
Traits:
Tools and Methodology

Andrew P. Black
OGI School of Science & Engineering, OHSU

Portland, Oregon, USA

Nathanael Schärli
Software Composition Group, IAM

Universität Bern, Switzerland

2

A programming language technology that
enables reuse in place of duplication

Avoids problems of Multiple Inheritance &
Mixins !ECOOP 2003 Analysis"

Allows programs to be smaller and more
uniform !OOPSLA 2003 Refactoring"

What are Traits?

3

Is not primarily about traits

It is about

the trait browser

the programming methodology developing
around traits

This talk:

4

Traits and Uniform Protocol

Protocol is a crucial idea in O#O

whether or not the language supports it

Inheritance helps to create uniform
protocol

a significant benefit to the user of a
framework

5

Smalltalk Enumeration Protocol

Part of the interface of Collection

implement internal iterators, e.g.,
aList select: [:each | each isPrime]

all subclasses of Collection share this protocol

manipulate, is by encouraging the programmer to provide
diverse objects with uniform protocol.

The notion of protocol, also known as interface, is cru-
cial in all object-oriented programs, whether or not the lan-
guage in which they are written has a syntactic construct to
capture it. Uniformity of protocol is encouraged by inheri-
tance, because by default the protocol of a subclass will be
a superset of the protocol of its superclass. But classes that
are not related by inheritance should also, very often, share
the same protocol. Java’s interface and implements con-
structs allow a programmer to state that two classes should
share a protocol, but they do nothing to help translate that
desire into code.

To see the value of uniform protocol, consider the enu-
meration protocol in Smalltalk. This protocol is part of the
interface of Collection and its subclasses, and consists of the
following messages. 1

allSatisfy: anySatisfy: associationsDo:
collect: collect:thenSelect: count:
detect: detect:ifNone: detectMax:
detectMin: detectSum: difference:
do: do:separatedBy: do:without:
groupBy:having: inject:into: intersection:
noneSatisfy: reject: select:
select:thenCollect: union:

These messages implement various internal iterators over
the target collection. For example, select: takes a boolean
block (a predicate) as argument and returns a new collec-
tion containing those elements of the target collection for
which the predicate yields true. All of the messages in the
enumeration protocol are understood by all of the classes of
collection; this makes it trivial to write code that is robust
to changes in the specific kind of collection that is eventu-
ally provided.

Now consider the class Path, which represents an or-
dered sequence of points: arcs, curves, lines and splines are
all implemented as subclasses of Path. The class Path is it-
self a subclass of DisplayObject, and thus not able to inherit
from Collection. Consequently, although Path implements
some of the more basic kinds of collection-like behaviour —
for example, it has methods for select: and collect: — it does
not implement the full enumeration protocol.

We first became aware of this deficiency when preparing
a tutorial on Squeak, a dialect of Smalltalk [7]. The code

p := Path fromUser.
r := Rectangle fromUser.
pc := p select: [:each | r containsPoint: each].
pc displayOn: Display.

asks the user to input a series of points that defines a Path p
on the display, and to then define a Rectangle r. It then cre-
ates a new Path pc that contains only those points from p

1 The presence of a colon (:) in a message indicates that an argument
must be provided when the message is sent. Thus, colons in Smalltalk
play the same role as parentheses and commas in C. The Smalltalk
message today printOn: outputStream format: fmt might be repre-
sented in Java or C++ as today.printOn format(outputStream, fmt).

that are inside r. But this code doesn’t work: it produces a
“message not understood” error, because p, although con-
ceptually a collection of points, is actually a Path and thus
does not understand the select: message.

Although the user of a Path can program around this de-
ficiency, that ought not to be the user’s responsibility! In-
stead, the implementor of Path should ensure that it under-
stands the entire collection protocol. But this is an awesome
task: the existing implementation in class Collection can-
not be reused by inheritance, so many methods would need
to be duplicated. In addition to the score of methods miss-
ing from the enumeration protocol, there are a dozen other
protocols that must also be implemented if Path is to be-
have as a collection.

We have found similar problems in many places in
Squeak. Although isEmpty is defined in 21 classes, only
two of them also define notEmpty, and only one also de-
fines ifEmpty: and ifNotEmpty: . Thus, the client of these
classes cannot program to a uniform interface, and is sub-
jected to the unnecessary burden of keeping track of exactly
which messages the target object understands. The exam-
ple of RectangleMorph not implementing all of the protocol
understood by Rectangle objects is discussed at length in a
previous paper [2], where we make the point that the reason
for this non-uniformity in protocol is not bad programming,
but bad technology. With single inheritance, the only way
of making the protocols uniform is wholesale code duplica-
tion, which is probably a greater evil than non-uniformity.

Traits provide a simple solution to this dilemma that
avoids duplication of both source and compiled code and
also improves modularity, thus making the classes con-
cerned easier to understand.

3. What are Traits?

A trait is a first-class collection of named methods — an
implementation of a protocol. The purpose of a trait is to
make that protocol implementation reusable in whatever
classes need it. For simplicity, we make the restriction that
the methods must be “pure behaviour,” that is, they cannot
directly reference any instance variables. We will now de-
scribe traits in some detail; readers already familiar with
traits can safely omit this section.

Traits fulfill their purpose by being composed into other
traits and eventually into classes. A trait has no superclass;
the keyword super can appear in a trait method, but it re-
mains unbound until the trait is eventually used in a class.

