
Object-oriented programming:
challenges for the next fifty years

Prof. Andrew P. Black
Portland State University,
Portland, Oregon, USA.

Thursday, 25 August 2011

2

Thursday, 25 August 2011

Just suppose …

3

Thursday, 25 August 2011

Just suppose …

• You have been “drafted”

3

Thursday, 25 August 2011

Just suppose …

• You have been “drafted”

• Your assignment:

3

Thursday, 25 August 2011

Just suppose …

• You have been “drafted”

• Your assignment:

design your country’s first nuclear reactor

3

Thursday, 25 August 2011

Just suppose …

• You have been “drafted”

• Your assignment:

design your country’s first nuclear reactor

• What would you do?

3

Thursday, 25 August 2011

Just suppose …

• You have been “drafted”

• Your assignment:

design your country’s first nuclear reactor

• What would you do?

• What did Kristen Nygaard do?

3

Thursday, 25 August 2011

A Little History

1948: Nygaard conscripted into the Norwegian Defense
Research Establishment

1949–1950: Resonance absorption calculations related to the
construction of Norway’s first nuclear reactor. Introduced
“Monte Carlo” simulation methods

1950-1952: Head of the “computing office”

1960: Moved to the Norwegian Computing Centre. “Many of
the civilian tasks turned out to present the same kind of
methodological problems: the necessity of using simulation,
the need of concepts and a language for system description,
lack of tools for generating simulation programs.” [Nygaar1981]

1961: Started designing a simulation language

4
[Nygaar1981] K. Nygaard and O.-J. Dahl. The development of
the SIMULA languages. In R. L. Wexelblat, editor, History of
programming languages I, chapter IX, pages 439–480. ACM,
New York, NY, USA, 1981.

Thursday, 25 August 2011

Nygaard’s Famous Letter:
5th January 1962

“The status of the Simulation Language (Monte Carlo Compiler)
is that I have rather clear ideas on how to describe queueing
systems, and have developed concepts which I feel allow a
reasonably easy description of large classes of situations. I
believe that these results have some interest even isolated from
the compiler, since the presently used ways of describing such
systems are not very satisfactory. … The work on the compiler
could not start before the language was fairly well developed,
but this stage seems now to have been reached. The expert
programmer who is interested in this part of the job will meet
me tomorrow. He has been rather optimistic during our
previous meetings.” [Nygaar1981]

5

Thursday, 25 August 2011

Ole-Johan Dahl

The “Expert Programmer”

6

Thursday, 25 August 2011

Ole-Johan Dahl

7

1931–2002

Norway’s foremost
computer scientist

With Kristen Nygaard,
produced initial ideas
for Object-oriented
programming

Thursday, 25 August 2011

Ole-Johan Dahl

8

Honours:

Royal Norwegian Order
of St. Olav (2000)

ACM Turing Award
(2001)

IEEE von Neumann
Medal (2002)

Thursday, 25 August 2011

ACM Turing Award Citation

“… to Ole-Johan Dahl and Kristen Nygaard of
Norway for their role in the invention of
object-oriented programming, the most
widely used programming model today.

… the core concepts embodied in their object-
oriented methods were designed for both
system description and programming … ”

9

Thursday, 25 August 2011

Today’s Talk:

What are those “core concepts”?

How they have evolved over the last 50
years.

How they might adapt to the future.

10

Thursday, 25 August 2011

11

Technology Review

M.I.T.'s ·Centennial Celebration

____ ~J~UN~E~1-96-1:President Stl'aUon's Address at the Convocation, Page 33 I

Thursday, 25 August 2011

12

Technology Review

M.I.T.'s ·Centennial Celebration

____ ~J~UN~E~1-96-1:President Stl'aUon's Address at the Convocation, Page 33 I

Thursday, 25 August 2011

Physics in the Future:
Will It Be Monotonous?

BY ROBERT TOTH

WE LIVE ina heroic age in the
physical sciences, one that will

be looked at with great jealousy in
times to come. America could be
discovered only once; so, too, the
fundamental laws of physics can be
discovered only once. The situation
now is pregnant.
Thus Professor Richard P. Feyn-

man, 39, theoretical physicist at
California Institute of Technology,
sees the future of the physical sci-
ences. The other three distinguished
panelists who discussed the issue
with him on an M.LT. Centennial
panel April 8 shared his view that
they are in the midst of a brilliant
dawn of discovery. Professor Fran-
cis E. Low of M.LT.'s Department
of Physics introduced the speakers.
By assessing the past and extrap-

olating into the future, they ad-
dressed themselves to the question:
How long will the dawn last? His-
tory does not repeat itself-or per-
haps the .only lesson learned from
history is that no lesson is learned
from history-but a look at the 60
elapsed years of this century shows
three profound discoveries: special
and general relativity theories and
quantum mechanics.

