AB42 p.36

AB42.4.5 Proposals for Algol H-a superlanquage of Algol 68
A.P. Black, V.J. Rayward-Smith
School of Computing Studies, University of East Anglia

§1, Introduction

This paper is devoted to the description of a proposed extension of
Algol 68 which we shall call Algol H. The motivation for the development
of this language comes from [1]. Sections 3 to 7 of this paper correspond
to the sections in [1] with the same names. They describe -

. constructions in Algol H which represent the abstractions of Hoare's
theory.

Professor Hoare makes a vigorous disclaimer in the introduction to his
paper: he is not embarking on the design of yet another programming language
[1]. His abstract data structures are intended to assist in the formulation
of abstract programs, and in their representation as concrete code. The
transition from abstract to concrete is an essential part of the progranm
design process, and there are good reasons why it should not be automated.
Hoare draws a clear distinction between an algorithmic language and a
programming language, his notations being an example of the former and
Algol an example of the latter. However, Hoare admits there are advantages
in the programming language being a subset of the algorithmic language.
Many of his notations can be implemented with high efficiency; this is
certainly true of unstructured data types and of elementary data structures,
viz., Cartesian products, unions, arrays and powersets.

The advanced data structures, namely sequences, recursive structures
and sparse structures, are fundamentally more difficult to implement by
an automatic translator. Consequently, no proposals are made here to
include these structures in Algol H (except in as far as transput is a
representation of certain kinds of sequence).

Many of the new constructions proposed for Algol H have counterparts
in the programming language Pascal [4,8]. Enumerations are available
(always ordered), and so are subranges, although these are more restricted
than the submodes of Algol H in that all subranges of a given parent type
must be disjoint. The syntax of Pascal is markedly different from that of
Algol H, which is intended to introduce these concepts to programmers
more familiar with Algol 68. Some of the constructions of Algol H have
previously been described as Algol 68 "might-have-beens" [7].

§2. The Method of Definition

As an Algol 68 superlanguage, Algol H should be described by a (two-
level, Van Wi jngaarden or) W-grammar, as is used in the Report. (Here, and
in all that follows, "Report" means the Revised Report on Algol 68 [2].

References to specific sections are given as, e.g. [R 2.2.2.¢c].) However,

AB42 p.37

this has certain disadvantages’for W-grammars have been held to be difficult
to understand, particularly by those who do not know the language they
describe. Whilst we feel this difficulty is often overestimated, it is none
the less real. For this reason, the constructs of Algol H are described here
only by means of examples and natural language. It is hoped that this will
be "easier for the uhinitiated reader", but for the initiated, part of the
W-grammar definition of Algol H can be found in [3]. It should be noted that
it is not easy to extend the grammar of Algol 68 so that it defines Algol H.
For example, in Algol 68 the metanotion NEST, which carries a record of all
the declarations forming the environment, has no need to envelop denotations,
since the meaning of a denotation is independent of any nest [R.8.0.1]1. 1In
Algol H this is not so; it is possible to declare enumeration modes whose

denotations are scoped.

§3. Unstructured Data Types

All data structures in a program must be built up from unstructured
components. Most programming languages provide some unstructured types,
usually reals and integer, and in theory these are adequate for all purposes.
In practice there are strong reasons for defining other unstructured types.
For example, although character values can be represented as integers, it has
become usual to provide a character type in text processing programming
languages. This has two advantages. TFirst, the potential range of values
of a variable is made explicit, thus making the program clearer and subject
to more compile-time checks, which can detect such errors as the addition of
an integer to a character. Second, it is possible to devise an efficient
representation; because the cardinality of the character set is usually much
less than that of the set of permitted integers, characters can be represented in
less bits in the computer memory.

The next step, after including in a language a wider choice of basic
modes, is to allow the programmer to define his own unstructured modes,
either by enumeration of values or by taking a subrange of some existing
mode. However this is done, it is fundamental that different data types
should be represented as different modes. Since this mode is known at
compile time it is possible to ensure that unrelated data are not mixed.

The protection thus provided is one of the principal benefits of the

extensions.

