
Why
Programming Languages

Matter

Andrew P. Black

Portland State University
Portland, Oregon

Friday, 30 October 2015

Why Programming Languages
Matter

to me and a bunch of other People

Andrew P. Black

Portland State University
Portland, Oregon

Friday, 30 October 2015

Win a Turing Award!

3

Friday, 30 October 2015

Win a Turing Award!

3

Friday, 30 October 2015

Turing Awards related to PL
1. Backus, John (1977)
2. Hoare, Tony (1980)
3. Iverson, Ken (1979)
4. Kay, Alan (2003)
5. Lamport, Leslie (2013)
6. Liskov, Barbara (2008)
7. Milner, Robin (1991)
8. Naur, Peter (2005)
9. Wirth, Niklaus (1984)

4

Friday, 30 October 2015

http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm

1. Backus, John (1977)
2. Hoare, Tony (1980)
3. Iverson, Ken (1979)
4. Kay, Alan (2003)
5. Lamport, Leslie (2013)
6. Liskov, Barbara (2008)
7. Milner, Robin (1991)
8. Naur, Peter (2005)
9. Wirth, Niklaus (1984)

4

But they missed …

Friday, 30 October 2015

http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm

1. Backus, John (1977)
2. Hoare, Tony (1980)
3. Iverson, Ken (1979)
4. Kay, Alan (2003)
5. Lamport, Leslie (2013)
6. Liskov, Barbara (2008)
7. Milner, Robin (1991)
8. Naur, Peter (2005)
9. Wirth, Niklaus (1984)

4

10. Allen, Fran (2006)
11. Dahl, Ole-Johan * (2001)
12. Dijkstra, Edsger* (1972)
13. Floyd, Bob* (1978)
14. McCarthy, John * (1971)
15. Nygaard, Kristen * (2001)
16. Perlis, Alan* (1966)
17. Ritchie, Dennis M.* (1983)
18. Scott, Dana (1976)

But they missed …

Friday, 30 October 2015

http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/award_winners/allen_1012327.cfm
http://amturing.acm.org/award_winners/allen_1012327.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://amturing.acm.org/award_winners/floyd_3720707.cfm
http://amturing.acm.org/award_winners/floyd_3720707.cfm
http://amturing.acm.org/award_winners/mccarthy_0239596.cfm
http://amturing.acm.org/award_winners/mccarthy_0239596.cfm
http://amturing.acm.org/award_winners/nygaard_5916220.cfm
http://amturing.acm.org/award_winners/nygaard_5916220.cfm
http://amturing.acm.org/award_winners/perlis_0132439.cfm
http://amturing.acm.org/award_winners/perlis_0132439.cfm
http://amturing.acm.org/award_winners/ritchie_1506389.cfm
http://amturing.acm.org/award_winners/ritchie_1506389.cfm
http://amturing.acm.org/award_winners/scott_1193622.cfm
http://amturing.acm.org/award_winners/scott_1193622.cfm

1. Backus, John (1977)
2. Hoare, Tony (1980)
3. Iverson, Ken (1979)
4. Kay, Alan (2003)
5. Lamport, Leslie (2013)
6. Liskov, Barbara (2008)
7. Milner, Robin (1991)
8. Naur, Peter (2005)
9. Wirth, Niklaus (1984)

4

10. Allen, Fran (2006)
11. Dahl, Ole-Johan * (2001)
12. Dijkstra, Edsger* (1972)
13. Floyd, Bob* (1978)
14. McCarthy, John * (1971)
15. Nygaard, Kristen * (2001)
16. Perlis, Alan* (1966)
17. Ritchie, Dennis M.* (1983)
18. Scott, Dana (1976)