Will this pace of fundamental dis-
covery continue unabated? Will it
increase? Or will it peter out into
the filling of gaps left as the great
giant of discovery strides forward?
Or will the game end abruptly in
one burst of all-illuminating light?
"It is possible," Professor Feyn-

man said, "that there is a final solu-
tion," a final unifying law that will
explain all of the diverse physical
effects seen in the nucleus and the
cosmos.
The giant of science is advancing

on two feet, one experimental, the
other theoretical, he said. The ex-
perimental leg at this point in time
is far ahead. It has flushed out the
profusion of elementary sub-nuclear
particles which theorists are at a loss
to explain. This giant is now run-
ning through a long and darkened
building, Dr. Feynman's analogy
continued. It may seem to have no
ending, only a series of doors each
of which must be opened in turn.
But it is unwarranted pessimism to
say now that there is no single, final
door which opens to light. Only
if the fundamental laws of physics
change with absolute time-and he
suggested that this was also a pos-

sibility-would there be no final an-
swer.
Professor Chen Ning Yang of the

Institute for Advanced Study in
Princeton disagreed. He saw an in-
finite number of doors in the future.
"The depth of natural phenomena
is limitless," this young Nobel Prize
winner said. When all other ques-
tions are answered, man will still be
faced with the ultimate one: "How
do we understand that we under-
stand?" Even before that, after man
has formulated laws regarding how
things work, he must cope with such
problems as "what is a magnetic
field?"
"But even that can't go on for-

ever," said Professor R. E. Peierls,
a mathematical physicist from the
University of Birmingham in Eng-
land. Magnetic fields today are ex-
plained in terms of hydrodynamics
dependent on the actions of mole-
cules. Below molecules are atoms
and nuclei, whose actions depend on
magnetic fields to some extent. So
we come full circle, he said. Once
magnetic fields are explained fully,
the circle will be forever broken.
While the panelists could not

agree-perhaps on philosophical
grounds-on the probable end of
the road of discovery, they thought
they could see relatively clearly
what the next few strides along that
road might be.
"The. rapid widening of knowl-

edge will continue," Dr. Yang pre-
dicted. In nuclear. physics, he expects

(Concluded on page 66)

50

Richard Feynman, '39, speaking with (from left) Sir John Cockcroft, Chen Ning Yang, Francis Low, and R. E. Peierls.

THE TECHNOLOGY REVIEW

Feynman’s speech:

13

Richard Feynman, '39, speaking with (from left) Sir John Cockcroft, Chen Ning Yang, Francis Low, and R. E. Peierls.

[Feynman1962] Transcript of Speech from the Feynman Archives at CalTech

Thursday, 25 August 2011

Feynman’s speech:

13

Richard Feynman, '39, speaking with (from left) Sir John Cockcroft, Chen Ning Yang, Francis Low, and R. E. Peierls.

“I do not think that you can read history without
wondering what is the future of your own field, in
a wider sense. I do not think that you can predict
the future of physics alone [without] the context
of the political and social world in which it lies. …

[Feynman1962] Transcript of Speech from the Feynman Archives at CalTech

Thursday, 25 August 2011

Feynman’s speech:

13

Richard Feynman, '39, speaking with (from left) Sir John Cockcroft, Chen Ning Yang, Francis Low, and R. E. Peierls.

“I do not think that you can read history without
wondering what is the future of your own field, in
a wider sense. I do not think that you can predict
the future of physics alone [without] the context
of the political and social world in which it lies. …

The other speakers want to be safe in their
predictions, so they predict for 10, perhaps 25
years ahead. They are not so safe because you
will catch up with them and see that they were
wrong. So, I’m going to be really safe by
predicting 1000 years ahead.” [Feynman1962]

[Feynman1962] Transcript of Speech from the Feynman Archives at CalTech

Thursday, 25 August 2011

Political and Social Context

14

Thursday, 25 August 2011

Political and Social Context

1. Simula was designed as process description
language as well as a programming language.

14

Thursday, 25 August 2011

Political and Social Context

1. Simula was designed as process description
language as well as a programming language.

When SIMULA I was put to practical work it
turned out that to a large extent it was used as a
system description language. A common attitude
among its simulation users seemed to be:
sometimes actual simulation runs on the
computer provided useful information. The
writing of the SIMULA program was almost
always useful, since … it resulted in a better
understanding of the system. [Nygaar1981]

