
Andrew P. Black
joint work with Emerson Murphy-Hill
Andrew P. Black
joint work with Daniel Vainsencher

1

IDEs as Ecosystems

Context

2

Context
• IDE ≠ fancy text editor

2

Context
• IDE ≠ fancy text editor

• IDE is a collection of tools

2

Context
• IDE ≠ fancy text editor

• IDE is a collection of tools
• operating on the same program

2

Context
• IDE ≠ fancy text editor

• IDE is a collection of tools
• operating on the same program

• reveling different aspects of that program

2

Context
• IDE ≠ fancy text editor

• IDE is a collection of tools
• operating on the same program

• reveling different aspects of that program

• probably targeted at different programming tasks

2

Context
• IDE ≠ fancy text editor

• IDE is a collection of tools
• operating on the same program

• reveling different aspects of that program

• probably targeted at different programming tasks

• having a deep knowledge of the language, and

2

Context
• IDE ≠ fancy text editor

• IDE is a collection of tools
• operating on the same program

• reveling different aspects of that program

• probably targeted at different programming tasks

• having a deep knowledge of the language, and

• able to support semantic transformations

2

Context
• IDE ≠ fancy text editor

• IDE is a collection of tools
• operating on the same program

• reveling different aspects of that program

• probably targeted at different programming tasks

• having a deep knowledge of the language, and

• able to support semantic transformations

2

TM

In the beginning…
• There were traits.

• And traits were good, but really hard
to program with

• So Nathaniel wrote the “green browser”

3

In the beginning…
• There were traits.

• And traits were good, but really hard
to program with

• So Nathaniel wrote the “green browser”

3

In the beginning…
• There were traits.

• And traits were good, but really hard
to program with

• So Nathaniel wrote the “green browser”

3

Fast forward several years:
• New:

• Traits kernel

• Browser Platform

• Need to re-implement all of the cleverness
of the “green browser”

• Why? The code model, the code analyses
and the tools that let us view them were
inextricably bound up together

• “That’s just the way IDEs are”

4

IDEs are Ecosystems

5

IDEs are Ecosystems

5

IDEs are Ecosystems

5

IDE Architects

IDEs are Ecosystems

5

IDE Architects

IDEs are Ecosystems

5

Toolsmiths

IDE Architects

IDEs are Ecosystems

5

Toolsmiths

IDE Architects

IDEs are Ecosystems

5

Toolsmiths

IDE Architects

Analysts

IDEs are Ecosystems

An IDE should be a
home for all species

5

Toolsmiths

IDE Architects

Analysts

We were not the first
• Brown University, late 1980s:

• Steve Reiss and his students:
• The Pecan, FIELD and GARDEN environments

• Scott Meyers [IEEE Softw. 1991]:
many problems…would be solved if all the
tools in a development environment shared a
single representation… Unfortunately, no
representation has yet been devised that is
suitable for all possible tools.

6

What’s the problem?

7

What’s the problem?
• Five “obvious” solutions:

• Shared File System

• Selective Broadcast

• Simple Database

• View-oriented Database

• Canonical Representation

7

What’s the problem?
• Five “obvious” solutions:

• Shared File System

• Selective Broadcast

• Simple Database

• View-oriented Database

• Canonical Representation

• None of them works

7

What’s the problem?
• Five “obvious” solutions:

• Shared File System

• Selective Broadcast

• Simple Database

• View-oriented Database

• Canonical Representation

• None of them works

7

Start with “Shared Code Model”

8

Start with “Canonical Representation”

Start with “Shared Code Model”

8

Start with “Shared Code Model”

• The data needed by every
tool must be easily
accessible

• Tools must be able to get
notifications of changes
made by other tools

• “Shared code model” is our
first pattern

8

It’s not just about being smarter!
• There is no “holy grail”

• No representation can be guaranteed to
support the new tool that I’ll be building
next month or next year

9

It’s not just about being smarter!
• There is no “holy grail”

• No representation can be guaranteed to
support the new tool that I’ll be building
next month or next year

9

We need an extensible representation

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

The
Patterns

10

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

The
Patterns

10

Code Model

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

The
Patterns

10

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

The
Patterns

10

What to Model?