But they missed …

18/62
Friday, 30 October 2015

http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/backus_0703524.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/hoare_4622167.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/iverson_9147499.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/kay_3972189.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/lamport_1205376.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/liskov_1108679.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/milner_1569367.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/naur_1024454.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/keywords/wirth_1025774.cfm
http://amturing.acm.org/award_winners/allen_1012327.cfm
http://amturing.acm.org/award_winners/allen_1012327.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dahl_6917600.cfm
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://amturing.acm.org/award_winners/floyd_3720707.cfm
http://amturing.acm.org/award_winners/floyd_3720707.cfm
http://amturing.acm.org/award_winners/mccarthy_0239596.cfm
http://amturing.acm.org/award_winners/mccarthy_0239596.cfm
http://amturing.acm.org/award_winners/nygaard_5916220.cfm
http://amturing.acm.org/award_winners/nygaard_5916220.cfm
http://amturing.acm.org/award_winners/perlis_0132439.cfm
http://amturing.acm.org/award_winners/perlis_0132439.cfm
http://amturing.acm.org/award_winners/ritchie_1506389.cfm
http://amturing.acm.org/award_winners/ritchie_1506389.cfm
http://amturing.acm.org/award_winners/ritchie_1506389.cfm
http://amturing.acm.org/award_winners/scott_1193622.cfm
http://amturing.acm.org/award_winners/scott_1193622.cfm

Win a Turing Award!

5

Programming Languages

Friday, 30 October 2015

Win a Turing Award!

6

Programming
Languages

Friday, 30 October 2015

My Personal Journey

• 1977–1981:%% % Graduate student, Oxford

• 1981–1986:% % Assistant Professor, Washington

• 1986–1994:% % Engineer & Researcher, Digital

• 1994–1999:% % Department Head, OGI

• 2000–2004:%% Professor, OGI

• 2004– :%% % % Professor, Portland State

7

Friday, 30 October 2015

My Personal Journey

• 1977–1981:%% % Graduate student, Oxford

• 1981–1986:% % Assistant Professor, Washington

• 1986–1994:% % Engineer & Researcher, Digital

• 1994–1999:% % Department Head, OGI

• 2000–2004:%% Professor, OGI

• 2004– :%% % % Professor, Portland State

1978: IBM TJ Watson Research Center

7

Friday, 30 October 2015

My Personal Journey

• 1977–1981:%% % Graduate student, Oxford

• 1981–1986:% % Assistant Professor, Washington

• 1986–1994:% % Engineer & Researcher, Digital

• 1994–1999:% % Department Head, OGI

• 2000–2004:%% Professor, OGI

• 2004– :%% % % Professor, Portland State

1978: IBM TJ Watson Research Center

1998: Xerox PARC

7

Friday, 30 October 2015

My Personal Journey

• 1977–1981:%% % Graduate student, Oxford

• 1981–1986:% % Assistant Professor, Washington

• 1986–1994:% % Engineer & Researcher, Digital

• 1994–1999:% % Department Head, OGI

• 2000–2004:%% Professor, OGI

• 2004– :%% % % Professor, Portland State

1978: IBM TJ Watson Research Center

1998: Xerox PARC

2001: University of Bern 2002: Intel

7

Friday, 30 October 2015

My Personal Journey

• 1977–1981:%% % Graduate student, Oxford

• 1981–1986:% % Assistant Professor, Washington

• 1986–1994:% % Engineer & Researcher, Digital

• 1994–1999:% % Department Head, OGI

• 2000–2004:%% Professor, OGI

• 2004– :%% % % Professor, Portland State

1978: IBM TJ Watson Research Center

1998: Xerox PARC

2001: University of Bern 2002: Intel

2011: Microsoft 2002: Edinburgh

7

Friday, 30 October 2015

Programming is Hard

I want to make it easier

Friday, 30 October 2015

9

Friday, 30 October 2015

1978–80: 3R

• “Reading, ‘riteing, and ‘rithmetic”

• Programming language designed for
readability

- Names made up of multiple words

- Block (procedure) names can have arguments,
e.g delete [i]th line of page[p]

• Flat (no nesting): Blocks and Blocklets

- No loops, No defaults

10

Friday, 30 October 2015

11

Friday, 30 October 2015

12

Friday, 30 October 2015

Influences
• Algol 60

• Cobol?

• Hoare Triples, Dijkstra’s predicate transformers

• Top-down design

• A year at IBM

• Brian Shearing
- knew that he needed a language

13

Friday, 30 October 2015

Reflections

The concept of a program consisting of English
text interspersed with 3R was easily grasped, but
its use was more difficult than I anticipated.
The main problem … is a feeling of duplicating
in the English what’s I’ve already coded in 3R …
The code specif [ies] the details in a concise and
comprehensible manner, [and] in a superior style.

