Why
Programming Languages
Matter

‘

Andrew P. Black

Portland State University
Portland, Oregon

Portland State

IIIIIIIIII

Why Programming Languages
Matter
to me and a bunch of other People

‘

Andrew P. Black

Portland State University
Portland, Oregon

Portland State

IIIIIIIIII

Win a Turing Award!

Portland State

IIIIIIIIII

Win a Turing Award!

Analysis of Algorithms Artiﬁ Ci al Intelligen ce Combinatorial Algorithms

Compilers

C()mputation al Complexity Computer Architecture Computer Hardware

Cryptography
Data Structures Databases Education Error Correcting Codes Finite Automata Graphics

Interactive Computing Internet Communications List Processing Numerical Analysis

Numerical Methods Object Oriented Programming Operating Systems Personal Computing
Program Verification Programming

Programming Languages Proof Construction Software

Theory Software Engineering

Verification of Hardware and Software Models Computer Systems Machine Learning
Parallel Computation

Portland State

Friday, 30 October 2015

Turing Awards related to PL

1. Backus, John (1977)

2. Hoare, Tony (1980)
Iverson, Ken (1979)
Kay, Alan (2003)
Lamport, Leslie (2013)

Liskov, Barbara (2008)

Milner, Robin (1991)
Naur, Peter (2005)
Wirth, Niklaus (1984)

© © W o N op W

Portland State

IIIIIIIIII

Friday, 30 October 2015

http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm

But they missed ...

1. Backus, John (1977)

2. Hoare, Tony (1980)
Iverson, Ken (1979)
Kay, Alan (2003)
Lamport, Leslie (2013)

Liskov, Barbara (2008)

Milner, Robin (1991)
Naur, Peter (2005)
Wirth, Niklaus (1984)

© © W o N op W

Portland State

IIIIIIIIII

Friday, 30 October 2015

http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm

© © W o N op W

But they missed ...

Backus, John (1977)
Hoare, Tony (1980)
Iverson, Ken (1979)
Kay, Alan (2003)
Lamport, Leslie (2013)

Liskov, Barbara (2008)

Milner, Robin (1991)
Naur, Peter (2005)
Wirth, Niklaus (1984)

Portland State

Friday, 30 October 2015

IIIIIIIIII

10.
I1.
12.
115}
14.
15.
10.
I7.
13.

Allen, Fran (2006)

Dahl, Ole-Johan * (2001)
Dijkstra, Edsger* (1972)
Floyd, Bob* (1978)
McCarthy, John * (1971)
Nygaard, Kristen * (2001)
Perlis, Alan* (1966)
Ritchie, Dennis M.* (1983)
Scott, Dana (1976)

http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/award_winners/allen_1012327.cfm
http://amturing.acm.org/award_winners/allen_1012327.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://amturing.acm.org/award_winners/floyd_3720707.cfm
http://amturing.acm.org/award_winners/floyd_3720707.cfm
http://amturing.acm.org/award_winners/mccarthy_0239596.cfm
http://amturing.acm.org/award_winners/mccarthy_0239596.cfm
http://amturing.acm.org/award_winners/nygaard_5916220.cfm
http://amturing.acm.org/award_winners/nygaard_5916220.cfm
http://amturing.acm.org/award_winners/perlis_0132439.cfm
http://amturing.acm.org/award_winners/perlis_0132439.cfm
http://amturing.acm.org/award_winners/ritchie_1506389.cfm
http://amturing.acm.org/award_winners/ritchie_1506389.cfm
http://amturing.acm.org/award_winners/scott_1193622.cfm
http://amturing.acm.org/award_winners/scott_1193622.cfm

e o e o e

But they missed ...