3.1 Enumerations
In many programs integers are used to denote a choice from a small number

of alternatives rather than numeric quantities. In such cases we may expect

AB42 p.38

the documentation of the program to list the possible values with their
intended interpretation. For example, one might find the following in a
program concerned with bidding sequences in bridge.

int trumps, bestsuit;

¢ These variables refer to integers which
indicate suit values as follows:

0 - clubs

1 - diamonds @)
2 - hearts

3 - spades

4 - no trumps

e

The notion of an enumeration enables quantities such as suits of cards,
sexes or colours to be represented as separate modes, quite distinct not only
from the integers but also from each other. In Algol H the following are

legal mode declarations.

mode suit = order (clubs, diamonds, hearts, spades, notrumps)

mode sex = scalar (male, female)

mode primary colour = scalar (red, green, blue)
mode dayofweek = order (Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday)

The use of the order-token (¢order) indicates that the mode should be con-
sidered to be ordered; the scalar-token (gscqlaqr) denies any such ordering.
The bold-TAG-symbols (gézég, male, etc.) are MODE denotations for the various
MODES, in exactly the way that, in Algol 68, true and false are boolean

denotations. To be pedantic, the parallel is not exact, for frue is the
representation of the true-symbol not the bold-letter-t-letter-r-letter-u-
letter-e-symbol. Nevertheless, it is clear (R.4.2.2b] that the similarity
is intentional. This distinction does not arise since in Algol H QQQE is
not a primitive mode but is defined using mode bool = order (true, false).

The use of the new denotations throughout the program enhances its under-

standability considerably; the assignation
trumps := spades
conveys more information (to the human reader) than
trumps := 3 (i)

which would be its counterpart on the assumption of trumps being an int

variable, as in example (i).

AB42 p.39

The situation can be alleviated in Algol 68 by use of identity

declarations for appropriate integers:

int clubs = 0, diamonds = 1, hearts = 2, spades = 3, notrumps = 4
which may then be followed by

trumps := spades

in the same context as (ii).

This use of ascription is no substitute, however, for the ability to
define new basic modes: the advantages of enumeration modes become clearer
when control structures are introduced to manipulate them, but immediately
we see that there can be better protection, more efficient store utilisation,
and a closing of the gap between the data structures of a program and the
real world objects they represent.

As far as protection is concerned, not only is the programmer less
likely to assign objects of one type to variables of another (because of
the mnemonic names), but such assignations are in any case syntax errors,
since each type of object is represented by a distinct mode in the program.

The standard transput routines may, of course, be applied to enumeration
modes - a facility not available in Pascal. The external forms of the values
of such modes will in general be implementation dependent. It is suggested
that where the bold-TAG-symbols used in the program text for denotations are
represented by stropping, the characters transput should be those forming
the corresponding TAG-symbol.

In Algol 68, declarers specify modes. A declarer is either a declarator,
which explicitly constructs a mode, or an applied-mode-indication, which
stands for some declarator by way of a mode-declaration [R.4.6]. Thus, to
introduce new basic types, it is necessary to provide new declarators.
Syntactically, this is done by providing a new descendent of the notion
VIRACT-MOID-NEST-declarator [R.4.6.1al.

Algol 68 is quite specific about the equivalencing of modes. For

example, the modes specified by the mode indications ¢ and b in

i

mode

a = unton (int, real);
mode b

unton (real, int)

are equivalent.
Similarly, it is intended that the modes specified by the declarators
scalar (red, blue, green) and scalar (red, green, blue) be equivalent. On

the other hand, the declarators

AB42 p.40

order (morning, afternoon, evening)
order (afternoon, evening, morning)

and order (morning, noon, night)

all specify different modes (which cannot co-exist in the same reach, since
applications of the denotations cannot be uniquely identified). In [3], the
metanotion MODE is extended to include the metanotion BASIC as an additional
alternative [R.1.2.1.A]. BASIC envelops all possible enumeration modes as

its descendants. The mode equivalencing syntax then needs extending so that
it can compare permuted scalar modes, for example, to detect the equivalence

of scalar (male, female) and scalar (female, male).

3.2 Subranges

Another common requirement is to deal with quantities which, though
intringically of a basic type, will take only a limited range of values - a
subrange. Clearly the parent type must be ordered. The bounds of the submode

must be denotations, optionally preceded by a sign if the parent mode is integral.

mode dayofmonth = sub (1:31);
mode letter = sub ("a":"z")

The parent mode can be an enumeration mode; for example, in the reach of

mode dayofweek = order (Sunday, Monday, Tuesday; Wednesday,
Thursday, Friday, Saturday)

the following is a valid mode declaration.

mode workingday = sub (Monday:Friday)

A subrange may also be defined as the union, intersection or difference of
a pair of subranges, provided they both have the same parent mode. These oper-
ations are represented by u, n and \ with their usual set theoretic meanings.

