Object-oriented programming;
challenges for the next fifty years

\
Ila
Ik

Prof. Andrew P. Black
Portland State University; Portland State

UNIVERSITY

Portland, Oregon, USA.

Thursday, 25 August 2011

_File Edit View History Bookmarks Develop Window Help Q S m C D e = o) @& (Calculating...) M
Anniversary party 2. September - University of Oslo
} __ http://www.uio.no/english/about/news-and-events/uio200/events/birthdayweekend/anniversaryp: ¢ | (Qr 2 september 2011 opening of the ole johan dar®)

vers: 7 N mnD
S e [— —— o e e e

1\ JUL J U IUAay ziclialcu W = UIU UU 9 - - | = v U

together for a unique shared experience at Blindern! He
Bigbang gives us an exclusive concert for our birthday! They invite a number of musical Sel
friends to play their own and each others' songs. Luc

Food and drink on sale at Frederikkeplassen

.. Ot

19:00 Twe zgGons:
For
1. Birthday Party: Ole-Johan Dahl's House (IFI2) zen
UiO's newest venue Ole-Johan Dahl's house is inaugurated with a birthday party on three Juk
floors! There will be concerts, comedy, long tables and Oslo's longest bar. Er
2. vio~=ic club: Georg Sverdrup’s House pris
The foyer of Georg Sverdrup’s nouse 1> uanswiiried INto classic club! A dream team of Off
classical performers and UiO's own choirs and orchestra make for a festive evening. Dal
Artists: Arve Tellefsen, Elizabeth Norberg-Schulz and more Fes
Un
22.00 Afterparty, Chateau Neuf Apr
The party rounds up with a packed club night at Betong and the rest of Chateau Neuf. Here Uni
Nl can dance the niaht awav or keen the conversations aoina late into the niaht. lt)J_P.‘

Thursday, 25 August 2011

Just suppose ...

Portland State

UNIVERSITY

Thursday, 25 August 2011

Just suppose ...

® You have been “drafted”

Portland State

UNIVERSITY

Thursday, 25 August 2011

Just suppose ...

® You have been “drafted”

® Your assignment:

Portland State

UNIVERSITY

Thursday, 25 August 2011

Just suppose ...

® You have been “drafted”

® Your assignment:

design your country’s first nuclear reactor

Portland State

UNIVERSITY

Thursday, 25 August 2011

Just suppose ...

* You have been “drafted”

® Your assignment:

design your country’s first nuclear reactor

* What would you do?

Portland State

UNIVERSITY

Thursday, 25 August 2011

Just suppose ...

* You have been “drafted”

® Your assignment:

design your country’s first nuclear reactor

* What would you do?
* What did Kristen Nygaard do?

Portland State

UNIVERSITY

Thursday, 25 August 2011

A Little History

1948: Nygaard conscripted into the Norwegian Defense
Research Establishment

1949-1950: Resonance absorption calculations related to the
construction of Norway'’s first nuclear reactor. Introduced
“Monte Carlo” simulation methods

1950-1952: Head of the “computing office”

1960: Moved to the Norwegian Computing Centre. "Many of
the civilian tasks turned out to present the same kind of
methodological problems: the necessity of using simulation,
the need of concepts and a language for system description,
lack of tools for generating simulation programs.” [Nygaar1981]

1961: Started designing a simulation language

2& [Nygaar1981] K. Nygaard

O.-J. Dahl. The development of i
~ the SIMULA languages. In R. L. Wexelbla’t editor, History of . . Portland State
')gramming languages |, chapter IX, page 43 . ACM, —— UNIVERSITY
. w York, NY, USA, 1981. - "

Thursday, 25 August 2011

Nygaard’s Famous Letter:
5th January 1962

“The status of the Simulation Language (Monte Carlo Compiler)
is that I have rather clear ideas on how to describe queueing
systems, and have developed concepts which I feel allow a
reasonably easy description of large classes of situations. |
believe that these results have some interest even isolated from
the compiler, since the presently used ways of describing such
systems are not very satisfactory. ... The work on the compiler
could not start before the language was fairly well developed,
but this stage seems now to have been reached. The expert
programmer who is interested in this part of the job will meet
me tomorrow. He has been rather optimistic during our

previous meetings.” [Nygaar1981]

—— | Portl anSiN |§EtR£}|tTeY

lics

Thursday, 25 August 2011

Ole-Johan Dahl

The “Expert Programmer”

Ole-Johan Dahl

o
Yy Z. ¥ -
' .

Thursday, 25 August 2011

1931-2002

Norway’s foremost
computer scientist

With Kristen Nygaard,
produced initial ideas
for Object-oriented
programming

Portland State

Ole-Johan Dahl

Na Honours:
y, e
°‘ ; Royal Norwegian Order
'{ n of St. Olav (2000)
1 . ACM Turing Award
(o (2001)

IEEE von Neumann
Medal (2002)

Portland State

Thursday, 25 August 2011 ‘

ACM Turing Award Citation

... to Ole-Johan Dahl and Kristen Nygaard of
Norway for their role in the invention of
object-oriented programming, the most
widely used programming model today.

... the core concepts embodied in their object-
oriented methods were designed for both
system description and programming ... ”

Portland State

lics

Today’s Talk:

¢ What are those “core concepts™?

¢ How they have evolved over the last 50
years.

¢ How they might adapt to the future.

Portland State

UNIVER SITY

Thursday, 25 August 2011

General Program for the
Centennial Celebration
Massachusetts Institute of

Technology, Cambridge

April 7, 8, and 9, 1961

Portland State

UNIVERSITY

Thursday, 25 August 2011

Saturday
April 8

Thursday, 25 August 2011

PaneEr, 10:00 aA.M., RockweLL Cace. How Has Science
in the Last Century Changed Man’s View of Himself?
JEROME S. BRUNER, ALDOUS HUXLEY, J. ROBERT OPPENHEIMER,
and PAUL J. TILLICH.

PaneL, 10:00 a.mMm., KresGe AupitorruMmM. The Future of
the Arts in a World of Science. LUKAS FOSS, HOWARD MUMFORD
JONES. Lo RATIN, ald RICHAKD LIPPULD.