Backus, John (1977)
Hoare, Tony (1980)
Iverson, Ken (1979)
Kay, Alan (2003)
Lamport, Leslie (2013)

Liskov, Barbara (2008)

Milner, Robin (1991)
Naur, Peter (2005)
Wirth, Niklaus (1984)

Portland State

Friday, 30 October 2015

IIIIIIIIII

10.
I1.
12.
115}
14.
15.
10.
I7.
13.

Allen, Fran (2006)
Dahl, Ole-Johan * (2001)
Dijkstra, Edsger* (1972)
Floyd, Bob* (1978)
McCarthy, John * (1971)
Nygaard, Kristen * (2001)
Perlis, Alan* (1966)

Ritchie, Dennis M.* (1983)
Scott, Dana (1976) et

http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/award_winners/allen_1012327.cfm
http://amturing.acm.org/award_winners/allen_1012327.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://amturing.acm.org/award_winners/floyd_3720707.cfm
http://amturing.acm.org/award_winners/floyd_3720707.cfm
http://amturing.acm.org/award_winners/mccarthy_0239596.cfm
http://amturing.acm.org/award_winners/mccarthy_0239596.cfm
http://amturing.acm.org/award_winners/nygaard_5916220.cfm
http://amturing.acm.org/award_winners/nygaard_5916220.cfm
http://amturing.acm.org/award_winners/perlis_0132439.cfm
http://amturing.acm.org/award_winners/perlis_0132439.cfm
http://amturing.acm.org/award_winners/ritchie_1506389.cfm
http://amturing.acm.org/award_winners/ritchie_1506389.cfm
http://amturing.acm.org/award_winners/ritchie_1506389.cfm
http://amturing.acm.org/award_winners/scott_1193622.cfm
http://amturing.acm.org/award_winners/scott_1193622.cfm

Win a Turing Award!

Analysis of Algorithms Artiﬁ Ci al Intelligen ce Combinatorial Algorithms

Compilers

C()mputation al Complexity Computer Architecture Computer Hardware

Data Structures Databases Education Error Correcting Codes Finite Automata Graphics
Interactive Computing Internet Communications List Processing Numerical Analysis

Numerical Methods Object Oriented Programming Operating Systems Personal Computing
Program Verification Programming

s Proof Construction Software
Programming Languages ., " o bogincering

Verification of Hardware and Software Models Computer Systems Machine Learning
Parallel Computation

Portland State 5

IIIIIIIIII

Friday, 30 October 2015

Win a Turing Award!

Analysis of Algorithms ArtiﬁCi al Intelligence Combinatorial Algorithms

Compilers

C()mputation al Complexity Computer Architecture Computer Hardware

Data Structures Databases Education Error Correcting Codes Finite Automata Graphics
teractive Computing Internet Communications Lis’sProcessing Numerical Analysis
PRpgr

Prografaiming Languages . v e sngineering

ificatie d d ARTE S aRuter Systems Machine Learning
i g' S

Portland State 6

IIIIIIIIII

Friday, 30 October 2015

My Personal Journey

® 1977 193I:
®* 1981 19806:
® 1986—1994:
® 199471999:

® 2000—2004:

20047

Portland State

IIIIIIIIII

Friday, 30 October 2015

Graduate student, Oxford
Assistant Professor, Washington

Engineer & Researcher, Digital
Department Head, OGI

Professor, OGI

Professor, Portland State

My Personal Journey

® 1977 193I:

Graduate student, Oxford

1978: IBM TJ Watson Researchv Center

®* 1981 19806:
® 1986—1994:
® 199471999:
® 2000—2004:

20047

Portland State

IIIIIIIIII

Friday, 30 October 2015

Assistant Professor, Washington

Engineer & Researcher, Digital

Department Head, OGI
Professor, OGI

Professor, Portland State

My Personal Journey

® 1077-198I: Graduate student, Oxford
1978: IBM TJ Watson Researchv Center
* 1981-1986: Assistant Professor, Washington

* 1986-1994: Engineer & Researcher, Digital
®* 1994-1999: Department Head, OGI

1998: Xerox PARC
®* 2000—2004: Professor, OGI

® 2004 : Professor, Portland State

Portland State

IIIIIIIIII

Friday, 30 October 2015

My Personal Journey

® 1077-198I: Graduate student, Oxford
1978: IBM TJ Watson Researchv Center
* 1981-1986: Assistant Professor, Washington

* 1986-1994: Engineer & Researcher, Digital

®* 1994-1999: Department Head, OGI
1998: Xerox PARC

®* 2000—2004: Professor, OGI
2001: University of Bernw 2002: Intel

® 2004 : Professor, Portland State

Portland State

IIIIIIIIII

Friday, 30 October 2015

My Personal Journey

® 1077-198I: Graduate student, Oxford
1978: IBM TJ Watson Researcihv Center
* 1981-1986: Assistant Professor, Washington