The power and simplicity of traits comes from the com-
position operators that are defined on them. Figure 1 il-
lustrates the sum operation. Here, and in the next two fig-
ures, circles and ellipses depict the operations, and fat ar-
rows show their inputs and outputs. The lilac rectangles are

2

6

What about Path?

A Path is a sequence of points

arcs, curves, lines, splines are all Paths

but Path is a subclass of DisplayObject,
not of Collection

Path does not implement the full
enumeration protocol

7

Traits in Smalltalk
Smalltalk is a dynamically typed, class-
based language with single inheritance

Traits are “first class” collections of
methods

Traits don’t define state $instance variables%

Traits can be composed from sub#traits

A subclass can reuse methods from a trait as
well as from a superclass

TEnum

allSatisfy:
collect:
detect:
detectMin:
…

trait

Path subclass:
#EnumerablePath

uses: TEnum

modCount

do:
emptyCopyOfSzie:

composite
subclass definition

Path

addPoint:
displayOn:
…

collectionOfPoints

EnumerablePath

addPoint:
displayOn:
allSatisfy:
collect:
detect:

collectionofPoints
modcount

detectMin:
…
do:
emptyCopyOfSize:

class

subclass

Subclassing Path to create EnumerablePath

9

We used traits to refactor the Smalltalk
Collections classes !OOPSLA 2003"

37 subclasses of Collection and 10 of Stream

… a total of 52 traits and 840 methods
one class used 22 traits!

Refactored version had 10& fewer methods and
12& fewer bytes

In spite of 9& of methods being “too high” in
original version

What’s the Payoff?

10

Today’s talk: two questions

10

Today’s talk: two questions

How does the programmer manipulate
traits ?

10

Today’s talk: two questions

How does the programmer manipulate
traits ?

Tools (the trait browser

10

Today’s talk: two questions

How does the programmer manipulate
traits ?

Tools (the trait browser

How do traits change the way that
programs are written?

10

Today’s talk: two questions

How does the programmer manipulate
traits ?

Tools (the trait browser

How do traits change the way that
programs are written?

Methodology

11

The Trait Browser

Two key ideas:

Automatically and incrementally categorize
methods in ways that help the programmer
to see their inter-relationships

Multiple views of a class: the extra level of
structure provided by traits is optional

12

Enumerations in the traits browser

12

Enumerations in the traits browser

12

Enumerations in the traits browser

12

Enumerations in the traits browser

12

Enumerations in the traits browser

12

Enumerations in the traits browser

12

Enumerations in the traits browser

13

overrides virtual category

contains methods that

are provided by a subclass, and that

override methods inherited from a
superclass

13

overrides virtual category

contains methods that

are provided by a subclass, and that

override methods inherited from a
superclass

14

sending-super virtual category

Contains all the methods in this class or
trait that make super-sends

14

sending-super virtual category

Contains all the methods in this class or
trait that make super-sends

14

sending-super virtual category

Contains all the methods in this class or
trait that make super-sends

15

Trait conflicts

Sibling traits with different methods on
the same message generate a conflict

The programmer must resolve it explicitly

15

Trait conflicts

Sibling traits with different methods on
the same message generate a conflict

The programmer must resolve it explicitly

16

Programming Methodology

Class hierarchy takes on many roles in
ordinary O#O programming:

1. conceptual classification

2. definition of protocols $interfaces%

3. modularization

4. reuse of implementations

5. incremental modification

17

Conceptual classification
suffers

It’s difficult or impossible to reconcile all
of these roles

Corrupting the conceptual relationship
does not create immediate problems!

The problems are longer term, as the
program ceases to model the domain

fl Reuse takes priority over modeling

18

Traits avoid this problem
Traits support modularization directly $3%

Trait methods can be reused anywhere in a
hierarchy $4%

Inheritance with traits allows reuse of the d (5)

Traits make protocol concrete, and make it
easy to implement uniform interfaces $2%

18

Traits avoid this problem

18

Traits avoid this problem

fl The class hierarchy is now free to be used
for conceptual classification

19

Uniform Protocol
In conventional O#O programming,
inheritance is the only tool available for
making protocol uniform

If inheritance is used for another purpose,
uniformity suffers

Programmer must build-up protocol one
method at a time

Traits allow classes to be constructed by
protocol compositio!

20

Uncovering Hidden Structure
Many classes implement multiple protocols

These protocols are rarely distinguished

Java’s implements and interface keywords are
under-used

Smalltalk’s protocol categorization is only for
documentation

Trait browser lets us reify protocol after the
fact

21

Traits and Agile Methodologies

XP and trait programming share practices

continuous design

refactoring

testing

pair programming

collective ownership

22

Tools and methodology
interact

Methodology without tool support Þ
pious hope

Tools without methodology Þ too
much rope

Trait language features and browser
co-evolved with the methodology

23

Explicit conflict resolution
Multiple inheritance characterized by complex
rules for “automatic” conflict resolution.

superclass precedence

diamond problem with
multiply inherited state

Trait conflicts must be
resolved explicitly

Browser makes it easy

?

24

Fixing a conflict

25

Flattening
A class composed from traits can be
viewed as if it were “flat”

the traits are “inlined”

Extra structure provided by traits is
always optional

super is not bound until a trait is used.
no “rename” operation

A class can be built from a score of traits

26

Trait nesting in Collections

27

Conclusion $1/2%

Combination of $Traits Language +
Traits Browser% is a valuable tool

multiple views on a program

delayed decision making

late extraction of traits

28

Conclusion $2/2%

Raised the level of abstraction of the
programming process

Programming with whole protocols rather
than single methods

Visible requirements & overrides, and
explicit conflict resolution, help avoid bugs