PanerL, 10:00 a.M., ComproN LECTURE HArLL., The Future

. in the Physical Sciences. SIR JOHN D. COCKCROFT, RICHARD P.

FEYNMAN, RUDOLF PEIERLS, and CHEN NING YANG.

N

Fanss, 2950 e Rarvwril, CAGE. Arme Clo-éeg’] rAUL
M. DOTY, HERMAN H. KAHN, RICHARD S. LEGHORN, and THE
RIGHT HONORABLE PHILIP J. NOEL-BAKER.

PaneL, 2:30 p.M., KrESGE AupiTORTUM. The Life of Man in
Industry. WILLIAM O. BAKER, EDWIN H. LAND, FRANK PACE,
jR., and WILLIAM H. WHYTE.

PaNEL, 2:30 p.M.,, CoMPTON LECTURE HaLL. The Future in
the Life Sciences. GEORGE W. BEADLE, PETER B. MEDAWAR,
HERMANN J. MULLER, and DR. JONAS E. SALK.

S rs Portland State

UNIVERSITY

Feynman’s speech:

A B i
A i AT

4

b
b " %
it 1
: LR ool
. A

= o e R e Lot L

vl Ca Tt
‘Feynman Archives at alTech 1
bl 1 PortlanSiN §Etka}|t§

- Feynmani1962] Trans

Thursday, 25 August 2011

Feynman’s speech:

"I do not think that you can read history without
wondering what is the future of your own field, in
a wider sense. I do not think that you can predict
the future of physics alone [without] the context
of the political and social world in which it lies. ...

b | [Feynman1962] Transcript of Speech from the Feynman Archives at CalTech 9 Portl and St ate
" (E % | UNIVERSITY
- o ‘

Thursday, 25 August 2011

Feynman’s speech:

"I do not think that you can read history without
wondering what is the future of your own field, in
a wider sense. I do not think that you can predict
the future of physics alone [without] the context
of the political and social world in which it lies. ...

The other speakers want to be safe in their
predictions, so they predict for 10, perhaps 25
years ahead. They are not so safe because you
will catch up with them and see that they were
wrong. So, I'm going to be really safe by
predicting 1000 years ahead.” [Feynman1962]

- 3
W

Y " [Feynman1962] Transc?t of Speech from thg Feynman Archives at CalTech P OI'tl an d S t at e

Thursday, 25 August 2011

UNIVERSITY

Political and Social Context

Portland State

Political and Social Context

1. Simula was designed as process description
language as well as a programming language.

Portland State

UNIVER SITY

Thursday, 25 August 2011

Political and Social Context

1. Simula was designed as process description
language as well as a programming language.

When SIMULA I was put to practical work it
turned out that to a large extent it was used as a
system description language. A common attitude
among its simulation users seemed to be:
sometimes actual simulation runs on the
computer provided useful information. The
writing of the SIMULA program was almost
always useful, since ... it resulted in a better
understanding of the system. [Nygaar1981]

’ | Portlansif;l I§EtRaS'.ItTeY

Thursday, 25 August 2011

Political and Social Context

Portland State

Political and Social Context

2. Nygaard had been using simulations to
design Nuclear reactors.

ngar2011] Dvi

Portland State

Political and Social Context

2. Nygaard had been using simulations to
design Nuclear reactors.

He did not want to be responsible for the first

nuclear accident on the continent of Europe.
[Ungar2011]

~ [Ungar2011] David Ung

Thursday, 25 August 2011

Core Ideas of SIMULA

According to Nygaard:

1. Modelling

The actions and interactions of the objects
created by the program model the actions and
interactions of the real-world objects that they
are designed to simulate.

2. Security

The behavior of a program can be understood
and explained entirely in terms of the semantics
of the programming language in which it is

written.
- - ‘ \ -—- | PortlanSiN .%tfs‘.tg

Thursday, 25 August 2011

Core Ideas of SIMULA

According to Dahl:
[Dahl1981]

1.

2.

nall

York NY, USA, 198

Record structures
Procedural data abstraction

Processes
Prefixing (inheritance)
Modules

Thursday, 25 August 2011

QIR Oftland otate

Core Ideas of SIMULA

According to Dahl: all came from the Algol 60 block
[Dahl1981]

1.

2.

W

Thursday, 25 August 2011 -

Record structures (block with variable declarations
but no statements)

Procedural data abstraction (block with variable and
procedure declarations)

Processes (detached blocks)
Prefixing (inheritance) (prefix blocks)
Modules (nested blocks)

Portland State

UNIVERSITY

The SIMULA class construct

All these ideas were realized as special cases of a
single general construct: the class.

But object-oriented programming is not class-
oriented programming!

Dahl wrote: "I know that SIMULA has been
criticized for perhaps having put too many
things into that single basket of class. Maybe
that is correct; I'm not sure myself. But it was
certainly great fun during the development of
the language to see how the block concept
could be remodeled in all these ways” [Dahl1981]

- - Portlant(JiN |§EtRaS|tTeY

Thursday, 25 August 2011

The Origin of the Core Ideas

[Nygaar1981a]

Portland State

UNIVERSITY

Thursday, 25 August 2011

The Origin of the Core Ideas

Dahl was inspired by
visualizing the runtime
representation of an Algol 60
program.

