
manipulate, is by encouraging the programmer to provide
diverse objects with uniform protocol.

The notion of protocol, also known as interface, is cru-
cial in all object-oriented programs, whether or not the lan-
guage in which they are written has a syntactic construct to
capture it. Uniformity of protocol is encouraged by inheri-
tance, because by default the protocol of a subclass will be
a superset of the protocol of its superclass. But classes that
are not related by inheritance should also, very often, share
the same protocol. Java’sinterface and implements con-
structs allow a programmer to state that two classesshould
share a protocol, but they do nothing to help translate that
desire into code.

To see the value of uniform protocol, consider the enu-
meration protocol in Smalltalk. This protocol is part of the
interface ofCollection and its subclasses, and consists of the
following messages.1

allSatisfy: anySatisfy: associationsDo:
collect: collect:thenSelect: count:
detect: detect:ifNone: detectMax:
detectMin: detectSum: difference:
do: do:separatedBy: do:without:
groupBy:having: inject:into: intersection:
noneSatisfy: reject: select:
select:thenCollect: union:

These messages implement various internal iterators over
the target collection. For example,select: takes a boolean
block (a predicate) as argument and returns a new collec-
tion containing those elements of the target collection for
which the predicate yields true. All of the messages in the
enumeration protocol are understood by all of the classes of
collection; this makes it trivial to write code that is robust
to changes in the specific kind of collection that is eventu-
ally provided.

Now consider the classPath, which represents an or-
dered sequence of points: arcs, curves, lines and splines are
all implemented as subclasses ofPath. The classPath is it-
self a subclass ofDisplayObject, and thus not able to inherit
from Collection. Consequently, althoughPath implements
some of the more basic kinds of collection-like behaviour —
for example, it has methods forselect: andcollect: — it does
not implement the full enumeration protocol.

We first became aware of this deficiency when preparing
a tutorial on Squeak, a dialect of Smalltalk [7]. The code

p := Path fromUser.
r := Rectangle fromUser.
pc := p select: [ :each | r containsPoint: each ].
pc displayOn: Display.

asks the user to input a series of points that defines aPath p
on the display, and to then define aRectangle r. It then cre-
ates a newPath pc that contains only those points fromp

1 The presence of a colon (:) in a message indicates that an argument
must be provided when the message is sent. Thus, colons in Smalltalk
play the same role as parentheses and commas in C. The Smalltalk
messagetoday printOn: outputStream format: fmt might be repre-
sented in Java or C++ astoday.printOn format(outputStream, fmt).

that are insider. But this code doesn’t work: it produces a
“message not understood” error, becausep, although con-
ceptually a collection of points, is actually aPath and thus
does not understand theselect: message.

Although the user of aPath can program around this de-
ficiency, that ought not to be the user’s responsibility! In-
stead, theimplementorof Path should ensure that it under-
stands the entire collection protocol. But this is an awesome
task: the existing implementation in classCollection can-
not be reused by inheritance, so many methods would need
to be duplicated. In addition to the score of methods miss-
ing from the enumeration protocol, there are a dozen other
protocols that must also be implemented ifPath is to be-
have as a collection.

We have found similar problems in many places in
Squeak. AlthoughisEmpty is defined in 21 classes, only
two of them also definenotEmpty, and only one also de-
fines ifEmpty: and ifNotEmpty: . Thus, the client of these
classes cannot program to a uniform interface, and is sub-
jected to the unnecessary burden of keeping track of exactly
which messages the target object understands. The exam-
ple ofRectangleMorph not implementing all of the protocol
understood byRectangle objects is discussed at length in a
previous paper [2], where we make the point that the reason
for this non-uniformity in protocol is not bad programming,
but bad technology. With single inheritance, the only way
of making the protocols uniform is wholesale code duplica-
tion, which is probably a greater evil than non-uniformity.

Traits provide a simple solution to this dilemma that
avoids duplication of both source and compiled code and
also improves modularity, thus making the classes con-
cerned easier to understand.

3. What are Traits?

A trait is a first-class collection of named methods — an
implementation of a protocol. The purpose of a trait is to
make that protocol implementation reusable in whatever
classes need it. For simplicity, we make the restriction that
the methods must be “pure behaviour,” that is, they cannot
directly reference any instance variables. We will now de-
scribe traits in some detail; readers already familiar with
traits can safely omit this section.

Traits fulfill their purpose by being composed into other
traits and eventually into classes. A trait has no superclass;
the keywordsuper can appear in a trait method, but it re-
mains unbound until the trait is eventually used in a class.

The power and simplicity of traits comes from the com-
position operators that are defined on them. Figure 1 il-
lustrates the sum operation. Here, and in the next two fig-
ures, circles and ellipses depict the operations, and fat ar-
rows show their inputs and outputs. The lilac rectangles are

2