It is not possible to declare a submode of a submode since the submode has
no denotations. For example, sub ("Z":"n") specifies a sub-character mode, not
a sub-letter mode, because "Z” and "n" are character denotations.

In Algol H, there is a widening coercion from a submode to a mode which

is available in strong positions.

3.3 Manipulation
Hoare lists seven operations required for the manipulation of values of

enumeration and subrange modes.

Test of equality: The equality and inequality operators are defined for all

enumeration modes, and all subrange modes which are not submodes of real.

AB42 p.41

Agsignation: The assignation of values to names is exactly as in Algol 68.

Case discrimination: Algol H has a choice-clause which is a generalisation

of the choice-clause of Algol 68. The advantages of enumeration modes

become obvious when we compare equivalent Algol 68 and Algol H. The Algol 68

case trumps +1
in 20 x bid, 20 x bid, 30 x bid, 30 x bid
> 40 + 30 x (bid-1)

esac

is almost incomprehensible without the comment of Section 3.1, and is error
prone even with it. In Algol H we can similarly write (because suit is

ordered)

case trumps
in 20 x bid, 20 x bid, 30 x bid, 30 x bid
s 40 + 30 x (bid-1)

esac

but without having to perform arithmetic on trumps. The vth constituent
units of the in-choice-clause is elaborated when trumps takes the vth value
of the ordered enumeration. If there are less units than values in the
mode, then the out-choice-part is elaborated for the extra values.
Alternatively, the constituent units can be prefixed with specific-

ations, as in the following.

case trumps

in (clubs, digmonds): 20 x bid
» (notrumps): 40 + 30 x (bid-1)
out 30 x bid

esae

Each value of the mode may be mentioned in at most one specification; if

the enquiry clause takes a value not mentioned in any specification, then

the out-choice-part is chosen. (If there is no out-part, a skip is
elaborated, which may yield an undefined value.) 1If the MODE of the enquiry

" clause is ordered then sub-of-MODE-declarators are permitted as specificators;

for example, given the declaration mode letter = sub ("a":"2") we write a

skeleton scanner.

AB42 p.42

case ch := readch

in (letter) : gertal clause

s (sub("0":"9"),".") : serial clause
s (rnnn) . serial clause

» ("gr) serial clause

> (ren) sertal clause

out gerial clause

esac

If, on the other hand, the MODE of the enquiry clause is not ordered, then
the form 61 the choice clause which does not use specifications is not
pernmitted, since there is no implicit ordering of the values of the
enumeration which can be used to choose the appropriate unit from the

in-choice part.

Ordering relations: The dyadic operators <, <=, >, >= are declared in the

standard prelude between operands of the same mode and yielding boolean
results. They are defined for a sufficient set of ordered modes, each

member of which has order.

Counting: The monadic operators succ and pred, invoking the successor and

predecessor functions, are defined for all simple, ordered modes. These
functions map each value of a mode onto the next higher or lower value (if
there is one, otherwise their action is undefined).

Also, for each ordered mode for which there is a mode declaration in a
given reach, if the mode indication defined by that declaration is some
bold-TAG-symbol, then the identifiers max-cum-TAG-symbol and min-cum-TAG-symbol
are declared and ascribed the maximum and minimum values of the mode. The

example should make this clear.

mode rank = order (private, corporal, sergeant,

lieutenant, captain, major, colonel, general);

e The effect on the nest is as 1f, in place of
this comment, there stood the declaration

rank maxrank = gemeral, minrank = private

o

The loop clause: It is frequently required to elaborate the same serial

clause for all possible values of a given mode. This is indicated by the

use of a loop-clause.