14

Thursday, 25 August 2011

Political and Social Context

15 [Ungar2011] David Ungar, Personal Communication

Thursday, 25 August 2011

Political and Social Context

2. Nygaard had been using simulations to
design Nuclear reactors.

15 [Ungar2011] David Ungar, Personal Communication

Thursday, 25 August 2011

Political and Social Context

2. Nygaard had been using simulations to
design Nuclear reactors.

He did not want to be responsible for the first
nuclear accident on the continent of Europe.
[Ungar2011]

15 [Ungar2011] David Ungar, Personal Communication

Thursday, 25 August 2011

Core Ideas of SIMULA

According to Nygaard:

1. Modelling
The actions and interactions of the objects
created by the program model the actions and
interactions of the real-world objects that they
are designed to simulate.

2. Security
The behavior of a program can be understood
and explained entirely in terms of the semantics
of the programming language in which it is
written.

16

Thursday, 25 August 2011

Core Ideas of SIMULA

According to Dahl: all came from the Algol 60 block
[Dahl1981]

1. Record structures (block with variable declarations
but no statements)

2. Procedural data abstraction (block with variable and
procedure declarations)

3. Processes (detached blocks)
4. Prefixing (inheritance) (prefix blocks)
5. Modules (nested blocks)

17 [Dahl1981] O.-J. Dahl. Transcript of discussantʼs remarks. In R. L. Wexelblat,
editor, History of programming languages I, chapter IX, pages 488–490. ACM,
New York, NY, USA, 1981.

Thursday, 25 August 2011

Core Ideas of SIMULA

According to Dahl: all came from the Algol 60 block
[Dahl1981]

1. Record structures (block with variable declarations
but no statements)

2. Procedural data abstraction (block with variable and
procedure declarations)

3. Processes (detached blocks)
4. Prefixing (inheritance) (prefix blocks)
5. Modules (nested blocks)

18

Thursday, 25 August 2011

The SIMULA class construct

All these ideas were realized as special cases of a
single general construct: the class.

But object-oriented programming is not class-
oriented programming!

Dahl wrote: “I know that SIMULA has been
criticized for perhaps having put too many
things into that single basket of class. Maybe
that is correct; I’m not sure myself. But it was
certainly great fun during the development of
the language to see how the block concept
could be remodeled in all these ways” [Dahl1981]

19

Thursday, 25 August 2011

The Origin of the Core Ideas

20
[Nygaar1981a] K. Nygaard. Transcript of presentation. In R. L. Wexelblat,
editor, History of Programming Languages I, chapter IX, pages 480–488.
ACM, New York, NY, USA, 1981.

[Nygaar1981a]

Thursday, 25 August 2011

The Origin of the Core Ideas

20

Dahl was inspired by
visualizing the runtime
representation of an Algol 60
program.

[Nygaar1981a] K. Nygaard. Transcript of presentation. In R. L. Wexelblat,
editor, History of Programming Languages I, chapter IX, pages 480–488.
ACM, New York, NY, USA, 1981.

[Nygaar1981a]

Thursday, 25 August 2011

The Origin of the Core Ideas

20

Kristen Nygaard

SIMULA 67
developed:

December 1966-January 1968
design objectives:

system description
high level programming
application languages
(e.g. simulation)

basic features:
the object/class concept
prefixing and subclasses
the virtual concept

Frame 4

number of stacks with the static enclosures, and SIMULA is the world regarded as a
nested collection of interacting stacks [Frame 7]. When we examine what was new in
SIMULA 67, two main and interrelated features were prefixing and virtual procedures.
The prefixing with block concatenation made it possible for us to use Tony Hoare's ideas
of reference qualification, and still keep the flexibility we wanted. It also provided the pos-
sibility of building up hierarchies of concepts [Frame 8]. As you know, using prefixing by
Class A, an object of Class B contains an A, and its prefix and main parts are glued to-
gether as one integrated block instance.

Program text Program execution

BEGIN REAL X;

PROCEDURE P;

statement 1 ;

statement 2;

BEGIN INTEGER Y
statement 3;

P;

statement 4

END;
statement 5

END;

DL : dynamic link
S L ~ : static link

Frame 5

P X REAL 2.12

block
instance

DL
! L-

Y INTEGER 6 1

/ block
instance

DL
!

P

block
instance

SL

J

484 Part IX

Dahl was inspired by
visualizing the runtime
representation of an Algol 60
program.