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

The
Patterns

10

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

The
Patterns

10

Performance

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

The
Patterns

10

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

The
Patterns

10

Correctness

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

The
Patterns

10

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Shared Coded Model

Single Representation of the program

… as a graph of objects

organized to enable browsing and
searching

details can be kept as text

keep it simple

avoid redundancy

11

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Not a new idea

Used in Cornell Program Synthesizer

Smalltalk

Eclipse

v 2.1 did not have a shared code model

v 3.2 “Java Model” is in memory

Cadillac

12

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Consequences:
Need observer pattern

shared model + observer ensures that all clients
are synchronized

Navigation and query are quick and easy

objects representing details can be stored as
part of the model, synthesized on demand, or
implemented as an Alternative Representation

Shared Code Model may not be complete

use Model Extension

13

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Model Extension
What do you do when tools need
properties that aren't in the code model?

Add them — as extensions

Put the implementation in its own class/
module, but add the interface to the
appropriate class of the shared code
model

14

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Option a: Non-uniform interface

15

Class

superclass
name
classVarNames
instanceVarNames
…

RequiredMethods

computeFor: aClass
computerForAllsubcla
ssesOf: aClass
!!!!helperMethod1
!!!!helperMethod2

(a) put new property in its own class. There may be
multiple interfaces for performance or convenience

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Option b: Unencapsulated
implementation

16

Class

superclass

name

classVarNames

instanceVarNames

…

requiredMethods

!!!!helperMethod1

!!!!helperMethod2

(b) extend
model by

adding the
whole

implementation
of the new

property to an
appropriate
class in the

model

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Option c: Model Extension

17

Class

superclass
name
classVarNames
instanceVarNames
…

requiredMethods

RequiredMethods

computeFor: aClass
computerForAllsubcla
ssesOf: aClass
!!!!helperMethod1
!!!!helperMethod2d

e
le

g
a
te

s
(c) Model Extension: put interface to the new

property in the appropriate class in the model, but
put calculation of new property in its own class

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Consequences

18

Tool and analysis

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Consequences

18

Tool and analysis

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Consequences

18

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Consequences

18

Tool Analysis

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Consequences

18

Tool Analysis

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Consequences

18

Tool Analysis

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Consequences

18

Tool Analysis

code
model

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Consequences

18

Tool Analysis

code
model

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Generic Tools
Tools that allow the display of arbitrary
metrics and predicates

(MyPackage allClasses) do: [:each |
 self deny: (each subclasses isEmpty and:
 [each isAbstract])]

Starbrowser

19

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Alternative Representation
Shared code model represents
everything…

but not necessarily in a way that helps!

Define a better representation as a
Model Extension

efficiency may demand caching

The alternative representation can be
shared by multiple tools

20

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Example:
Bytecode representation of methods in
Smalltalk

The “primary” representation for methods
is text

This obviously doesn't work well for
execution

Bytecodes are cached, and recomputed
eagerly whenever the text is changed.

21

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Inverse Mapping
Shared code model & alternative
representation provide a set of
navigation links,

e.g., superclass

How can we navigate in the opposite
direction?

searching is expensive

Provide an Inverse Mapping as a Model
Extension

22

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Layered Extension
You have a complex model extension

How do you implement it efficiently, yet
readably?

it’s inputs may be expensive to compute

… and might be valuable in themselves

Define each complex model extension in
terms of lower-level, simpler model
extensions

higher-level extensions express Explicit Interest
in the lower levels

23

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Explicit Interest
You have a model extension that depends on
heavyweight calculations

Clearly can’t re-calculate it globally at frequent
intervals

Could calculate it only on demand

but then Observer doesn’t work on the model extension

⇒ model extension behaves differently from the core
model

Could cache it

but not over the whole code model

24

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Solution:
Add a new interface that allows clients of a
property to declare interest in it explicitly, for
some part of the code model

implementation can assume that it won’t be
asked for the property on “uninteresting” code
elements

property is cached for “interesting” code
elements

Assumption: only a small part of the program
is “interesting” at any one time

25

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Explicit Interest vs. Observer
Duals?