[Nygaar1981a]

‘ '" | Portlanl(JiN |§EtRaS|tTeY

Thursday, 25 August 201 -

The Origin of the Core Ideas

D a h I Wa S i n S pi red by Program text Program execution
visualizing the runtime -
. e,
representation of an Algol 60 BEGIN REAL X, X REAL2.12
SL
p rog ra m . PROCEDUREP; block
..... instance
statement 1;
_ A
statement 2; oL
..... 1 _J
BEGIN INTEGER Y '
statement 3; Y INTEGER 6
P,
block
statement 4 instance
END;
A
statement b oL
i
END;
P
block
instance
DI mo=m———— : dynamig link
SL : static link
Frame 5
[Nygaar1981a]

ar1981a] K. Nygaa

, History of Programming L pages 480-488. Portland State
, New York, NY, USA 81, r - UNIVERSITY

Thursday, 25 August 2011

The Origin of the Core Ideas

Dahl WaS inspi red by Program text Program execution
visualizing the runtime —
representation of an Algol 60 bcoI REAL . rwxrm i
p rog ra m . PROCEDUREP; block o
statc;;r;e;t:ut 1, e
statement 2; % DL
O b - | d . BEGIN INT.L-:(';‘.!;'R Y _J
JeCtS W-ere a rea y In statement 3; Y INTEGER 6
existence inside every o ook
executing Algol program — eno, 1
they just needed to be freed s 1o |
1w . . . 174 P
from the “stack discipline o

: static link

Frame 5

[Nygaar1981a]

oresentation. In R. L. Wexelblat,

r X, pages d60—4c6. Portland State

: [Nygaar1981a] K. Nygaar
tor, History of Program

e , New York, NY, US

Thursday, 25 August 2011

UNIVERSITY

Algol 60’s “Stack discipline”

Portland State

Algol 60’s “Stack discipline”

“In ALGOL 60, the rules of the language have been carefully
designed to ensure that the lifetimes of block instances are
nested, in the sense that those instances that are latest
activated are the first to go out of existence. It is this feature
that permits an ALGOL 60 implementation to take advantage
of a stack as a method of dynamic storage allocation and
relinquishment. But it has the disadvantage that a program
which creates a new block instance can never interact with it
as an object which exists and has attributes, since it has
disappeared by the time the calling program regains control.
Thus the calling program can observe only the results of the
actions of the procedures it calls. Consequently, the
operational aspects of a block are overemphasised; and
algorithms (for example, matrix multiplication) are the only
concepts that can be modelled.” [Dahl1972]

[Dahl1972] O.-J. Dahl and C. Hoare. Hierarchical program structures.

~ In Structured Programming, pages 175-220. A‘plgmic Press, 1972. i POI‘tland State

UNIVERSITY

.

Thursday, 25 August 2011

Two simple changes:

“In SIMULA 67, a block instance is permitted
to outlive its calling statement, and to remain
in existence for as long as the program needs
to refer to it."” [panhi1972]

A way of referring to “it”: object references as
data

Thursday, 25 August 2011

Simula Class Prefixing

prefixing

CLASS A; ...

REF {A) X;

iiiii

ACLASSB: ...

REF (B) Y;

Y: -NEW B

Thursday, 25 August 2011

block
Instance
[]
block
| instance
Frame 8

[Nygaar1981a]

Modern Class Prefixing

BankAccount

owner | String
balance : Dollars

deposit (amount : Dollars)
wiitharawa! (amourt » Doflars }

£

CheckingAccount

SavingsAccount

insufficientFundsFee : Dollars

withdrawal (amount : Dollars)

annuallnterestRate | Percentage

processCheck (checkToProcess : Check) depositMonthlyinterest {)
withdrawal {(amount : Dollars)

Thursday, 25 August 2011

diagrams from

IBM developerworks

Portland State

UNIVERSITY

Modern Class jpheritance

BankAccount

owner | String
balance : Dollars

deposit (amount : Dollars)
wiitharawa! (amourt » Doflars }

£

CheckingAccount

SavingsAccount

insufficientFundsFee : Dollars

withdrawal (amount : Dollars)

annuallnterestRate : Percentage

processCheck (checkToProcess : Check) depositMonthlyinterest {)
withdrawal {(amount : Dollars)

Thursday, 25 August 2011

diagrams from

IBM developerworks

Portland State

UNIVERSITY

The Importance of Inheritance

Since 1989, thanks to William Cook, we have
known that inheritance can be translated into
fixpoints of generators of self-referential
functions. [Cook1989a]

So much for the theory.

Are functions parameterized by functions as good
as inheritance?

In theory: yes.

"‘ [Cook1989a] W. Cook and alsberg. A denotational semantics of inheritance and
~_ its correctness. In Confere on Object-c nterogrammlng systems, Ianguages
, | applications, pages 433—443, Fw Orleans JSA, 1989. ACI

Thursday 25 August 2011

The Importance of Inheritance

Since 1989, thanks to William Cook, we have
known that inheritance can be translated into
fixpoints of generators of self-referential
functions. [Cook1989a]

So much for the theory.

Are functions parameterized by functions as good
as inheritance?

In theory: yes.

In practice: no.

. ,V[Cook1 989a] W. Cook and alsberg. A denotational semantics of inheritance and 1
~ . its correctness. In Conference on Object{ﬁ"ente rogramming systems, languages) Portland State
| d applications, pages 433-443, New Orleans SA, 1989. ACM Press. UNIVERSITY

Thursday, 25 August 2011

Parameterized functions
instead of Inheritance?

Portland State

Parameterized functions
instead of Inheritance?
When you parameterize a function, you have

to plan ahead and make parameters out of
every part that could possibly change.

functional programmers call this “abstraction”

Parameterized functions
instead of Inheritance?

When you parameterize a function, you have
to plan ahead and make parameters out of
every part that could possibly change.

functional programmers call this “abstraction”

Two problems:
1. Life is uncertain

2. Most people think better about the concrete
than the abstract

1’.’ “‘
. » 3= ‘r.l. Vi o
eSS« 8
1"";-_’ AN k
" A BT,
- b@ e -0
P 1 31
_ A P 3

Thursday, 25 August 2011

Portland State

The value of Inheritance

When you inherit from a class or an object, you
still have to plan ahead and make methods
out of every part that could possibly change.