Howard Matsuoka

”

“

14

Friday, 30 October 2015

Language as a Simplifier

15

Friday, 30 October 2015

16

Friday, 30 October 2015

17

Friday, 30 October 2015

17

Friday, 30 October 2015

Language as a Simplifier

18

Friday, 30 October 2015

Language as a Simplifier

• Programming in Smalltalk is also a life-
changing experience

18

Friday, 30 October 2015

Language as a Simplifier

• Programming in Smalltalk is also a life-
changing experience

• Once you understand how freeing it is get
get rid of the junk, you will never want to go
back

18

Friday, 30 October 2015

Eden Programming Language
• Eden Project (1980–1984) — early attempt to

build a “distributed, integrated” computing
system.

• EPL provided:
- concurrency inside Eden objects
- synchronous (local or remote) object invocation
- capabilities
- strings

• Implemented by translating to Concurrent
Euclid

19

Friday, 30 October 2015

20

Friday, 30 October 2015

21

Friday, 30 October 2015

Reflections

• Eden saw itself as distributed systems research
- no one on the project knew that they needed a

programming language!

• In hindsight: EPL was essential

• Partly language, partly kit of components

22

Friday, 30 October 2015

1983–87: Emerald

• Follow-on to EPL, but a “Real”
Programming Language

- Hides implementation choices that EPL
revealed

- Efficient (as in C) implementation

23

Friday, 30 October 2015

The People

Andrew
Black

Norm
Hutchinson

Eric Jul Henry
(Hank) Levy

Friday, 30 October 2015

Andrew
Black

Norm
Hutchinson

Eric Jul Henry
(Hank) Levy

The People

25

Friday, 30 October 2015

1983–87: Emerald
• Background:
- Eric Jul (Simula 67, Concurrent Pascal),
- Norm Hutchinson (Simula),
- Hank Levy (Capability architectures, system-

building at Digital)

• Addressed building a distributed system as a
language problem

• Emerald separated “semantics” from
“locatics”

26

Friday, 30 October 2015

Emerald Features

• Object constructors
• Concurrency
• Failure handling
• Parameterized types
• Location-independent invocation
• Compiled code about as efficient as C

27

Friday, 30 October 2015

const initialObject object initialObject
const limit 10

const newobj monitor object innerObject
var flip : Boolean true % true => print hi next
const c : Condition Condition.create

export operation Hi
if ! flip then

wait c
end if
stdout.PutString[“Hi\n”]
flip false
signal c

end hi
export operation Ho

if flip then
wait c

end if
stdout.PutString[“Ho\n”]
flip true
signal c

end ho
initially

stdout.PutString[“Starting Hi Ho program\n”]
end initially

end innerObject

const hoer object hoer
process

var i : Integer 0
loop

exit when i = limit
newobj.Hi
i i + 1

end loop
end process

end hoer

process
var i : Integer 0
loop

exit when i = limit
newobj.Ho
i i + 1

end loop
end process

end initialObject

Figure 8: One of the processes in the object hoer invokes the
Hi operation on newobj 10 times; the other invokes Ho. Because
these operations execute inside a monitored object, they operate in
mutual exclusion and the output is an alternating stream of Hi and
Ho messages.

were waiting on a condition, were moved just like any other
process that was executing (or waiting) within an object.

4.4 Initially

In many languages, initializing variables and data structures
was a bothersome task. In Emerald, the problem was further

compounded by concurrency: once created, a process ran in
parallel with its creator. Consequently, race conditions could
occur when creating a new object. For example, if a process
P created a new object A, and during its creation A caused
another process Q to be created, then Q might “outrun” P

and try to invoke the new object A before P had finished
initializing A. An object did not even need to create another
process for a race condition to occur: if a new object A

registered itself in a directory so that others could find it,
then an aggressive process that noticed A in the directory
might try to invoke A before A had finished its initialization.
The same problem exists today in Java.

We solved this problem by locking an object until its ini-
tially section had completed. This enabled the body of the
initially to use other objects freely, but a cycle would result
in deadlock and would thus be easy to detect.

4.5 Finalization
Some object-based languages allowed the programmer to
define so-called finalizers, also known as destructors. The
idea was that just before an object was destroyed, its finalizer
would be given a chance to “clean up”, for example, to
close open files or to release allocated data structures. In
our minds, objects lived forever, so a finalizer did not make
sense. The garbage collector could recycle objects that were
no longer of any use — which meant that they were not
accessible from a basic root or by an executing process. We
did consider introducing a finalizer that would be invoked
in this situation, but once something was executing inside
the object, it would no longer be a candidate for garbage
collection. So finalizers would have violated an important
monotonicity property: once an object became garbage, it
would stay garbage.