AB42 p.43

loop dayofweek day
do

dailytask (day)
od

The loop-symbol is followed by a formal-declarer which gives the mode of the
identifier whose value is varied. If the mode is ordered and has cardinality
n, say, then the serial-clause between ég_and gg_is elaborated n times in
sequence as the identifier takes, in order, the values of the mode from
minmode to maxmode. However, if the mode is not ordered, the effect is as
ifn copiés of the serial clause were elaborated collaterally. The loop
clause is available for all modes derived from SIMPLE, not just for integral
as in Algol 68. However, the special for from by to construction of Algol 68
is retained for use by integers, since conceptually that mode has infinite

cardinality.

Transfer functions: It is sometimes required to perform operations for a

submode which were defined for the parent mode. This is simply accomplished
by'converting the submode value to the corresponding value of the larger type,
then performing the operation, and finally converting back again if necessary.
This requires transfer functions.

The first conversion is a widening, and can be accomplished by the
coercion described in Section 3.2. If the context is not strong enough (as
will be the case if the coercee is the operand of a formula) the coercion

can be forced by the use of a cast.

mode smallint = sub (=9:9);

smallint st , sd , sk; int k

k :=int (si) + int (sf)

It is, of course, possible to declare a version of + between small int
operands, but this must be done explicitly by the programmer.
The second conversion represents a narrowing, and can be accomplished

only with the aid of a standard operator.
sk := smallintval k;

This operator is automatically declared in any reach in which a mode
declaration is given for a submode. The letters of the TAG used for the
operator are given by concatenating the letters of the bold-TAG-symbol
defined in the mode declaration with letter-v-letter-a-letter-1.

If this operator is applied to an operand whose value is outside the

AB42 p.44

range encompassed by the submode, then the result is undefined. It is
therefore useful to be able to check if a given value is in a subrange.
This can be done by a conformity relation, which is based on the conformity
relation for unions which was part of the language defined in 1968 [6].

The symbols represented by ::= and gzgé_denote a conform-to-and-becomes
relation, whereby the object on the right hand side is assigned to the
variable on the left (and true delivered) if it is in range, otherwise no
assignation takes place (and false is delivered). The symbols represented
by :: and ¢t invoke the same test but without the assignation. The use of

these relations is illustrated in the following examples.

char c; letter a; digit b;

read (e);

if a ctab c then ¢ an assignation to a has just occurred c
serial clause 1)

elif b ctab e then c an assignation to b has just occurred c

serial clause
else ¢ neither a nor b have changed c
serial clause
I

if letter ct e then ¢ ¢ is in the subrange letter ¢

sertal clause (11)

Rl

In the second example, the conformity relation has the property that its
left hand side is not elaborated, i.e. no space is generated on the heap.
The generator letter is simply there for mode matching. Note that c¢f can
be used even when no mode declaration has appeared for a submode, and '
consequently it is not identified by a bold-TAG-symbol, so no submode-cum-val
operator is defined.

Very similar results could instead be achieved by standard operators,
also identified by ¢t and ctab. Such operators would be defined between a
sufficient set of modes as right operand, and a sufficient set of submodes
of each mode as left operand. Such operators would have the disadvantage
that both operands would always be evaluated; in the second example above,
space for a letter value would be generated on the heap, and immediately

become garbage.

§4. The Cartesian Product

The Cartesian product is one of the simplest data structures. It

corresponds to the record structures of PL/I [9] and Pascal or the Algol 68

AB42 p.45

. structured modes. In fact, with one exception, Algol 68 structures provide
all the facilities suggested by Hoare [1], although the notation is different.
In particular, values of a structured mode are constructed, in Algol 68, from
a collateral; where the required mode is not obvious from the context, a cast
of the collateral is used. This corresponds to Hoare's suggestion that it
would be convenient to leave the transfer function implicit in cases where no
ambiguity would arise.

The exception is the with construction. In inspecting or processing a
structured value, it is often required to make many references to its com-
ponents within a single clause. Hoare favours a special construction which

could be represented as
with structure closed clause .

Within the closed clause the fields of the structure may be referred to by
their field selectors alone, instead of by the normal selector Qf_primary
construction. It is debatable whether the advantages of this construction,
viz., the clarification and abbreviation of a section of program, are

great enough to outweigh the disadvantage of introducing another construct
into the language. Algol 68 is often called a complex language, and
ascription provides most of the power of the with clause. For these reasons,

it is proposed that Algol H does not include this construction.