0-0 programmers call this “writing short methods”

Two benefits:

1. You don’t have to get it right

2. The short methods are concretions, not
abstractions

. -
o A
e P G
4 L
. : . R o
> o . 1y .."_
N o "'l. f‘ . 3 Pl e
. 4 3 A ¥ - P
— 3 | S e ’ e -
g »x 5 T e L/ i
%y % T
: R E B rs 3
" 1 R ol s
'(" 2

Thursday, 25 August 2011

fi 4 Portland State

UNIVERSITY

Inheritance Example

Rectangle extends Object
def bounds — my bounding box
def inset — space around me
Rectangle » drawOn(aCanvas)
self drawFrameOn(aCanvas)
self fillRegionOf(aCanvas)
Rectangle » drawFrameOn(aCanvas)
aCanvas strokeRectangle(bounds+inset)
Rectangle » fillRegionOf(aCanvas)
aCanvas fillRectangle(bounds)

Portland State

UNIVER SITY

Thursday, 25 August 2011

Inheritance Example

Circle extends Rectangle
def radius — my radius

Circle » fillRegionOf(aCanvas)

aCanvas
fillCircleWithCenterAndRadius
(bounds center, radius)

Portland State

People Learn from Examples

Inheritance provides a concrete example,and
then generalizes from it.

For example:
1. Solve the problem forn =4

2. Then make the changes necessary for 4 to
approach infinity

Thursday, 25 August 2011

Object-oriented Frameworks

Portland State

Object-oriented Frameworks

In my view, one of the most significant
contributions of SIMULA 67:

Portland State

Object-oriented Frameworks

In my view, one of the most significant
contributions of SIMULA 67:

Allowing SIMULA to be expressed as a framework
within SIMULA 67

Portland State

Object-oriented Frameworks

In my view, one of the most significant
contributions of SIMULA 67:

Allowing SIMULA to be expressed as a framework
within SIMULA 67

SIMULA begin ... end

Portland State

Thursday, 25 August 2011

Object-oriented Frameworks
In my view, one of the most significant
contributions of SIMULA 67

Allowing SIMULA to be expressed as a framework
within SIMULA 67

SIMULA begin ... end

SIMULATION begin ... end

Portland State

UNIVER SITY

.t

Thursday, 25 August 2011

Object-oriented Frameworks
In my view, one of the most significant
contributions of SIMULA 67

Allowing SIMULA to be expressed as a framework
within SIMULA 67

SIMULA begin ... end
SIMULATION begin ... end

class SIMSET, and
SIMSET class SIMULATION

] .’t‘.:. ‘ |

Thursday, 25 August 2011

What is an O-O Framework?

Generalization of a subroutine library:

client calls subroutines in a library, which always
return to the caller

in @a Framework:
client method calls methods in the framework
framework methods call methods in the client

e.g., a simulation framework might tell objects
representing reactor control rods or industrial
saws to perform

perform methods might ask the framework about

environmental conditions
—— | PortlanSiN |§EtR£}|tTeY

lics

Thursday, 25 August 2011

Smalltalk

Smalltalk-72 was clearly inspired by Simula

It took:
Classes, Objects, Inheritance, Object References

It refined and explored:

Objects as little computers: “a recursion on the
notion of computer itself” [kKay1993]

Objects combining data and the operations on
that data

It dropped:
Objects as processes, classes as packages

, [Kay1993] A. C. Kay. The"é history of Smalltalk. In The second ACM SIGPLAN -
~ conference on History of pr mming languages, HOPL-II, chapter XI, pages 511-598.
~ ACM, New York, NY, USA, 1993. % . | | Portland State
: UNIVERSITY

? _ ——-

%/

©
&/

&/

k .‘

Thursday, 25 August 2011

From Snyder: The Essence of
Objects 'Snyder1991]

Warning:

Unlike Simula and Smalltalk, this is a descriptive
work, not a prescriptive one

'_on concepts P

Portland State

UNIVER SITY

Thursday, 25 August 2011

From Snyder: The Essence of
Objects tsnyder1991]

I .

The essential conceplts
¢ An object embodies an abstraction characterized by services.
¢ Clients request services from objects.
Clients Issue requests.
Objects are encapsulated.
Requests Identify operations.
Requests can identify objects.
e New objects can be created.
e Operations can be generic.
e Objects can be classified In terms of thelr services (interface hierarchy).
e Objects can share implementations.

Objects can share a common implementation (multiple instances).

Objects can share partial implementations
(implementation inheritance or delegation).

Portland State

‘ .‘A ‘ UNIVERSITY

Thursday, 25 August 2011

US & Scandinavian Objects

Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling": attributes Objects charact_erized
attributes encapsulated by offered services
exposed
Active Objects |Yes No "Associated Concept”
Dynamic Objects | Yes Yes Yes
Classes Yes Yes "Shared
implementations”
Subclassing Yes Yes "shared partial
implementations”
Overriding under control |under control of |optional;
of superclass |subclass delegation
permitted
Classes as Yes No No
packages

Portland State

UNIVERSITY

Thursday, 25 August 2011

US & Scandinavian Objects

Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling": attributes Objects charact_erized
attributes encapsulated by offered services
exposed
Active Objects |Yes No "Associated Concept”
Dynamic Objects | Yes Yes Yes
Classes Yes Yes "Shared
implementations”
Subclassing Yes Yes "shared partial
implementations”
Overriding under control |under control of |optional;
of superclass |subclass delegation
permitted
Classes as Yes No No
packages

Portland State

UNIVERSITY

Thursday, 25 August 2011

US & Scandinavian Objects

Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling": attributes Objects charact_erized
attributes encapsulated by offered services
exposed
Active Objects |Yes No "Associated Concept”
Dynamic Objects | Yes Yes Yes
Classes Yes Yes "Shared
implementations”
Subclassing Yes Yes "shared partial
implementations”
Overriding under control |under control of |optional;
of superclass |subclass delegation
permitted
Classes as Yes No No
packages

Portland State

UNIVERSITY

Thursday, 25 August 2011

US & Scandinavian Objects

Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling": attributes Objects charact_erized
attributes encapsulated by offered services
exposed
Active Objects |Yes No "Associated Concept”
Dynamic Objects | Yes Yes Yes
Classes Yes Yes "Shared
implementations”
Subclassing Yes Yes "shared partial
implementations”
Overriding under control |under control of |optional;
of superclass |subclass delegation
permitted
Classes as Yes No No
packages