Explicit Interest: no concern with who
expresses interest, only in what is interesting

Observer: no concern with what is being
observed, only with who is observing

Explicit Interest gives the model more
choices — non-architectural

Observer gives the model more
responsibilities — architectural

26

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Life-long Interest
an Explicit Interest:

declared when a tool object comes into
existence

and retracted when the object is garbage-
collected.

27

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Minimal Calculation
You are maintaining a cache over a model
extension in which clients express explicit
interest

When the model changes, how do you
avoid unnecessary re-computation of the
cache?

Update only those elements of the
extension that are both interesting and
dependent on the chnages

28

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Eager Update
You have defined a Model Extension or a
Layered Extension on a Shared Code Model

When do you re-calculate the Extension?

If re-calculation is local and fast, then

update the Model Extension eagerly, as
soon you are notified of a change in the
model or lower-level extension

Simple, supports Observer

29

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Lazy Update
You have defined a Model Extension or a
Layered Extension on a Shared Code Model

You Extension depends on multiple
properties, and caches them

You are an observer of them all, but
notification of changes arrive in an
indeterminate order

In what order should the cached
properties be re-calculated?

30

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Solution:
If re-calculation is local and fast, then

update the Model Extension lazily.

when you receive a change notification,
invalidate the appropriate cache, but
don’t recompute it.

recompute the cache as a side-effect of
answering client queries.

Does not support Observer on the extension

31

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Batch Calculation
The calculation of Model Extension
depends on non-local properties of the
model.

How can you get “economies of scale” in
re-computing it?

neither lazy nor eager update help!

32

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Solution:
Extension tracks changes to the model, but
defers acting on them.

When calculation of the extension
eventually happens, all changes are dealt
with at once, and the property is calculated
for all interesting code elements.

When is “eventually”?

Lazy update can tell us
the combination is partially lazy.

33

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Canonical Implementation
You have a Model Extension

it’s complex
the simple implementation is too slow

How do you improve performance while
remaining confident of correctness?

34

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Solution:
Encapsulate the simple implementation as
the “Canonical Implementation”

Create an independent, efficient
implementation for client use

Write tests that compare the Efficient
Implementation with the Canonical
Implementation

35

Shared
Code Model

Model
Extension

Explicit
Interest

Generic
Tools

Life-long
Interest

Minimal
Calculation

Batch
Calculation

Lazy
Update

Inverse
Mapping

Formal
Definition

Layered
Extension

Alternate
Representation

Canonical
Implementation

Independent
tools access
code model

New tool
needs new
information

Calculating
new

information
is complex

such as

cost of
computing

extension is
too high

present
information

to user

one
extension
depends

on another

When does
interest end?

Eager
Update

Formal Definition
You have thought of a useful, but complex
property

How can you decide:

whether it is well-defined in all cases

what implementation-shortcuts are possible?

when it needs to be re-calculated

Define the property formally using
mathematical language

36

Conclusion
• Canonical Representation lives

• 2GB of main memory certainly help

• but we can’t get a canonical representation by
calling a standards meeting!

• Any representation that hopes to be—and stay
—canonical must be extensible

• These patterns help us to build efficient
extensible representations

37

Open Questions
• How universal are these patterns?

• Certainly there are more to be
discovered…

• but are these useful beyond a particular
implementation (ours) of a particular tool
(requirmenst browser) in a particular
language (Smalltalk)

• Over to you!

38

