r s t o g e t h e r now h a s t h e a d d e d
b u r d e n of s u p p l y i n g t h e c o r r e c t c h a n n e l i d e n t i f i e r s .
However , t h i s is v e r y s i m i l a r to t h e w a y t r a n s p u t is
r e d i r e c t e d in a c o n v e n t i o n a l o p e r a t i n g s y s t e m , w h e r e t h e
c o m m a n d l a n g u a g e p r o v i d e s s o m e p r i m i t i v e l ike ASSIGN
OUTPUT CHANNEL ~ a r n e TO #file, or l ike t h e Un i x s h e l l ' s " n > "
s y n t a x , I t s e e m s to m e t h a t o n c e t h e u s e r is a w a r e of
t h e e x i s t e n c e of m u l t i p l e c h a n n e l s , t h e r e q u i r e m e n t to
p r o v i d e c h a n n e l i d e n t i f i e r s d o e s l i t t le to i n c r e a s e t h e
p e r c e i v e d c o m p l e x i t y of t h e s y s t e m .

B e c a u s e o u r c h a n n e l i d e n t i f i e r s a r e s u p p l i e d to
E j e c t s (i.e. u s e r c o d e) r a t h e r t h a n s y s t e m code , t h e r e is
a r i s k t h a t a d i s h o n e s t p r o g r a m m e r m i g h t r e a d f r o m
s o m e o n e e l s e ' s c h a n n e l . In o t h e r words , if E is t o ld to
read f r o m F ' s c h a n n e l 1, n o t h i n g p r e v e n t s it f r o m r e a d -
ing f r o m F ' s c h a n n e l 2 as well. One w a y of o v e r c o m i n g
this p r o b l e m is to u s e UIDs as c h a n n e l i d e n t i f i e r s :
because UIDs cannot be f o r g e d , t h e on ly E j e c t s w h i c h a r e
ab l e to m a k e va l id ReadonChannel r e q u e s t s of F a r e
those to w h i c h a c h a n n e l i d e n t i f i e r h a s b e e n g i v e n expl i -
c i t ly . The c o s t of t h i s a d d i t i o n a l s e c u r i t y is t h a t m o r e
w o r k is now n e c e s s a r y to c o n n e c t a s i n k to i t s s o u r c e .
W h o e v e r s e t s up a p i p e l i n e m u s t a s k e a c h f i l te r for t h e
UIDs of i t s c h a n n e l s , a n d t h e n p a s s t h e m on: UIDs c a n n o t
be g iven in t h e d o c u m e n t a t i o n in t h e s a m e way as ord i -
n a r y i d e n t i f i e r s . The s e c u r i t y of t h i s s c h e m e t h u s
d e p e n d s on t h e h o n e s t y of t h e E j e c t w h i c h p e r f o r m s t h e
i n t e r e o n n e c t i o n s ; in t h e l a s t r e s o r t , a u s e r c a n a lways
c o n v i n c e h i m s e l f of t h i s b y w r i t i n g s u c h a n E j e c t h i m s e l f .
It d o e s n o t d e p e n d on t h e h o n e s t y of t h e " s y s t e m u t i l i t y "
E j ec t s . This is f o r t u n a t e , b e c a u s e it is u n r e a s o n a b l e fo r

the user to have to rewrite all the utilities.~

If Eden addressed its messages to "Ports" rather
than Ejects, arbitrary fan-out would be easy to achieve;
there would simply be one port for each output channel.
Using capabilities as channel identifiers may be regarded
as a way of simulating multiple ports.

6. The Place of Stream Transput in Eden

The above discussion is solely concerned with input and
output according to a stream protocol. In many operat-
ing systems, this is the only means whereby processes in
different address spaces may communicate. The design
of the Unix operating system is based on the assumption
t h a t (e x c e p t for a p r i m i t i v e " s o f t w a r e i n t e r r u p t " fac i l i ty)
all p r o g r a m s c o m m u n i c a t e b y b y t e - s t r e a m . A c c o r d i n g l y ,
all f i les a r e c o n s i d e r e d to be a n u n s t r u c t u r e d s e q u e n c e
of b y t e s .