Portland State

UNIVERSITY

Thursday, 25 August 2011

US & Scandinavian Objects

Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling": attributes Objects charact_erized
attributes encapsulated by offered services
exposed
Active Objects |Yes No "Associated Concept”
Dynamic Objects | Yes Yes Yes
Classes Yes Yes "Shared
implementations”
Subclassing Yes Yes "shared partial
implementations”
Overriding under control |under control of |optional;
of superclass |subclass delegation
permitted
Classes as Yes No No
packages

Portland State

UNIVERSITY

Thursday, 25 August 2011

US & Scandinavian Objects

Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling": attributes Objects charact_erized
attributes encapsulated by offered services
exposed
Active Objects |Yes No "Associated Concept”
Dynamic Objects | Yes Yes Yes
Classes Yes Yes "Shared
implementations”
Subclassing Yes Yes "shared partial
implementations”
Overriding under control |under control of | optional;
of superclass |subclass delegation
permitted
Classes as Yes No No
packages

S } N a -] Portland State
B i e B b UNIVERSITY

Thursday, 25 August 2011

US & Scandinavian Objects

Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling": attributes Objects charact_erized
attributes encapsulated by offered services
exposed
Active Objects |Yes No "Associated Concept”
Dynamic Objects | Yes Yes Yes
Classes Yes Yes "Shared
implementations”
Subclassing Yes Yes "shared partial
implementations”
Overriding under control |under control of |optional;
of superclass |subclass delegation
permitted
Classes as Yes No No
packages

Portland State

UNIVERSITY

Thursday, 25 August 2011

US & Scandinavian Objects

Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling": attributes Objects charact_erized
attributes encapsulated by offered services
exposed
Active Objects |Yes No "Associated Concept”
Dynamic Objects | Yes Yes Yes
Classes Yes Yes "Shared
implementations”
Subclassing Yes Yes "shared partial
implementations”
Overriding under control |under control of |optional;
of superclass |subclass delegation
permitted
Classes as Yes No No
packages

Portland State

UNIVERSITY

Thursday, 25 August 2011

US & Scandinavian Objects

Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling": attributes Objects charact_erized
attributes encapsulated by offered services
exposed
Active Objects |Yes No "Associated Concept”
Dynamic Objects | Yes Yes Yes
Classes Yes Yes "Shared
implementations”
Subclassing Yes Yes "shared partial
implementations”
Overriding under control |under control of |optional;
of superclass |subclass delegation
permitted
Classes as Yes No No
packages

Portland State

UNIVERSITY

Thursday, 25 August 2011

Abstraction

Portland State

UNIVERSITY

Thursday, 25 August 2011

Abstraction: key idea of O-O

Simula doesn't mention abstraction specifically. It
speaks of "modelling”

a model: an abstraction with a mission
The idea of separating the internal (concrete) and

external (abstract) views of data was yet to
mature.

¢ Hoare 1972 — Proof of Correctness of Data
Representations

¢ Parnas 1972 — Decomposing Systems into
Modules

¢ CLU — 1974-5 — rep, up, down and cvt

‘ ¥ jw . ——— | PortlanSiN |§EtR£}|tTeY

Thursday, 25 August 2011

Type Abstraction # Procedural
Abstraction

Data
Abstraction

Type Abstraction Procedural Abstraction

‘ IFIP Working Group

Thursday, 25 August 2011

Type Abstraction # Procedural
Abstraction

Data
Abstraction

Type Abstraction Procedural Abstraction

Don’t need types

multiple implement-
ations can co-exist

Autognostic

ol
Portland State

QII:975] J. C. Reynolc
ures as complementa
ew Directions in Algorit
. IFIP Working Group

Thursday, 25 August 2011

Type Abstraction # Procedural
Abstraction

Data
Abstraction
Type Abstraction Procedural Abstraction
Types are essential Don’t need types
exactly one multiple implement-
implementation ations can co-exist
Pasignostic Autognostic

raction. In Confer

; _maay, Auw Portl anglm |§Etkésl ItTeY

d procedural datl » $
er%!e

[Reynol1975] J. C. Rey er-defi
uctures as complementary approaches to dat
sw Directions in Algorithmic Langua Y
. IFIP Working Group F

Thursday, 25 August 2011

Type Abstraction # Procedural
Abstraction

Data
Abstraction
Type Abstraction Procedural Abstraction
Types are essential £ Don‘t n
)
g
exactly one O multiple |
implementation ations ca
Pasignostic Auto

IFIP Working Group

Thursday, 25 August 2011

Type Abstraction # Procedural
Abstraction

Data
Abstraction
Type Abstraction A Procedural Abstraction
Q
q))
o
e essential & £ Don‘tn
()
5)
tly one 3 O multiple
entation - ations ¢
&
nostic Auto

Portland State

)irections in Algori
IFIP Working Group

UNIVERSITY

Thursday, 25 August 2011

Type Abstraction # Procedural
Abstraction

Data
Abstraction
Type Abstraction A % Procedural Abstraction
3 =
2 ©
e essential & 3 Don'ils
o
5 Ic
tly one b @) multiple
entation 5 © ations c
o o
_ O
NOostiC Auto

Portland State

)irections in Algori
IFIP Working Group

UNIVERSITY

Thursday, 25 August 2011

Type Abstraction # Procedural
Abstraction

Data
Abstraction
< duality >
Type Abstraction A % Procedural Abstraction
= o
© >
> ©
e essential & 3 Don'ils
o
5 Ic
tly one b < multiple
entation @ S 2 ations c
3 8
nostic Auto

Portland State

)irections in Algori
IFIP Working Group

UNIVERSITY

Thursday, 25 August 2011

Type Abstraction # Procedural
Abstraction

CLU provides ADTs: fundamentally different
from objects!

Did Liskov and the CLU team realize this?

Simula’s class construct can be used to
generate both records (unprotected, or
protected by type abstraction) and objects
(protected by procedural abstraction)

C++ can also be used to program data
abstractions as well as objects

Portland State

} %

Active Objects

Portland State

Active Objects

Active objects is an idea that has become lost
to the object-oriented community.