* 1986-1994: Engineer & Researcher, Digital

®* 1994-1999: Department Head, OGI
1998: Xerox PARC

®* 2000—2004: Professor, OGI
2001: University of Bernw 2002: Intel

® 2004 : Professor, Portland State
2011: Microsoft 2002: Edinburgh

Portland State

IIIIIIIIII

Friday, 30 October 2015

Programming is Hard

‘

I want to make it easier

Portland State

IIIIIIIIII

Friday, 30 October 2015

1978—30: 3R

* “Reading, ‘riteing, and ‘rithmetic”

* Programming language designed for

readability
- Names made up of multiple words

- Block (procedure) names can have arguments,
e.g delete [i]th line of page[p]

* Flat (no nesting): Blocks and Blocklets
- No loops, No defaults

Portland State

IIIIIIIIII

Friday, 30 October 2015

4.5. Scanning One Word

This block scans the current line and returns the next word or perhaps a null
string if one is not found. A word is a letter followed by zero or more letters,
digits, or underscore characters.

LET New Word := Get One Word BE

USES Current Character

RESULT New Word IS TEXT

INVARIABLE Underscore Character IS '

New Word .= "

Remove Front Blanks

IF' (Current Character >='a’ AND Current Character <='z’) OR ..,
(Current Character >='A' AND Current Character <= 'Z")
New Word := New Word + Current Character
Get Next Character
Add Characters Until Delimiter

IF NOT (...
gCurrent Character >= 'a' AND Current Character <='z') OR ...

Current Character >="A" AND Current Character <= 'Z"))

PASS

OTHERWISE CHAOS

-4 r
13
”~ | I~ N /7 . N
4 » »
LN L | AL - Ca\ -
v W I AL y;
"2l ‘ | "af
{ 1 e s] r '\n.
L\ l,(ol Lo LT | | (\ ;
\ /
NEW WO = Ne1 ¢ + \ract
' 1 5% i
(_l;f L \‘ -z { (LE [
A L Sl I
".[-J.(l (,/},‘Al (o l 1/ i [] €
1 \T/ '
[F NOT {

Friday, 30 October 2015

II

-, 1™ Ly 3
U Ul Nne Lharactlel
~ T ot . " — TAT] 7 »-\:'l
A Xl S
!":.f \‘[l' NEe YOI I !f;;\
[\ Al I[\ ‘.” -] | J X YNV f’ \
INVARIADLLI Underscore LUhar LC D
Alawr TWansd o |
CY Yy UL UL .
T . VY ATT A S L2 ~
% 111 OVeE { U1l L
v Sy, 1 Y -~ 1) —_ >
i { v - 4 ~ 7) ' ” .
'\ LL Ly AL Al Ut . - A 10 S b
."l/-. 1 - NT
f . g ~ A I .
W~ W] i A0 [7~ - = 1
T 3 B i
INEW ¥§ .= W € l
are \ Nl Aavaens A4
el Nt waaracuel
AAdd MaAasn E Avaex 1 Ivm$31 TMYAT
AQQd viaraciers ULNill el
-~ ,' N T N '-'
[F NOT (...
P yavmiranmt Clhanand oSN == A ANTTY ~v¥ M - — \ !
\ U/ '\lr _I lv\' ‘1: '~,_.': :(_,._} .',,4\{,. ‘_E_?_" o - A iNL1/ r\ L.‘ .-f! R v/ A ' ~ / l \
7’
’, f1" e N vy { L] T TR T ol N TN \\\‘— L LA 1-', 1 YV y ¥ 1 i ~ ”~
turrent vinaracier >= 'A AN LUdrrerit ; Lel \—

\
DACD
}_‘"‘.g\/tj

',.I,’ |n_‘ ., -)l"..i"-i'.|
‘\-"l!l‘il!‘t.?f!;\\rﬁl

FYT1T A ML
'«_/[‘-*_1),__,

WHERE Add Characters Until Delimiter IS
IF (Current Character >= 'a’ AND Current Character <='z') OR ...

(Current Character >='A' AND Current Character <="'A’) OR ...