4.6 Compiler-Kernel Integration
The Emerald compiler and run-time kernel were very tightly
integrated (see Section 3). This was essential for accom-
plishing our performance goal. Tight integration allowed the
compiler several forms of flexibility: it could select between
the three object implementations (global, local, and direct,
described in Section 4.1.4) for every object reference; it
could use the general purpose registers to hold whatever data
it liked; and it understood the format of kernel-maintained
data structures and could inspect them directly, rather than
calling a kernel primitive to interpret them.

The compiler was responsible for informing the kernel about
its representation choices, and because the kernel could take
control at (almost) any point in the execution and might
need to marshal object data, the run-time stack, and even
the processor registers, the compiler had to provide descrip-
tions of every accessible data area at all times. These de-
scriptions, called templates, described the contents of an area
of memory. They informed the run-time system where im-
mediate data (direct objects), object pointers (local object

11-25

const initialObject object initialObject
const limit 10

const newobj monitor object innerObject
var flip : Boolean true % true => print hi next
const c : Condition Condition.create

export operation Hi
if ! flip then

wait c
end if
stdout.PutString[“Hi\n”]
flip false
signal c

end hi
export operation Ho

if flip then
wait c

end if
stdout.PutString[“Ho\n”]
flip true
signal c

end ho
initially

stdout.PutString[“Starting Hi Ho program\n”]
end initially

end innerObject

const hoer object hoer
process

var i : Integer 0
loop

exit when i = limit
newobj.Hi
i i + 1

end loop
end process

end hoer

process
var i : Integer 0
loop

exit when i = limit
newobj.Ho
i i + 1

end loop
end process

end initialObject

Figure 8: One of the processes in the object hoer invokes the
Hi operation on newobj 10 times; the other invokes Ho. Because
these operations execute inside a monitored object, they operate in
mutual exclusion and the output is an alternating stream of Hi and
Ho messages.

were waiting on a condition, were moved just like any other
process that was executing (or waiting) within an object.

4.4 Initially

In many languages, initializing variables and data structures
was a bothersome task. In Emerald, the problem was further

compounded by concurrency: once created, a process ran in
parallel with its creator. Consequently, race conditions could
occur when creating a new object. For example, if a process
P created a new object A, and during its creation A caused
another process Q to be created, then Q might “outrun” P

and try to invoke the new object A before P had finished
initializing A. An object did not even need to create another
process for a race condition to occur: if a new object A

registered itself in a directory so that others could find it,
then an aggressive process that noticed A in the directory
might try to invoke A before A had finished its initialization.
The same problem exists today in Java.

We solved this problem by locking an object until its ini-
tially section had completed. This enabled the body of the
initially to use other objects freely, but a cycle would result
in deadlock and would thus be easy to detect.

4.5 Finalization
Some object-based languages allowed the programmer to
define so-called finalizers, also known as destructors. The
idea was that just before an object was destroyed, its finalizer
would be given a chance to “clean up”, for example, to
close open files or to release allocated data structures. In
our minds, objects lived forever, so a finalizer did not make
sense. The garbage collector could recycle objects that were
no longer of any use — which meant that they were not
accessible from a basic root or by an executing process. We
did consider introducing a finalizer that would be invoked
in this situation, but once something was executing inside
the object, it would no longer be a candidate for garbage
collection. So finalizers would have violated an important
monotonicity property: once an object became garbage, it
would stay garbage.

4.6 Compiler-Kernel Integration
The Emerald compiler and run-time kernel were very tightly
integrated (see Section 3). This was essential for accom-
plishing our performance goal. Tight integration allowed the
compiler several forms of flexibility: it could select between
the three object implementations (global, local, and direct,
described in Section 4.1.4) for every object reference; it
could use the general purpose registers to hold whatever data
it liked; and it understood the format of kernel-maintained
data structures and could inspect them directly, rather than
calling a kernel primitive to interpret them.