I t is well to r e m e m b e r t h a t t h e E d e n S y s t e m d o e s
n o t m a k e t h i s a s s u m p t i o n . Any p a i r of E j e c t s w h i c h c o m -
m u n i c a t e b y i n v o c a t i o n n e e d to e s t a b l i s h a p r o t o c o l
w h i c h s e t s o u t w h a t e a c h m a y e x p e c t f r o m t h e o t h e r .
The E d e n t r a n s p u t p a c k a g e is n o t h i n g m o r e t h a n s u c h a
p r o t o c o l d e s i g n e d to s u p p o r t t h e a b s t r a c t i o n of a
S e q u e n c e , t o g e t h e r wi th a c o l l e c t i o n of l i b r a r y r o u t i n e s
w h i c h h e l p u s e r E j e c t s to o b e y it . A l t h o u g h t h e E d e n
t r a n s p u t p r o t o c o l a t t e m p t s to b e s u f f i c i e n t l y g e n e r a l to
s a t i s f y t h e i n p u t a n d o u t p u t n e e d s of m o s t u s e r s , i t is n o t
i n t e n d e d to be u n i v e r s a l . If two E l e c t s n e e d to c o m m u n i -
c a t e in a w a y t h a t is d i f f icu l t o r i m p o s s i b l e wi th t h e t r a n -
s p u t p a c k a g e , t h e y a r e f r e e to c r e a t e t h e i r own p r o t o c o l
(a n d p e r h a p s m a k e i t ava i l ab l e to o t h e r u s e r s as a
l i b r a r y m o d u l e) . Fo r e x a m p l e , t h e T r a n s p u t p r o t o c o l
d o e s n o t s u p p o r t r a n d o m a c c e s s : a d i sk file E j e c t (o r a n
E j e c t w i t h a l a r g e m a i n s t o r e a t i t s d i s p o s a l) m a y wish to
de f i ne a p r o t o c o l w h i c h s u p p o r t s t h e a b s t r a c t i o n of a
Map. S u c h a n E j ec t m a y n o t s u p p o r t t h e t r a n s p u t p r o t o -
col a t all, o r i t m a y s u p p o r t b o t h p r o t o c o l s .

N o t h i n g I h a v e s a i d a b o u t E d e n t r a n s p u t c o n s t r a i n s
E d e n s t r e a m s to be s t r e a m s of b y t e s . S t r e a m s of a rb i -
t r a r y r e c o r d s fit i n t o t h e p r o t o c o l j u s t a s well, p r o v i d e d
on ly t h a t t h e y a r e h o m o g e n e o u s . In f ac t , b e c a u s e t h e
E d e n P r o g r a m m i n g L a n g u a g e l a c k s t y p e p a r a m e t e r i s a -

T This is a characteristic of ell capability-based systems, not a
specie] property of "read only" transput. Observe that ~n a convention-
8] operatiz~ system there is nothin~ to stop an editor, say, from de]et-
ir~ all the files in a user's directory.

active
input --

/ _

direction of data flow
)

Report
Window

for s o u r c e
and F 1

Output
F.~ Window

passive | ' Report output

Window
~ [for F m

The same arrangement as Figure3, but in the "read only" discipline. The double lines indicate
Read(Report,..Wtream,) requests; the single lines indicate Read(Out1~.~t) requests. It is assumed that the Report
Window is designed to read from multiple sources.

Figure 4: The pipeline of Figure 3 in the read-only discipline

Lion, it is a l i t t le i nconven i en t to allow s t r e a m s of arbi-
t r a r y types ; it would be n e c e s s a r y to c i r c u m v e n t t he
type sa fe ty in t he l anguage . For a d e s c r i p t i o n of an
ope ra t ing s y s t e m (wr i t ten and " p r o g r a m m e d in an
u n t y p e d l anguage) which p rov ided s u c h s t r e a m s , see
[12].

B e c a u s e invoca t ion is i tself a powerful i n t e r - p r o c e s s
c o m m u n i c a t i o n m e c h a n i s m , and b e c a u s e a r b i t r a r y pro-
tocols c a n be buil t on top of invocat ion, it is l ikely t h a t
b y t e - s t r e a m t r a n s p u t will be less i m p o r t a n t in Eden t h a n
in co n v en t i ona l ope ra t i ng s y s t e m s . Neve r the l e s s , we
believe t h a t the provis ion of a novel ob j e c t -o r i e n t e d
e n v i r o n m e n t will no t by i tself be suf f ic ient for Eden to
a t t r a c t u s e r s who a re fami l ia r with a conven t iona l
o p e ra t i n g s y s t e m . Eden m u s t also provide c onve n t i ona l
ope ra t i ng s y s t e m faci l i t ies in a way t h a t c o m p a r e s
favourab ly with s y s t e m s s u c h as Unix. Dynamica l ly
r e d i r e c t a b l e s t r e a m t r a n s p u t is an e x a m p l e of one s u c h
facility.