£Current Character >= '0' AND Current Character <='9") OR ...
Current Character = Underscore Character)

New Word := New Word + Current Character

Get Next Character
Add Characters Until Delimiter

IF NOT (...
ECurrent Character >= 'a' AND Current Character <='z') OR ..
Current Character >="'A" AND Current Character <="'7Z') OR ...
(Current Character >= '0’ AND Current Character <='9') OR ..

(Current Character = Underscore Character))

PASS '
OTHERWISE CHAQOS
END OF BLOCK { new word := get one word }

Friday, 30 October 2015

Influences

e Algol 60
e Cobol?

* Hoare Triples, Dijkstra’s predicate transformers
* Top-down design
* Ayear at IBM

® Brian Shearing

- knew that he needed a language

Portland State

IIIIIIIIII

Friday, 30 October 2015

Reflections

“The concept of a program consisting of English
text interspersed with 3R was easily grasped, but
its use was more difficult than I anticipated.

The main problem ... is a feeling of duplicating

in the English what’s I've already coded in 3R ...
The code speciflies} the details in a concise and
comprehensible manner, {andl in a superior style”

Howard Matsuoka

Portland State

IIIIIIIIII

Friday, 30 October 2015

Language as a Simplifier

Portland State

IIIIIIIIII

Friday, 30 October 2015

Language as a Simplifier

Portland State

IIIIIIIIII

Language as a Simplifier

* Programming in Smalltalk is a/so a life-
changing experience

Portland State

IIIIIIIIII

ay, 30 October 2015

Language as a Simplifier

* Programming in Smalltalk is a/so a life-
changing experience

* Once you understand how freeing it is get
get rid of the junk, you will never want to go

back

Portland State

IIIIIIIIII

ay, 30 October 2015

Eden Programming Language

e Eden Project (1980-1984) — early attempt to
build a “distributed, integrated” computing
system.

e EPL provided:

- concurrency inside Eden objects

- synchronous (local or remote) object invocation
- capabilities

- strings

* Implemented by translating to Concurrent
Euclid

Portland State 19

IIIIIIIIII

Friday, 30 October 2015

Sending an Invocation

Directory Stub Procedure

procedure Lookup(...)
RootDirectory.Lookup(

? {Pack arguments into ESCII}
UserName, LoginDirectory, K\--="__--~

"
“
-

. Dispatcher.Synchlnvoke(...)

{unpack results) ‘és:::::f:;:jik
end

Invocation

Status)

Friday, 30 October 2015

Receiving an Invocation

Invocation
Directory Code m
invocation procedure Lookup(...) =
: loop
begin :
. Dispatcher.ReceiveOperations
and find the requested key) CalllnvocationProcedure(l)
end Lookup end loop
Call
and
Call Retum
and
CIP for Directory
Return procedure CalllnvocationProcedure
begin
{Fetch values from ESCII.
if OperationName is "Lookup” then)

Directory.Lookup(...)

{Pack results into reply ESCII)

Dispatcher ReplyMsg(l, Results) "pifym'ﬁon

Friday, 30 October 2015

Reflections

* Eden saw itself as distributed systems research

- no one on the project knew that they needed a
programming language!

* In hindsight: EPL was essential

* Partly language, partly kit of components

Portland State

IIIIIIIIII

Friday, 30 October 2015

22

1983—87: Emerald

e Follow-on to EPL, but a “Real”
Programming LLanguage

- Hides implementation choices that EPL
revealed

- Efficient (as in C) implementation

Portland State

IIIIIIIIII

Friday, 30 October 2015

%]

The People

Andrew
Black

Eric Jul

The People

Andrew Norm

Black

Eric Jul

Friday, 30 October 2015

1983—87: Emerald

* Background:
- Eric Jul (Simula 67, Concurrent Pascal),
- Norm Hutchinson (Simula),
- Hank Levy (Capability architectures, system-
building at Digital)

* Addressed building a distributed system as a
language problem

* Emerald separated “semantics” from
“locatics”