The compiler was responsible for informing the kernel about
its representation choices, and because the kernel could take
control at (almost) any point in the execution and might
need to marshal object data, the run-time stack, and even
the processor registers, the compiler had to provide descrip-
tions of every accessible data area at all times. These de-
scriptions, called templates, described the contents of an area
of memory. They informed the run-time system where im-
mediate data (direct objects), object pointers (local object

11-25

28

Friday, 30 October 2015

Reflections
• About 20 years before its time
- NSF called it “unimplementable”

- Still generating PhDs in 2006

29

Friday, 30 October 2015

SOSP Referee’s didn’t agree…

30

Friday, 30 October 2015

Reflections
• About 20 years before its time
- NSF called it “unimplementable”

- Still generating PhDs in 2006

• Not widely used, but widely influential
- ANSA DPL, OMG CORBA, INRIA’s Guide,

Birrell et al.’s Network Objects, the ANSI
Smalltalk standard

• We were our own customers. We realized
that we needed a language …

31

Friday, 30 October 2015

2001–present: Traits

• a language feature, not a language

• a Trait is a Smalltalk class without any slots

• traits can be
- combined with +,

- modified with @ (alias) and – (exclusion)

- used in other traits and classes.

32

Friday, 30 October 2015

• Trait = set of
methods, without
instance vars

• Sum, alias, exclude
and uses as
combinators

33

composite subclass
definition

C subclass: #D
uses: T

var1

b a j
d a w
i a Bvar1

inheritance
trait

T

a a x
b a y
c a Bself i

subclass

D

var0 var1

a a x
b a j
c a Bself i
d a w
e a k
i a Bvar1

class

C

var0

a a m
d a n
e a k

trait

T

+

U

a

a

x

b

a

y

c

a

conflict

d

a

r

composite subclass
definition

C

subclass:

 #D

uses:

 T

var1

b

a

j

d

a

w

i

a

B

var1

trait

T

a

a

x

b

a

y

c

a

B

self

 i

sum

+

trait

V

a

a

x

b

a

y

c

a

p

d

a

v

overriding

trait

T

a

a

x

b

a

conflict

c

a

B

self

 i

inheritance

These diagrams illustrate the three com-
position operations involving traits. The
ellipses depict the operations; the fat
arrows show their inputs and
outputs. The open arrow repre-
sents subclassing. The notation a

a

m

represents a method with name a

and
body

m

.
The

sum

 operation takes two traits

T

 and

U

 as input; the result is
a trait

T+U

 that contains the union of all of the non-conflicting
methods. Where

T

 and

U

 conflict (

e.g.

, at

c

), the resulting
method is an explicit conflict marker.
The

overriding

 operation combines some explicit definitions with
an existing trait. In the figure, the explicit definitions of methods b
and c override those obtained from the trait

T

, and the definition
of d is added. The resulting trait V contains no conflicts because
the definition of b has been overridden.
The

inheritance

 operation is used to create a new subclass D
from an existing superclass C, an existing trait T, and some new,
explicitly given, definitions. Explicit definitions (

e.g.,

 of b) override
those obtained from the trait; definitions in the trait (

e.g.

, of a)
override those obtained from the superclass.

trait

T

a

a

x

b

a

y

c

a

B

self

 i

composite trait
definition

Trait

named:

 #V

uses:

 T

b

a

y

c

a

p

d

a

v

subclass

D

var0 var1

a

a

x

b

a

j

c

a

B

self

 i
d

a

w

e

a

k

i

a

B

var1

class

C

var0

a

a

m

d

a

n

e

a

k

trait

U

c

a

q

d

a

r

Friday, 30 October 2015

Influences
• Deep experience with Smalltalk

• The sad history of multiple inheritance
“multiple inheritance is good, but there is no
good way to do it”

Steve Cook channeling Alan Snyder

• Nathanael Schärli, who cut the gordian knot

• A little lattice theory

• Excellent toolbuilding environment & skills

34

Friday, 30 October 2015

Reflections
• Smallest contribution

• Largest impact?
- Pearl 6, Java, Pharo, Visualworks, Fortress,

Racket, Ruby, C#, Scala, Joose, PHP,
ActionScript, …

• We underestimated the importance of
programming tools
- many of the properties we claimed for traits

depended also on tool support

35

Friday, 30 October 2015

2010 – present: Grace

• Simple O-O language for teaching
- block-structured

- dialects.