7. Current Status

At the t i m e of wri t ing (May 1983), a p r o t o t y p e dis tr i -
b u t e d i m p l e m e n t a t i o n of Eden is in service . The
h a r d w a r e s u b s t r a t e cons i s t s of s eve ra l VAX p r o c e s s o r s
c o n n e c t e d t o g e t h e r by 10Mbit e t h e r n e t . The Unix
ope ra t i ng s y s t e m provides a d e v e l o p m e n t e n v i r o n m e n t
an d supp l i e s t he unde r ly ing a d d r e s s space s , p r o c e s s e s
an d p r imi t ive d isk a c c e s s r e q u i r e d to i m p l e m e n t t h e
Eden kerne l .

We are e x p e r i m e n t i n g with a " r e a d only" t r a n s p u t
s y s t e m t h a t u s e s i n t e g e r c h a n n e l ident i f ie rs as d e s c r i b e d
in Sec t ion 5. Cu r r en t l y m o s t d a t a of i n t e r e s t is in t he
Unix file s y s t e m , so a b o o t s t r a p Eden t r a n s p u t s y s t e m
h as b e e n c o n s t r u c t e d . This cons i s t s of a "Unix File Sys-
t e m " Eject for e a c h phys ica l m a c h i n e , which r e s p o n d s to
two invoca t ions , N e ~ S t v e a m and UseStreaTr~. In out l ine
(and ignor ing the c h a n n e l ids), the b o o t s t r a p t r a n s p u t
s y s t e m works as follows. NezvStrecLm t a k e s as i npu t a
Unix p a t h n a m e , and r e t u r n s as i ts r e s u l t an Ede n
s t r e a m , i.e. a Capabil i ty. The Capabi l i ty is ac tua l ly t he
UID of a newly c r e a t e d Eject (of type Un~:zF//e), whose
p u r p o s e is to r e s p o n d to T r a n s f e r i nvoca t ions with t he
c o n t e n t s of the a p p r o p r i a t e Unix file. When the u s e r
c loses the s t r e a m , the UnizFile Eject d e a c t i v a t e s i t se l f
and, s ince it has neve r Checkpo in t ed , d i s appe a r s , UseS-
t r e a m does t he opposi te ; it t a k e s as i npu t a Unix p a t h
n a m e an d a Capabi l i ty for a s t r e a m , and c r e a t e s a Unix-
Fi/e Eject which r e p e a t e d l y invokes T r a n s f e r on t he
capabi l i ty and r e c o r d s t he d a t a it r ece ives . When an end
of s t r e a m s t a t u s is r e t u r n e d by Trans fer , t he appropr i -
a te Unix file is opened , wr i t t en and closed.

The p r e l i m i n a r y des ign for the full Eden file s y s t e m
i n c o r p o r a t e s n e s t e d t r a n s a c t i o n s and a tomic u p d a t e s
[10]. The i m p l e m e n t a t i o n of a s u b s e t which e xc lude s
t r a n s a c t i o n s is underway . The File s y s t e m D/rec tory
t y p e is in service , and s u p p o r t s t he s t r e a m pro toco l as
d e s c r i b e d in Sec t ion 3.

8. Conc lus ion

Four d i s t inc t t r a n s p u t p r im i t i ve s have b e e n identif ied:
pass ive input , ac t ive ou tpu t , ac t ive input , and pass ive
ou tpu t . Pass ive inpu t c o r r e s p o n d s with act ive ou tpu t ,
an d act ive inpu t c o r r e s p o n d s with pass ive ou tpu t . In a
conven t iona l ope ra t i ng s y s t e m all t h e s e p r imi t ives exis t ,
b u t the pass ive ones a re no t available to u se r s : t h e y are
the r e s p o n s e s of t he s y s t e m code which i m p l e m e n t s t he
t r a n s p u t s y s t e m .

In an objec t o r i en t ed s y s t e m s u c h as Eden, all four
p r imi t ives can be m a d e available a t t he u s e r level.
Indeed, s ince u s e r s a re able to g e n e r a t e w h a t e v e r invo-
ca t ions t h e y de-~ire, t h e r e is no way of concea l ing a ny
p a r t i c u l a r s u b s e t . Never the le s s , the c o r r e s p o n d i n g pa i r

pass ive o u t p u t a nd act ive i npu t with c h a n n e l ident i f ie rs
s e e m to be a d e g u a t e f_or_most app l i ca t ions of s t r e a m
t r a n s p u t . Adopting s u c h a " r e a d only" conven t ion
r e d u c e s c o m p l e x i t y and i m p r o v e s i m p l e m e n t a t i o n
eff iciency.