Activity was an important part of Simula
“quasi-parallelism” was a sweet-spot in 1961
Hewitt's Actor model [1973] built on this idea

Emerald used it [Black1986]

But activity has gone from "mainstream” O-0O

" ﬁ‘:' :~rtificial intelligence. In IJC ages 235—%5, August 1973.
" 1d H. M. Levy. Object structure in the

k1986] A. P. Black, N.

= i chins n, E& ul, ar
| - srald system. In OOPS
. y

pages 78

, [Hewitt1973] C. Hewitt, P Tp, and R. Steiger. A universal modular actor formalism for

Thursday, 25 August 2011

Why are Smalltalk Objects passive?

I dont know

¢ Perhaps: Kay and Ingalls had a philosophical
objection to combining what they saw as separate
ideas

Or

¢ Perhaps: The realities of programming on the Alto set
limits as to what was possible

Or
¢ Perhaps: They wanted real processes, not co-routines

o &P Portland State

E_E

E
R ‘
3 s
el

Thursday, 25 August 2011

Erlang Process Challenge

Put N processes in a ring:

Send a simple message round the ring M times.
Increase N until the system crashes.

How long did it take to start the ring?

How long did it take to send a message?

When did it crash?

QIR Oftland otate

Thursday, 25 August 2011

Process-creation Times

Frocess creation times (LOG-LOG =calel

laaa | L] L] L] L] L] T III L] T L] L] L] L] L] II III L] L] L] L] L] L] L]
i *erlzpawn, txt? ——
'cHzpawn. txt?
w188 -]
i i
il
0
[a]
L
o
™,
i
s
=
[u]
0
[
1
[u]
L
O
= 18 r]
1 L L L L L L III L L L L L L L II L L L L L L III L L L L L L L L
18 18@ 1868 18880 180888

Mumber of processes

Portland State

UNIVERSITY

Thursday, 25 August 2011

Process-creation Times

Frocess creation times (LOG-LOG =calel

1683 ———ry ——y — —
I ‘erlspawn. txt? ———]
'cHzpawn. txt?
Pharo 1.1.1 on Cog
w188 E
$ B
5 ®
o
=
5 ®
o
b
0
0
i
Ui
2 ®
-
= 18 r ®]
1 : o : '. : L : C : e
18 188 1888 18888 18888 B

Mumber of processes

Portland State

UNIVERSITY

Thursday, 25 August 2011

Message-passing times

Message =sending times (LOG-LOGH
laaaaa r T — T T ———

L] I L] L] L] L] L] T L]
'erlmsg. txt? ——

*cHEm=sg. tet? —m

1eeaa |- -

1eaa |- -

laa - .

microseconds-message

e g

! e ':

A.1 L L PR T S R | L) PR R T S | L L PR T R L L PR T T T T
1@ 188 la@E 1aEaE la@EaRE

Mumber of processes

Portland State

UNIVERSITY

Thursday, 25 August 2011

Message-passing times

Message =sending times (LOG-LOGH

188888 r

18808

18an

1848

microseconds-message

148

! a IgEFIMEE.tét’I—————
*cHEm=sg. tet? —m
Pharo 1.1.1 on Cog
o ©¢ °
[
i o ©]
o ® -
L Lol L o
18 16@ 18846 1aaaE 1aEEAA

Thursday, 25 August 2011

Mumber of processes

Portland State

UNIVERSITY

Classes & Objects

Portland State

Does Object-O mean Class-O?

Historically, most of the ideas in 0-0 came
from the class concept

But it's the dynamic objects, not the classes,
that form the system model

Classes are interesting only as a way of
creating the dynamic system model of
interacting objects

They are a great tool if you want hundreds of
similar objects

But what if you want just one object?

X
X
ik
& P
s Ry Y g
x 3 3 & o
X &
4 s 2
: o

Thursday, 25 August 2011

Portland State

Classes are Meta

Classes are meta, and meta isn’t always betta!

¢ if you need one or two objects, it's simpler
and more direct to describe them in the
program directly ...

¢ rather than to describe a factory (class) to
make them, and then use it once or twice.

This is the idea behind Self, Emerald,
NewtonScript and JavaScript

¢ Classes (object factories) can in any case be
defined as objects

lics

Portland State

UNIVER SITY

Thursday, 25 August 2011

Types

Portland State

UNIVERSITY

Thursday, 25 August 2011

Type Abstraction # Procedural
Abstraction

Abstraction
Type Abstraction L Procedural Abstraction

o
(¢))
o3

essential & 2 Don't
O O
o1 2 _

ly one 9 O multiple

entation ‘§ ations C
(0))]

knowing Aut

Portland State

UNIVERSITY

Thursday, 25 August 2011 -

Types for Objects are Optional

¢ Algebraic data types need types to get
encapsulation

¢ Objects don't: they enjoy procedural
encapsulation.

Object-oriented abstraction
can exist without types.

Types are Optional

Why would one want to add type annotations
to an object-oriented program?

To add redundancy

Type annotations are assertions
just like assert s.notEmpty

Redundancy is a “good thing”:

It provides more information for readers

It means that more errors can be detected
sooner

.‘| E I Portland State

UNIVERSITY

Thursday, 25 August 2011

Claim: types can be harmful!

Portland State

Claim: types can be harmful!

Question:

If types add redundancy, and redundancy is
good, how can types be harmful?

Portland State

Thursday, 25 August 201 1

Claim: types can be harmful!

Question:

If types add redundancy, and redundancy is
good, how can types be harmful?

Answer:

Because types are too much of an invitation to
mess up your language design!

Portland State

UNIVER SITY

Thursday, 25 August 2011

Two approaches to type-checking

“ Wl The “laissez faire”, or George W. Bush
AR iInterpretation:
Do what you want, we won’t try to

stop you. If you mess up, the PDIC
will bail you out.

Portland State

UNIVER SITY

Thursday, 25 August 2011

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

Two approaches to type-checking

"W The “laissez faire”, or George W. Bush
iInterpretation:
Do what you want, we won’t try to

stop you. If you mess up, the PDIC
will bail you out.