- optional, gradual types

- indentation matters

• An effort at consolidation, not innovation

• Open-source implementation

36

Friday, 30 October 2015

Linked List
method with(*a) {
 def result = empty
 a.do { each -> result.add(each) }
 return result
}

class empty {
 class node(d, n) {
 var data is public := d
 var next is public := n
 method asString { "{data}|{next}" }

 method insert(value) {
 next := node(value, next)
 }
 }

 def null = Singleton.named " "
 def top = node("header", null)
 var lastNode := top

37

Friday, 30 October 2015

 method size {
 // returns the number of elements in self
 var result := 0
 var current := top
 while { current.next ≠ null } do {
 current := current.next
 result := result + 1
 }
 return result
 }

 method do(action:Block1) {
 // applies action to each element of self
 var current := top
 while { current.next ≠ null } do {
 current := current.next
 action.apply(current.data)
 }
 }

 method search(needle) ifAbsent(action) {
 // searches for needle in self. Returns the first node
 // containing needle if it is found; otherwise, applies action.
 var current := top
 while { current.next ≠ null } do {

38

Friday, 30 October 2015

Influences

• Teaching with inappropriate languages
- Java: mixes paradigms, verbose, complex

- Python: stupid defaults, objects are an
afterthought

- Smalltalk: no types, no interfaces

39

Friday, 30 October 2015

Reflections

• The consumer is a novice student
- but the customer is an instructor in a

introductory programming course

• Surprisingly challenging to please both
- e.g., clean object model or existing practice?

• Design skills ⇄ implementation skills

• http://www.gracelang.org

40

Friday, 30 October 2015

Meta-Reflections

• I’ve had a lot of fun over the last 35 years
- Maybe I’ve also had some impact

• But programming is still too hard

• The (recent) focus on Programming
Languages rather than Programming Systems
hasn’t helped
- less science and more engineering?

41

Friday, 30 October 2015

What keeps me coming back?
• I like fixing things

- there’s plenty to fix in programming!

• Programming languages are an enabler

- for others (3R, EPL)
- for programmers (Traits)
- for students (Grace)

• Programming languages are about communication
- still refining my writing and communication skills

- in English, and in program

42

Friday, 30 October 2015

Why is progress so slow?

• Programming languages are central to
everything that we build
- You would be crazy to build a 100 kloc system

with an untested language.

• Tooling and libraries are as important, or
more important, than the language
- they take time to build and evolve

43

Friday, 30 October 2015

Why else?

44

Friday, 30 October 2015

Why else?

• A programming language is not just a means
for programmers to communicate with
computers

44

Friday, 30 October 2015

Why else?

• A programming language is not just a means
for programmers to communicate with
computers

• It is also a means for programmers to
communicate with programmers —

44

Friday, 30 October 2015

Why else?

• A programming language is not just a means
for programmers to communicate with
computers

• It is also a means for programmers to
communicate with programmers —

• It is a social, as well as a technical, enabler

44

Friday, 30 October 2015

Why else?

• A programming language is not just a means
for programmers to communicate with
computers

• It is also a means for programmers to
communicate with programmers —

• It is a social, as well as a technical, enabler
- social change is slow

44

Friday, 30 October 2015

Why else?

• A programming language is not just a means
for programmers to communicate with
computers

• It is also a means for programmers to
communicate with programmers —

• It is a social, as well as a technical, enabler
- social change is slow

- but enjoys the “100th monkey” effect

44

Friday, 30 October 2015

What about others?

45

Friday, 30 October 2015

What about others?

A quick survey of the members of IFIP
WG 2.16 on language design …

45

Friday, 30 October 2015

What about others?

A quick survey of the members of IFIP
WG 2.16 on language design …

 … revealed a lot of passion

45

Friday, 30 October 2015

Creating

“The power to create out of pure thought”
Jonathan Edwards

“A universal tool”
“In the beginning was the word”

Cristina Lopes

46

Friday, 30 October 2015

47

Friday, 30 October 2015

Magic
Programmers are like wizards … except that
the magic is real!
PLs are “spell systems”

Sean McDirmid

“Any sufficiently-advanced technology is
indistinguishable from magic”

Arthur C . Clarke

48

Friday, 30 October 2015

49

Friday, 30 October 2015

Foundational

✴ Software is the most important infrastructure
for ... basically everything

✴ Software is totally dependent on
programming languages

✴ Programming languages are the most
important infrastructure for writing software
… and thus for anything and everything!