Portland State

IIIIIIIIII

Friday, 30 October 2015

26

Emerald Features

* Object constructors

* Concurrency

* Failure handling

* Parameterized types

* Location-independent invocation

e Compiled code about as efficient as C

Portland State

IIIIIIIIII

Friday, 30 October 2015

2

const initialObject < object initialObject const hoer < object hoer

const limit <— 10 process
const newobj < monitor object innerObject var i : Integer < 0
var flip : Boolean < true % true => print hi next loop . . .
const ¢ : Condition < Condition.create exit when i = limit
newobj.Hi
exp.ort qperation Hi LY
if ! ﬂzp. then end loop
“:alt [end process
i . end hoer
stdout. PutString| “Hi\n "]
flip < false process
signal c var i : Integer < 0
end hi loop
export operation Ho exit when i = limit
if flip then newobj.Ho
wait ¢ i — i1+ 1
end if end loop
stdout. PutString[“Ho\n”] end process
flip < true end initialObject
signal c
end /0
initially
stdout. PutString[“Starting Hi Ho program\n”’]
end initially
end innerObject
Portland State ,8

UNIVERSITY

Friday, 30 October 2015

Reflections

* About 20 years before its time
- NSF called it “unimplementable”

- Still generating PhDs in 2006

Portland State

IIIIIIIIII

Friday, 30 October 2015

£

- SOSP Referee’s didn't agree...

Reflections

* About 20 years before its time
- INSF called it “unimplementable”

- Still generating PhDs in 2006

* Not widely used, but widely influential

- ANSA DPL, OMG CORBA, INRIAs Guide,
Birrell et al.’s Network Objects, the ANSI
Smalltalk standard

e We were our own customers. We realized
that we needed a language ...

Portland State

IIIIIIIIII

Friday, 30 October 2015

2001—present: Iraits

* alanguage feature, not a language
* a Trast 1s a Smalltalk class without any slots

® traits can be
- combined with +,
- modified with @ (alias) and — (exclusion)

- wused in other traits and classes.

Portland State

IIIIIIIIII

Friday, 30 October 2015

32

® Jrait = set of ® Sum, alias, exclude

methods, without and wuses as
instance vars combinators
class trait trait trait
T T U
a :x ada X C - q
2 |—>J¢/selfi (b: :JT;seIfi d =7

composite subclass
definition

C subclass: #D
uses: T

subclass

trait

vari T+U

b '_)j a — X

d = W b

i - tvari =Y .
c ~ conflict
d —r

Portland State

IIIIIIIIII

Friday, 30 October 2015

Influences

* Deep experience with Smalltalk

* The sad history of multiple inheritance

“multiple inheritance is good, but there is no
good way to do it”

Steve Cook channeling Alan Snyder
e Nathanael Schirli, who cut the gordian knot
e A little lattice theory

e Excellent toolbuilding environment & skills

Portland State

IIIIIIIIII

Friday, 30 October 2015

34

Reflections

® Smallest contribution
* Largest impact?

- Pearl 6, Java, Pharo, Visualworks, Fortress,
Racket, Ruby, C#, Scala, Joose, PHP,
ActionScript, ...

* We underestimated the importance of
programming tools

- many of the properties we claimed for traits
depended also on tool support

Portland State

IIIIIIIIII

Friday, 30 October 2015

35

2010 —present: Grace

e Simple O-O language for teaching
- block-structured
- dialects.
- optional, gradual types

- indentation matters
e An effort at consolidation, not innovation

e Open-source implementation

Portland State

IIIIIIIIII

Friday, 30 October 2015

Linked List
method with(xa) {

def result = empty
a.do { each —> result.add(each) }
return result

¥

class empty {
class node(d, n) {
var data 1s public := d
var next 1s public := n
method asString { "{data}|{next}" }

method insert(value) {
next := node(value, next)
s

}

def null = Singleton.named "="

def top = node("header", null)
var lastNode := top

Portland State

IIIIIIIIII

Friday, 30 October 2015

37

method size {
// returns the number of elements 1n self

var result := 0

var current := top

while { current.next # null } do {
current := current.next
result := result + 1

s

return result

¥

method do(action:Blockl) {
// applies action to each element of self

var current := top
while { current.next # null } do {
current := current.next

action.apply(current.data)

h

method search(needle) ifAbsent(action) {
// searches for needle in self. Returns the first node
// containing needle if it i1s found; otherwise, applies action.
var current := top
while { current.next # null } do {

Portland State 38

UNIVERSITY

Friday, 30 October 2015

Influences

* Teaching with inappropriate languages
- Java: mixes paradigms, verbose, complex

- Python: stupid defaults, objects are an
afterthought

- Smalltalk: no types, no interfaces

Portland State

IIIIIIIIII

Friday, 30 October 2015

39

Reflections

e The consumer 1s a novice student

- but the customer is an instructor in a
introductory programming course

o Surprisiaghy challenging to please both

- e.g., clean object model or existing practice?

e Design skills 2 implementation skills

* http://www.gracelang.org

Portland State

IIIIIIIIII

Friday, 30 October 2015

40

Meta-Reflections

* I've had a lot of fun over the last 35 years

- Maybe I've also had some impact
* But programming is still too hard

* The (recent) focus on Programming
Languages rather than Programming Systenzs

hasn’t helped

- less science and more engineering?