Program debugger and
Interactive checker

- - Portlant(JiN |§EtRaS|tTeY

Thursday, 25 August 2011

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

Two approaches to type-checking

“ Wl The “laissez faire”, or George W. Bush
AR iInterpretation:
Do what you want, we won’t try to

stop you. If you mess up, the PDIC
will bail you out.

Portland State

UNIVER SITY

Thursday, 25 August 2011

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

Two approaches to type-checking

The “laissez faire”, or George W. Bush
iInterpretation:
Do what you want, we won’t try to

stop you. If you mess up, the PDIC
will bail you out.

& — The "nanny state” or Harold Wilson
. interpretation.

We will look after you. If it is even
remotely possible that something
may go wrong, we won't let you try.

L G Portland State

=t e

Thursday, 25 August 2011

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

A third interpretation is useful:

The “laissez faire”, or
George W. Bush interpretation
' The “nanny state”, or
Harold Wilson interpretation

' Portland State

Thursday, 25 August 20'1>1

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

A third interpretation is useful:

The “laissez faire”, or
George W. Bush interpretation

¥ The “nanny state”, or
-1 Harold Wilson interpretation

The “"Proceed with caution”, or
. Edward R. Murrow, interpretation

The checker has been unable to
prove that there are no type errors
in your program. It may work; it
may give you a run-time error.

Good night, and good luck.

: 1 %\
| r—— e &
3 :
S --:'~: & 'y " 2 Py
G
f e
i

R — Portland State

UNIVERSITY

Thursday, 25 August 2011

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

Three interpretations

Under all three interpretations, an error-free
program has the same meaning.

Under Wilson: conventional static typing

An erroneous program will result in a static error, and
won't be permitted to run.

Some error-free programs won't be permitted to run

L

L G Portland State

Thursday, 25 August 2011

Three interpretations

Under all three interpretations, an error-free
program has the same meaning.

Under Bush: conventional dynamic typing
all checks will be performed at runtime
Even those that are guaranteed to fail

a counter-example is more useful than a type-error
message

=t e

L G Portland State

Thursday, 25 August 2011

Three interpretations

Under all three interpretations, an error-free
program has the same meaning

¢ Under Wilson, you are not permitted to run a
program that might have a type-error

¢ Under Bush, any program can be run, but you
will get no static warnings.

¢ Under Murrow interpretation, you will get a mix
of compile-time warnings and run-time checks.

‘)?) et | PortlanSiN |§EtR£sl|tTeY

Thursday, 25 August 2011

I’'m for Murrow'!

I believe that the Murrow interpretation of
types is the most useful for programmers

Wilson’s "Nanny Statism” is an invitation to
mess up your language design'!

language designers don’t want to include any
construct that can’t be statically checked

i’ e e 4 .
- P Portland State

b
¥
o
L4
E

Thursday, 25 August 2011

SIMULA was for Murrow too!

Portland State

Core Ideas of SIMULA

According to Nygaard:

1. Modelling

The actions and interactions of the objects
created by the program model the actions and
interactions of the real-world objects that they
are designed to simulate.

2. Security

The behavior of a program can be understood
and explained entirely in terms of the semantics
of the programming language in which it is

written.
- - ‘ \ -—- | PortlanSiN .%tfs‘.tg

Thursday, 25 August 2011

SIMULA was for Murrow too!

¢ Modelling came first!

SIMULA did not compromise its modelling
ability to achieve security

¢ It compromised its run-time performance

incorporating explicit checks where necessary
when a construct necessary for modelling
was not statically provable as safe

- | PortlanSiN §EtkaslltTeY>

Thursdéy, 25 August 2011

The “Wilson obsession”

Results in:
¢ type systems of overwhelming complexity

¢ languages that are
¢ larger
¢ less regular

¢ less expressive

- ud | PortlandN §EtRa}tT(?

Thursday, 25 August 2011 |

Example: parametric superclasses

class Dictionary extends Hashtable {

method findIndex (predicate) overrides { ... }
method at (key) put (value) adds { ... }

This is fine so long as Hashtable is a globally
known class

But suppose that I want to let the client
choose the actual class that I'm extending?

Portland State

Example: parametric superclasses

class Dictionary (ht) extends ht {

method findIndex (predicate) overrides { ... }
method at (key) put (value) adds { ... }

This is not so fine:

we need a new notion of “heir types” so we can
statically check that arguments to Dictionary
have the right properties

Portland State

UNIVER SITY

Thursday, 25 August 2011

Example: parametric superclasses

This is not so fine:

we need a new notion of “heir types” so we can statically
check that arguments to Dictionary have the right
properties

Or:

we need a new function & parameter mechanism for
classes

Or:

we ban parametric superclasses, add global variables, add
open classes, and still decrease usability

Or:

» ——— ‘ | UNIVERSITY

Thursday, 25 August 2011

Virtual Classes

Virtual classes, as found in BETA, are another
approach to this problem

They feature co-variant methods

methods whose arguments are specialized along with
their results

Not statically guaranteed to be safe

Nevertheless, useful for modelling real systems

] o w ' | Portlanl(JiN I§Et RaS'ItTeY

Thursday, 25 August 2011

Example: type parameters

Types need parameters, e.qg.,
Set.of (Informatician)
where Informatician is another type

Obvious solution:

Represent types as Objects, and use the normal
method & parameter mechanism.

Bad news: type checking is no longer decidable

Thursday, 25 August 2011

Type-checking is not decidable!

#\ Murrow Reaction:

So what? Interesting programs will need
some run-time checking anyway.

Portland State

UNIVER SITY

Thursday, 25 August 2011

Type-checking is not decidable!

#\ Murrow Reaction:

So what? Interesting programs will need
some run-time checking anyway.

Thursday, 25 August 2011

. Wilson Reaction:

Shock' Horror! We can’t do that!

Invent a new parameter passing mechanism for
types, with new syntax, and new semantics, and a
bunch of restrictions to ensure decidability

Some programs will still be untypeable (Godel)

Result: language becomes larger, expressiveness is
reduced.