James Noble

50

Friday, 30 October 2015

Fun

Building things is fun!
Building things that build things is doubleplus
fun!

Jonathan Aldrich

51

Friday, 30 October 2015

Are we there yet?

52

Friday, 30 October 2015

Are we there yet?

52

No!

Friday, 30 October 2015

Are we there yet?

Since Fortran, people have been saying that
we don’t need new languages.
Yet, languages continue to evolve … and few
of us would want to go back to Fortran.

Roberto Ierusalimschy

52

No!

Friday, 30 October 2015

Language as “Law Enforcement”

53

Friday, 30 October 2015

Language as “Law Enforcement”

53

Friday, 30 October 2015

Language as “Law Enforcement”

54

Friday, 30 October 2015

Language as “Law Enforcement”

54

“Law” of Physics

Friday, 30 October 2015

Language as “Law Enforcement”

55

Friday, 30 October 2015

Language as “Law Enforcement”

The value of a language can be in what it
prevents you from doing

Hence: libraries are not the answer

55

Friday, 30 October 2015

Language as “Law Enforcement”

The value of a language can be in what it
prevents you from doing

Hence: libraries are not the answer

✤ No library is ever going to ensure that there
are no race conditions in my Java program

55

Friday, 30 October 2015

Languages shape thought

56

Friday, 30 October 2015

Languages shape thought

Whorfianism, or “Linguistic Relativity”

56

Friday, 30 October 2015

Languages shape thought

Whorfianism, or “Linguistic Relativity”
Learning a new language “changes the path of
least resistance”

Tom van Cutsem

56

Friday, 30 October 2015

Languages shape thought

Whorfianism, or “Linguistic Relativity”
Learning a new language “changes the path of
least resistance”

Tom van Cutsem

56

Friday, 30 October 2015

Languages shape thought

57

Friday, 30 October 2015

Languages shape thought

57

Friday, 30 October 2015

Languages shape thought

“You can't trust the opinions of others,
because of the Blub paradox: they’re satisfied
with whatever language they happen to use,
because it dictates the way they think about
programs.”

Paul Graham

57

Friday, 30 October 2015

http://c2.com/cgi/wiki?PaulGraham
http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

58

Friday, 30 October 2015

Languages shape thought

58

Friday, 30 October 2015

Languages shape thought

“A language that doesn’t affect the way you
think about programming,
is not worth knowing”

Alan Perlis

58

Friday, 30 October 2015

http://c2.com/cgi/wiki?PaulGraham
http://c2.com/cgi/wiki?PaulGraham

Languages shape thought

59

Friday, 30 October 2015

Languages shape thought

My Recommendation:

59

Friday, 30 October 2015

Languages shape thought

My Recommendation:

✤ Do program in a pure functional language

59

Friday, 30 October 2015

Languages shape thought

My Recommendation:

✤ Do program in a pure functional language
✤ Do program with pure objects (Smalltalk)

59

Friday, 30 October 2015

Languages shape thought

My Recommendation:

✤ Do program in a pure functional language
✤ Do program with pure objects (Smalltalk)
✤ Do program with CSP

59

Friday, 30 October 2015

Languages shape thought

My Recommendation:

✤ Do program in a pure functional language
✤ Do program with pure objects (Smalltalk)
✤ Do program with CSP
✤ Do try Logic Programming (but not Prolog!)

59

Friday, 30 October 2015

Languages shape thought

My Recommendation:

✤ Do program in a pure functional language
✤ Do program with pure objects (Smalltalk)
✤ Do program with CSP
✤ Do try Logic Programming (but not Prolog!)

Use them for a serious project

59

Friday, 30 October 2015

PL Reading List
1. Notation as a tool of thought. Iverson
2. Programming as Theory-building. Naur
3. Beating the Averages. Graham (and commentary thereon

at c2.org)
4. The Development of the Emerald Programming Language.

Black et al. HoPL III
5. The Algol 60 Report. Naur et al

6. Smalltalk. BYTE Magazine, August 1981
7. Lisp: Good News, Bad News, How to Win Big. Gabriel
8. Babel-17. Delany

60

Friday, 30 October 2015