Portland State

IIIIIIIIII

Friday, 30 October 2015

What keeps me coming back?

* [like fixing things
- there’s plenty to fix in programming!

* Programming languages are an enabler
- for others GR, EPL)
- for programmers (Traits)

- for students (Grace)
* Programming languages are about communication
- still refining my writing and communication skills

- in English, and in program

Portland State

IIIIIIIIII

Friday, 30 October 2015

42

Why is progress so slow?

* Programming languages are central to
everything that we build

- You would be crazy to build a 100 kloc system
with an untested language.

* Tooling and libraries are as important, or
more important, than the language

- they take time to build and evolve

Portland State

IIIIIIIIII

Friday, 30 October 2015

43

Portland State

IIIIIIIIII

Friday, 30 October 2015

Why else?

44

Why else?

* A programming language is not just a means
for programmers to communicate with
computers

Portland State

IIIIIIIIII

Friday, 30 October 2015

44

Why else?

* A programming language is not just a means
for programmers to communicate with
computers

* It is also a means for programmers to
communicate with programmers —

Portland State

IIIIIIIIII

Friday, 30 October 2015

44

Why else?

* A programming language is not just a means
for programmers to communicate with
computers

* It is also a means for programmers to
communicate with programmers —

® [t is a social, as well as a technical, enabler

Portland State

IIIIIIIIII

Friday, 30 October 2015

44

Why else?

* A programming language is not just a means
for programmers to communicate with
computers

* It is also a means for programmers to
communicate with programmers —

® [t is asocial, as well as a technical, enabler

- social change is slow

Portland State

IIIIIIIIII

Friday, 30 October 2015

44

Why else?

* A programming language is not just a means
for programmers to communicate with
computers

* Jt is also a means for programmers to
communicate with programmers —

® [t is a social, as well as a technical, enabler
- social change is slow

- but enjoys the “100™ monkey” effect

Portland State

IIIIIIIIII

Friday, 30 October 2015

44

What about others?

Portland State

IIIIIIIIII

What about others?

A quick survey of the members of IFIP
WG 2.16 on language design ...

Portland State

Friday, 30 October 2015

IIIIIIIIII

45

What about others?

A quick survey of the members of IFIP
WG 2.16 on language design ...

... revealed a lot of passion

Portland State

Friday, 30 October 2015

IIIIIIIIII

45

Creating

“The power to create out of pure thought”

Jonathan Edwards
“A universal tool”

“In the beginning was the word”

Cristina Lopes

Portland State

IIIIIIIIII

Friday, 30 October 2015

N

- ™
» Ol L7

L ey v

0"._-.; 0 -"un--. YN

Magic

Programmers are like wizards ... except that
the magic is real!

PLs are “spell systems”

Sean McDirmid

“Any sufhciently-advanced technology is
indistinguishable from magic”

Arthur C . Clarke

Portland State 48

IIIIIIIIII

Friday, 30 October 2015

Portland State

UNIVERSITY

Friday, 30 October 2015

Foundational

* Software is the most important infrastructure
for ... basically everything

* Software is totally dependent on
programming languages

* Programming languages are the most
important infrastructure for writing software
... and thus for anything and everything!

James Noble

Portland State

IIIIIIIIII

Friday, 30 October 2015

50

Fun

Building things is fun!
Building things that build things is doubleplus

fun!

Jonathan Aldrich

Portland State

IIIIIIIIII

Friday, 30 October 2015

Are we there yet?

Portland State

IIIIIIIIII

Are we there yet? No!

Portland State

IIIIIIIIII

Are we there yet? No!

Since Fortran, people have been saying that
we don’t need new languages.