§5. The Discriminated Union

Although similar to Algol 68 union, Hoare's Discriminated Unions differ
in certain respects. Each type in the union has an identifier associated
with it, and every value of one of the unioned types is marked with its
identifier, to indicate its derivation. Thus it is possible to constrﬁct
a union by repeating the same type several times.

In Algol 68, in contrast, the declarator,

union (date, date)

is ill-formed. The intention that Algol H should be a superlanguage of

Algol 68 dictates that the Algol 68 kind of union be included in Algol H.
Since the advantages of discriminated unions are debatable, and it

would in any case be‘confusing for one language to provide two very similar

but distinct structures, discriminated unions are not included in Algol H.

§6. The Array

The array is a very familiar data structure, and may be regarded as a

mapping from a domain of one type to a range of a possibly different type

AB42 p.46

(the type of the array elements).

In most programming languages, the most notable exception being Pascal,
the domain type is restricted to be integral. This is true of Algol 68.
Algol H allows more general arrays; the mode of the domain can be any
enumeration mode, SIZETY integral, character or a submode of any permitted
mode.

Some examples should make this clearer.

Lsuit] int trickvalue;
[day of week] bool holiday;
Lsub (1:80)] char puncheard

Elements of these arrays can be selected in the usual way.

day of week today := sunday;
if not holiday [todayl then work else sleep fi

The facility of using a subrange of integers as the domain mode does not
replace the ordinary Algol 68 row with integer indices, because the limits
of a submode can only be plus or minus a denotation, and it is therefore not

possibie to read in submode bounds at run-~time.

§7. The Powerset

The powerset of a set 1s the set og all subsets of that set. The
powerset as a data type takes values which are sets of values selected from

some other data type known as the base. Primarycolour has been declared as

an enumeration mode with cardinality 3; the powerset of primarycolour is a

3
mode which has a cardinality of 2 = 8. 1Its values are as follows.

{1} {red, green, blue}

{red} {red, green}
{green} {red, blue}
{blue} {green, blue}

Declarators for powerset modes take the form illustrated by

setof primarycolour

80 we may construct the mode declaration

mode colour = setof primarycolour

and then declare some identifiers

colour yellow = {red, green},

cyan = {blue, green},
blue = {bluel,
black = { }

AB42 p.47

The object between and including the braces is a powerset clause. The
values within it must all be of the same mode, but their order is immaterial

and a repeated value is ignored, so that {green, red, redl} represents the same

value as {red, green} which would not be the case for a collateral clause.
The empty powerset clause { } can only stand in a strong position. An

alternative representation of the braces are the symbols Sef and tes.

7.1 Manipulation
For each powerset for which a mode declaration is given, a constant is

declared corresponding to the universal set, where this has finite cardinality.

In the example, the effect is as if the declaration

colour alleolour = {red, blue, green}

were elaborated after the mode declaration.

Where the cardinality of the base type is small the powerset can be
efficiently represented by allocating one bit in store for each value of the
base type. Thus, for example, values of type colour can be represented in
three bits. The basic operations on powersets are usually available as
single machine instructions, which makes this representation doubly attractive.
However, when it is known that the cardinality of the base type is large, or
perhaps conceptually infinite, the bit pattern representation loses its
attraction, particularly when most values of the powerset will consist of
only a small number of elements of the base. In these cases it will be
necessary to represent the powerset as some advanced data structure, which
an automatic translator cannot be expected to construct.

However, the utility and efficiency of the powerset of a small base type
is such that it ought to be included in Algol H; powersets are therefore
permitted providing the cardinality of the base type does not exceed some
implementation defined maximum possessed by the standard prelude integer
setwidth.

Various operations can be defined between sets of a given powerset mode
and elements of its base mode. There is one operator defined between a set

8 and an element x.

Membership : & 28in & delivers true if the element

x 1s a member of set s

The following operators, with their usual mathematical meaning, are defined

between two sets:

equality,

union,

intersection,
relative complement,
inclusion.

AB42 p.48

Algol H also allows assigning versions of union, intersection and relative

complement .

I

Union and becomes : 81 u:= 82 equivalent to sl := 8l u 82

Intersection and becomes : sl n:= 82 equivalent to sl := gl n 82

Difference and bhecomes : 81 \:= 82 equivalent to 81 := g8l \ 82

It is also useful to be able to select an element from a set, and simultaneously

remove it. This is achieved by the operator outof: x outof s removes an element

from S and assigns its value to .