Red i r ec t i on of i n p u t and o u t p u t c a n be p rov ided
ve ry n a t u r a l l y in a s y s t e m w he re e a c h e n t i t y is r e f e r r e d
to by m e a n s of a un ique ident i f ier . Specia l file or s t r e a m
d e s c r i p t o r s a re no t needed .

P r o g r a m s which do not n a t u r a l l y fall in to the byte-
s t r e a m m o d e l ex is t in all operat inK s y s t e m s . It is u sua l ly
poss ib le to coe rce t h e m into t h a t mold if one t r i e s h a r d
enough , a nd g e n e r a l i s e s the s t r e a m m o d e l suff icient ly.
This n e e d no t h a p p e n in Eden, b e c a u s e s t r e a m t r a n s p u t
is j u s t a spec ia l use of the unde r ly ing invoca t ion m e c h a n -
i sm. Appl ica t ions which do no t fit th is spec ia l c a se n e e d
no t be d i s to r t ed : t h e y a re f ree to u se s o m e o t h e r invoca-
t ion protocol .

A c k n o w l e d g e m e n t s

The Eden p r o j e c t c u r r e n t l y involves a b o u t four f a cu l t y
m e m b e r s , f i f teen s t u d e n t s and five s taff m e m b e r s .
Without the c o o p e r a t i o n of t h e s e people t h e r e would be
no Eden s y s t e m on which to bui ld the T r a n s p u t p ro toco l
d e s c r i b e d in th is pape r . In pa r t i cu l a r , Jo rdan Brewer
has contributed to the evolution of these ideas by imple-
menting t h e f i rs t E jec t s which c o n f o r m to the a s y m -
m e t r i c s t r e a m protocol .

R e f e r e n c e s
[I] Almes, G. A. The 5~JOlUb~on of the Eden InvoeoCfon

Mechan/sm. Technical Report 83-01-03, Department of
Computer Science, University of Washington. January
1983.

[2] Birtwhistle, G. M., Dahl, O-J., Myhrhaug, B., and Nygaard,
K. S¢mula BEGIN. Auerbach, 1978.

[3] Borning, A. H. and Ingalls, D. H. Mul~ple /'nher/tan.oe ~n.
S m a l l t ~ - 8 0 . Technical Report 82-08-02, Department of
Computer Science, University of Washington. June 1982.

[4] Browning, S. A. The Tree Machine: A Highty Co~%curre~%t
Computing E~v~ronrr~ent. Technical Report (Ph. D.
Thesis) Computer Science, California Institute of Technol-
ogy. January 1980.

[5] Goldberg, A. J. and Robson, D. Smalltallc-80: The Lcnguage
and its Implernentc$$io1%. Addison-Wesley, 1983.

[6] Henderson, P. Pu, ncHona / Prog','ammgng: A p p l ~ a ~ n and
Impleme 'n ta~n . Prentice Hall, 1980.

[7] Hoare, C. A. R. Communica~ng Sequential Processes.
Comm ACM, Vol 21 Nr 8 (August 1978) pp 666-677.

[8] Holt, R. C. A Short In~roduc~n to Concurrent Euclid.
SIGPLAN Notices Vol 17 Nr 5 (May 1982) pp 60-79.

[9] Holt, R. C. Concurrent Euclid, The U~ix System, and
Tun/s. Addison-Wesley, 1983.

[10] Jessop, W. H., Nee, J. D., Jacobsen, D. M., Baer, J-L. and Pu,
C. The Eden Transaction-Based ~ l e System. Procs. 2 ~
Syrup. Reliability in Distributed Software and Database
Systems. Pittsburgh, PA. (July 1982).

[11] Lazowska, E. D., Levy, H. M., Almes, G. T., Fischer, M. J.,
Fowler, R. J. and Vestal, S.C. The Archi~ec~re of the Eden
System. Procs. 8 th Symp. 0p. Sys. Principles.
Asilomar, CA. pp 148-159 (December 1981).

[12] Stey, J. E. and Strachey, C. 0S6: An Ezpe~menta l Operat-
ing Sys tem)'or a Small Computer. Pa~ 2: Input /ou tpu t
andfll~ng system. Comp. J, Vol 15 Nr 3 (August 1972) pp
195-203.

10

