Timber: Time as a Basis for
Embedded real-time systems

Andrew Black, Magnus Carlsson,
Mark Jones, Dick Kieburtz,
Johan Nordlander

¥) OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Timber objectives:

m Design a language with explicit time
behavior

m Explore reactivity as the basic programming
model

m Combine the power of a functional
language with those of mutable objects

m Support static timing analysis as well as
dynamic adaptivity

¥) OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Our starting point

m Experience with real-rate applications
— Streaming video over various networks

m Belief that applications do not control the
world, but must react to it

m View of real-time systems as those in which

— events occur in the environment, but not more
quickly that t,

— application must react to those events within t;
— concurrency exists in both events and reactions

¥) OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Where we did not start

m Threads

m Priorities & Scheduling Algorithms

m Communication & Synchronization
Primitives

m Real-time Java

m Real-time Middleware

¥) OGISCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Y

Concurrency and Objects

Object: encapsulated, mutable state + identity

serialized
execution

ocal state

local state

E asynchronous

_______________ serialized
execution

)

concurrent execution

Messages:
asynchronous send +
autonomous response

OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Reactivity

m Event = method invocation = message send

— Output event: sending a message (f a)
— Input event: being invoked (\x—>e)

m No active input (X >e;e’)

m Method execution = reaction = non-blocking
code sequence

m Objects alternate between transient activit
and indefinite periods of rest /_

Update local state / create new objects / send messages

¥) OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Blocking input considered harmful

m Blocking message send (or procedure call)
Is the wrong way to get input
— Program has to choose which message to send

— This represents a premature commitment
 Order of external events not under program control!
» Events are missed, or reordered!

m Event loop using a select

— Helps only if all events of interest are encoded
uniformly and posted to a single port

¥) OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Commands and Expressions

Execute a command # evaluate an expression
c :: Cmd Int e .. Int

m This “monadic semantics” is taken from the
language Haskell

m Cmd replaces Haskell's IO monad
— There are no “I” operations!

m Object creation, message send, & state
update are all Cmds

¥) OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Timber features

m Object templates used to define objects:
object init-state
in interface
m An object’s interface is usually a record of
methods
name = action cmd-sequence

name = request cmd-sequence
return expression

m Local state update (instance-var := expr)
m Subtyping by declaration (Action < cmd())

¥) OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Reactive components

record In = (1)
11 -: Action record Out =
i2 :: Int -> Action (V) ol :: T -> Action
13 -: Action 02 :: Action

()

k -: Out -> Object In

Given an Out interface, K is a template for objects that
exhibit the In interface

¥) OGISCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Composing objects

make k out = do b <- make b out.o2
a <- make_a out.ol b.bl
return record il = a.al; 12 = a.a2;

¥) OGISCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

ol

02

Distribution

No location transparency!
— Latencies are important
— Failures may be partial

Within each local world:

« failure mean total failures

» message delivery is guaranteed and
order-preserving

* a main action starts execution

¥) OGISCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Between local worlds:

* nodes may come up and go down

* message delivery depends on
network protocol

* network must be modeled as a
component in its own right

Controlling timing

m Each event has a timeline, an interval from a
baseline ... to a... deadline

N =

| “Finish before”

“Start after” |
| | methodm | | -

m Default timeline is same as that of sender

m Can also be set explicitly:

after (10*seconds) m defers baseline
before (25*milliseconds) m sets deadline

Key idea: code can be time-dependent, yet platform-
Independent. Static analysis determines feasibility.

¥) OGISCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Accessing the timeline

m Built-in constants baseline and deadline
— defined only within methods
— provide access to the baseline and the deadline for
the current method execution
m For methods initiated by the environment,
timeline must be defined appropriately

— e.g., for an interrupt, baseline might be time at
which the hardware event occurred

— deadline might be time within which registers must
be read

¥) OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Example: Ping Program

-> hosts = ["'dogbert"™, "ratbert', "ratberg”, "theboss'"]

-> ping hosts (Port 515)

dogbert: lookup & connect after 20.018 ms
ratbert: lookup & connect after 41.432 ms

ratberg: NetError ""Host name lookup failure'™ after 70.282 ms
theboss: no response within 2 s

¥) OGISCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

ping hosts port env =

Y

object
outstanding := hosts
in let
client host start peer =
record
connect = action
env.putStrLn(host ++
++
outstanding := remove
peer.close
deliver _ = action done
neterror e = action
env.putStrLn(host ++
++
outstanding := remove
close = action done

cleanup = action
forall h <- outstanding do
env.putStrLn(h ++ '':
env.quit
timeout = 2*seconds
in record
main = action
forall h <- hosts do
env.inet.tcp.open h port
after timeout cleanup

no response within ”

lookup & connect after ™
show (baseline-start))
host outstanding

: " ++ show e ++ " after "
show (baseline-start))
host outstanding

(client h baseline)

OGI SCHOOL OF SCIENCE & ENGINEERING

74 OREGON HEALTH & SCIENCE UNIVERSITY

++ show timeout)

Java Version

http://java.sun.com/j2se/l1.4/docs/guide/nio/example/Ping. java

% OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

Comparison

m Timber version
— all actions are defined inside ping object
 can safely manipulate outstanding in mutual exclusion

— solution is straightforward:
* one object, one instance variable

m Java version

— 10 class variables
— 3 threads

* timeout, printing, de-multiplex of connection events

— Less concurrency (gethostbyname bug!)

¥) OGI SCHOOL OF SCIENCE & ENGINEERING
74 OREGON HEALTH & SCIENCE UNIVERSITY