§8. Implementing Algol H

A major part of the work of any parser for Algol 68 is to perform mode-
checking. Because, in general, a given mode can be '"spelled" in a large
(sometimes infinite) number of ways, the syntax of Algol 68 includes complex
devices which check if modes are equivalent and if a value of a given mode is
"acceptable"” to another mode [R.2.1.3.6, 2.1.4.1]. The latter test depends
on the syntactic position (SORT) of the construction, as the list of applicable
coercions vary with context. All this must be modelled within a parser, which
is no small task.

However, that this task can be successfully completed is evidenced by the
existence of several usable and efficient Algol 68 compilers. Given access to
such a compiler and a description of its mode representation mechanism, one
- feels that it would not be too difficult to extend it to encompass new basic
modes.

This feeling is reinforced by the comments of Wirth on the programming
languages Pascal and Modula. Pascal has scalar types which correspond to the
ordered enumeration modes of Algol H, and subrange types which provide some
of the facilities of submodes. Arrays with general domains and powersets are
also included. Nevertheless, Wirth states that one of his principal aims in
developing Pascal was to produce a language which could be implemented reliably
and efficiently, both at compiler and execution time. In [10] he writes "a
most important consideration in the design of Modula was its efficient
implementability’”. Modula is a language based on Pascal but with an improved
syntax and the ability to associate access procedures with data in the manner
of a Simula [11] class; it includes enumerations, which may form the indices
of arrays, and is intended for use in real-time applications on mini-computers.

Thus there is justification for being confident that most of the new
constructions of Algol H could be efficiently implemented by an extensible
Algol 68 compiler. To the best of our knowledge no such compiler exists; we
have in mind an extension device akin to the Syntax Macros of Cheatham [12]

and Leavenworth [13]. In [3], a translator from Algol H to Algol 68-R [14]

AB42 p.49

is described where each Algol H construct is translated into Algol 68-R in
such a way that all mode checking is done by the Algol 68-R compiler.

Acknowledgement

The authors wish to thank Professor R.J.W. Housden for helpful discussions.
The majority of this work was done by A.P. Black under the supervision of Dr.
Rayward-Smith in partial fulfillment of the requirements of the B.Sc. degree
at the University of East Anglia, Norwich.

References

[1] C.A.R. Hoare, "Notes on Data Structuring” in "Structured Programming"
by 0.J. Dahl, E.W. Dijkstra and C.A.R. Hoare, Academic Press (1972).

{2] A. van Wijngaarden, et al., "Revised Report on the Algorithmic Language
Algol 68", Acta Informatica, 5 (1975).

[3] A.P. Black, "Algol H: Some Extensions to the Data Handling Facilities
of Algol 68", Project Report, School of Computing Studies, University
of East Anglia, Norwich (1977).

{41 N. Wirth, "The Programming Language Pascal”, Acta Informatica, 1 (1971).

[5] C.H. Lindsey and S.G. van der Meulen, "Informal Introduction to Algol 68",
revised edition, North Holland (1977).

[6] A. van Wijngaarden, et al., "Report on the Algorithmic Language Algol 68",
Numerische Mathematik, 14 (1969).

-[7]) 8.G. van der Meulen, "Algol 68 Might-Have-Beens'", Proceedings of the
Strathclyde Algol 68 Conference, Sigplan Notices, 12:6 (1977).

[8] K. Jensen and N. Wirth, "PASCAL: User Manual and Report", Lecture Notes
in Computer Science, 18, Springer Verlag (1975).

[9] cC.P. Lecht, "The Programmers' PL/1", McGraw Hill (1968).

[10] N. Wirth, "Modula: A language for Modular Multiprogramming", Software-
Practice and Experience, 7:1 (1977).

{11] G.M. Birtwistle, 0.J. Dahl, B. Myhrhang, K. Nygaard, "Simula Begin"
Auerback (1973).

[12] T.E. Cheatham Jnr., 'The Introduction of Definitional Facilities into
Higher Level Programming Languages', Proc AFIPS FJCC, 29 (1966).

{13] B.M. Leavenworth, "Syntax Macros and Extended Translation", CACM, 9:11
(1966).

{14] P.M. Woodward, S.G. Bond, "Algol 68-R Users Guide", H.M.S.0. (1974).