Yet, languages continue to evolve ... and few
of us would want to go back to Fortran.

Roberto lerusalimschy

Portland State

IIIIIIIIII

Friday, 30 October 2015

Language as “Law Enforcement”

Portland State

IIIIIIIIII

Friday, 30 October 2015

53

Language as “Law Enforcement”

Portland State

IIIIIIIIII

Friday, 30 October 2015

53

Language as “Law Enforcement”

S ‘E':f)

U

Portland State

IIIIIIIIII

54

Language as “Law Enforcement”

S {':f)

U

Portland State 54

IIIIIIIIII

“Law” of Physics

Friday, 30 October 2015

Language as “Law Enforcement”

Portland State

IIIIIIIIII

Friday, 30 October 2015

55

Language as “Law Enforcement”

The value of a language can be in what it
prevents you from doing

Hence: libraries are not the answer

Portland State

IIIIIIIIII

Friday, 30 October 2015

55

Language as “Law Enforcement”

The value of a language can be in what it
prevents you from doing

Hence: libraries are not the answer

* No library is ever going to ensure that there
are no race conditions in my Java program

Portland State 55

IIIIIIIIII

Friday, 30 October 2015

Languages shape thought

Portland State

IIIIIIIIII

Languages shape thought

Whorfianism, or “Linguistic Relativity”

Portland State

IIIIIIIIII

Languages shape thought

Whorfianism, or “Linguistic Relativity”

Learning a new language “changes the path of
least resistance”
lom van Cutsem

Portland State 56

IIIIIIIIII

Friday, 30 October 2015

Languages shape thought

Whorfianism, or “Linguistic Relativity”

Learning a new language “changes the path of
least resistance”
lom van Cutsem

Portland State 56

IIIIIIIIII

Friday, 30 October 2015

Languages shape thought

Portland State

IIIIIIIIII

57

Languages shape thought

Portland State

IIIIIIIIII

57

Languages shape thought

“You can't trust the opinions of others,
because of the Blub paradox: they’re satisfied
with whatever language they happen to use,

because it dictates the way they think about
programs.”

Paul Grabam

Portland State

Friday, 30 October 2015

IIIIIIIIII

57

http://c2.com/cgi/wiki?PaulGraham
http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

Portland State

IIIIIIIIII

Languages shape thought

Portland State

IIIIIIIIII

Languages shape thought

“A language that doesn’t aftect the way you
think about programming,
is not worth knowing”

Alan Perlis

Portland State

IIIIIIIIII

Friday, 30 October 2015

http://c2.com/cgi/wiki?PaulGraham
http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

Portland State

IIIIIIIIII

59

Languages shape thought

My Recommendation:

Portland State

IIIIIIIIII

59

Languages shape thought

My Recommendation:

* Do program in a pure functional language

Portland State

IIIIIIIIII

59

Languages shape thought

My Recommendation:

* Do program in a pure functional language

% Do program with pure objects (Smalltalk)

Portland State

IIIIIIIIII

Friday, 30 October 2015

59

Languages shape thought

My Recommendation:

* Do program in a pure functional language
2+ Do program with pure objects (Smalltalk)

* Do program with CSP

Portland State

IIIIIIIIII

Friday, 30 October 2015

59

Languages shape thought

My Recommendation:

* Do program in a pure functional language
% Do program with pure objects (Smalltalk)
* Do program with CSP

+ Do try Logic Programming (but not Prolog!)

Portland State 59

IIIIIIIIII

Friday, 30 October 2015

Languages shape thought

My Recommendation:

* Do program in a pure functional language
+ Do program with pure objects (Smalltalk)
* Do program with CSP

2+ Do try Logic Programming (but not Prolog!)

Use them for a serious project

Portland State 59

IIIIIIIIII

Friday, 30 October 2015

5.
6.
7.
8.

PL Reading List

Notation as a tool of thought. Iverson
Programming as Theory-building. Naur

Beating the Averages. Graham (and commentary thereon
at c2.0rg)

The Development of the Emerald Programming Language.
Black et «/. HoPL 111

The Algol 60 Report. Naur et al
Smalltalk. BY TE Magazine, August 1981
Lisp: Good News, Bad News, How to Win Big. Gabriel

Babel-17. Delany

Portland State

Friday, 30 October 2015

IIIIIIIIII

60