S s Portland State

UNIVERSITY

The Future of Objects
(according to Black)

Portland State

Current Trends in Computing

¢ Multicore = Manycore

¢ Energy-Efficiency

¢ Mobility and "the cloud”
¢ Reliability

¢ Distributed development teams

Portland State

Multicore and Manycore

What do objects have to offer us in the era of
manycore?

Processes interacting through messages!

~ Portlanl(JiN |§EtRaSItTeY

Thursday, 25 August 2011

A Cost Model for Manycore

Most computing models treat computation as
the expensive resource

it was so when those models were developed!

e.g. moving an operation out of a loop is an
“optimization”

Today: computation is free

it happens “in the cracks” between data fetch
and data store

Data movement is expensive both in time and

energy
‘ \ - | Port]anSiN l%tkasllts

Thursday, 25 August 2011

A Problem:

Today’s computing models can’t even express
the thing that needs to be carefully
controlled on a manycore chip:

Data movement

Thursday, 25 August 20'1>1

O-0
A,(Cost Model for Manycore

Spatial arrangement of Small Objects
small method suite as well as small data

local operations are free

optimization means reducing the size of the
object, not the number of computations

message-passing is costly
cost of message = (amount of data) x (distance)

the "message.byte.nm” model

] ;',._’. 34
p A
. A ¥ 3 ek e
s 4 i Vo 9 e
A R " -4
E ‘gl R <8
] 1 : k s
. ‘8 s e
b 3 4
s 8
4 ¥, X2 ¥
e

Thursday, 25 August 2011

Portland State

ot UNIVERSITY

Mobility and the Cloud

Fundamentally relies on replication and
caching for performance and availability

Do Objects help?

Best model for distributed access seems to be
(distributed) version control

svn, Hg, git

Can we adapt objects to live in a versioned
world?

Object identity is problematic

] ;',._’. 34
p A
. A ¥ 3 ek e
s] i Vo 9 e
o % Xae. 1 e
E ‘gl R <8
] 1 : k s
. Fer o b
b 3 4
p iy X2 i
e

Thursday, 25 August 2011

Portland State

Object references in a Versioned
world

Learn from Erlang:

Erlang messages can be sent to a prodessld, or
to a processName (“controllerForArea503")

Perhaps: we should be able to reference
objects either by a descriptor

e.g. "Most recent version of the Oslo talk”
or
by an Object id?
Object16x45d023f

Ei 3
. PU .
B o g Lo '_““t;(&
8 Sl ot

kU K

¥
v
4
i ¥
E W A

Portland State

——— UNIVERSITY

Thuréday, 25 August 2011

Reliability

Failures are always partial

What's the unit of failure in the object model?
Is it the object, or is there some other unit?
Whatever it is must “leak failure”

How to mask failure:
replication in space

replication in time

(J . Portlanl(ij:l I§EtRaS'ItTeY

Thursday, 25 August 2011

Distributed Development Teams

What's this to do with objects?
Packaging!

Collaborating in loosely-knot teams demands
better tools for packaging code

All modules are parameterized by other modules

No global namespace?

URLs as the global namespace?

Versioned objects as the basis of a shared
programming environment?

y LE
; 1
i z s : "y ¥ % v eyt
¥ ol s
. & 3 43 P e
y : 2 : Eal 9 -
4 % x5 '. ¥ ; e
X ‘) b, 7 B
] 3 : R 7
. e bk "
: 3 °
T 3
: ¥, X & ¥
el

Thursday, 25 August 2011

Portland State

e UNIVERSITY

Algol 60 and Simula:

¢ Dahl recognized that the runtime structures of
Algol 60 already contained the mechanisms that
were necessary for simulation.

¢ Itis the runtime behavior of a simulation system that
models the real world, not the program text.

- - Portlant(JiN |§EtRaS|tTeY

Thursday, 25 August 2011

Agile Design:

¢ Agile software development is a methodology in which a
program is developed in small increments, in close
consultation with the customer.

¢ The code runs at the end of the first week, and new
functions are added every week.

¢ How could this possibly work! Isn’t it important to
design the program?

¢ Yes! Design is important. It's so important, we don't
do it only when we know nothing about the program.
We design every day. The program is continuously re-
designed as the programmers learn from the behavior

of the running system.
—— | PortlanSiN |§EtR£}|tTeY

Thursday, 25 August 2011

Insight:

¢ The program’s run-time behavior is what matters!

¢ This is obvious if programs exist to control
computers; less so, if programs are system

descriptions

¢ Program behavior, not programs, model real-
world systems

¢ The program-text is a meta-description of the
program behavior.

¢ It's not always easy to infer the behavior from the
meta-description

Portland State

UNIVERSITY

Thursday, 25 August 2011

Observation:

¢ I know that I have succeeded as a teacher
when students anthropomorphize their objects

¢ This happens more often and more quickly
when I teach with Smalltalk than when I teach
with Java

¢ Smalltalk programmers talk about objects,
Java programmers talk about classes

Why is this?

- % PortlanSiN .%tﬁ.tﬁ

Thursday, 25 August 2011

The Value of Dynamism:

¢ Smalltalk is a "Dynamic Language”

¢ Many features of the language and the
programing environment help the programmer
to interact with objects, rather than with code

¢ Proposed definition: a "Dynamic
Programming Language” is one desighed to
facilitate the programmer learning from the
run-time behavior of the program.

Portland State

UNIVER SITY

lics

Thursday, 25 August 2011

Summary

¢ What are the major concepts of object-
orientation?

¢ it depends on the social and political context!

¢ After 50 years, there are still ideas in SIMULA
to be mined to solve 215t century problems.

¢ 1000 years from now, there may not be any
programming,

¢ but I'm willing to wager that Dahl’s ideas will

still, in some form, be familiar to
programmers in 2061.

¥ ;':‘ 39
' 3
o = - 2 ‘ y
e X ¥ S e
e & ". d 3 P T
; . 4 s Ee 9 ey
A R " -4
X &' pia A
4 & : r 4
. e i o
; 3 9
T 4
" 7R * ¥
rid

Thursday, 25 August 2011

Portland State

B UNIVERSITY