[Nygaar1981a] K. Nygaard. Transcript of presentation. In R. L. Wexelblat,
editor, History of Programming Languages I, chapter IX, pages 480–488.
ACM, New York, NY, USA, 1981.

[Nygaar1981a]

Thursday, 25 August 2011

The Origin of the Core Ideas

20

Kristen Nygaard

SIMULA 67
developed:

December 1966-January 1968
design objectives:

system description
high level programming
application languages
(e.g. simulation)

basic features:
the object/class concept
prefixing and subclasses
the virtual concept

Frame 4

number of stacks with the static enclosures, and SIMULA is the world regarded as a
nested collection of interacting stacks [Frame 7]. When we examine what was new in
SIMULA 67, two main and interrelated features were prefixing and virtual procedures.
The prefixing with block concatenation made it possible for us to use Tony Hoare's ideas
of reference qualification, and still keep the flexibility we wanted. It also provided the pos-
sibility of building up hierarchies of concepts [Frame 8]. As you know, using prefixing by
Class A, an object of Class B contains an A, and its prefix and main parts are glued to-
gether as one integrated block instance.

Program text Program execution

BEGIN REAL X;

PROCEDURE P;

statement 1 ;

statement 2;

BEGIN INTEGER Y
statement 3;

P;

statement 4

END;
statement 5

END;

DL : dynamic link
S L ~ : static link

Frame 5

P X REAL 2.12

block
instance

DL
! L-

Y INTEGER 6 1

/ block
instance

DL
!

P

block
instance

SL

J

484 Part IX

Objects were already in
existence inside every
executing Algol program —
they just needed to be freed
from the “stack discipline”

Dahl was inspired by
visualizing the runtime
representation of an Algol 60
program.

[Nygaar1981a] K. Nygaard. Transcript of presentation. In R. L. Wexelblat,
editor, History of Programming Languages I, chapter IX, pages 480–488.
ACM, New York, NY, USA, 1981.

[Nygaar1981a]

Thursday, 25 August 2011

Algol 60’s “Stack discipline”

21 [Dahl1972] O.-J. Dahl and C. Hoare. Hierarchical program structures.
In Structured Programming, pages 175–220. Academic Press, 1972.

Thursday, 25 August 2011

Algol 60’s “Stack discipline”

21

“In ALGOL 60, the rules of the language have been carefully
designed to ensure that the lifetimes of block instances are
nested, in the sense that those instances that are latest
activated are the first to go out of existence. It is this feature
that permits an ALGOL 60 implementation to take advantage
of a stack as a method of dynamic storage allocation and
relinquishment. But it has the disadvantage that a program
which creates a new block instance can never interact with it
as an object which exists and has attributes, since it has
disappeared by the time the calling program regains control.
Thus the calling program can observe only the results of the
actions of the procedures it calls. Consequently, the
operational aspects of a block are overemphasised; and
algorithms (for example, matrix multiplication) are the only
concepts that can be modelled.” [Dahl1972]

[Dahl1972] O.-J. Dahl and C. Hoare. Hierarchical program structures.
In Structured Programming, pages 175–220. Academic Press, 1972.

Thursday, 25 August 2011

Two simple changes:

“In SIMULA 67, a block instance is permitted
to outlive its calling statement, and to remain
in existence for as long as the program needs
to refer to it.” [Dahl1972]

A way of referring to “it”: object references as
data

22

Thursday, 25 August 2011

Simula Class Prefixing

23

Kristen Nygaard

prefixing

CLASS A; ...
REF (A) X;

X: -NEW A

A CLASS B; ...
REF (B) Y;

Y: -NEW B

Frame 8

I block] t A
instance

book I AtB
instance

implement are networks of human beings, production equipment and computing equip-
ment. For these systems I 'm convinced that S IMULA's multistack f ramework is useful.

When I planned this presentation, I expected to use much of my time in discussing
S IMULA politics. As I wrote along, my mind changed, as you have observed. Politics
was, however , an essential part of the S IMULA venture, and it is described in detail in our
paper. I will conclude my speech by pointing out what I feel were the most essential politi-
cal elements of that venture.

When S I MULA 67 was developed, the Norwegian Computing Center employed ap-
proximately 120 persons. Of these 120, three persons could be assigned to language devel-
opment. Backus told us that he got the resources he wanted. Grace Hopper ' s situation
was more like ours. [Refer to the FORTRAN and Keynote presentations. Ed.] In 1962
we were told that (1) there would be no use for S IMULA; (2) there would be use, but it
had been done before; (3) we would not succeed; (4) we should not make such efforts in
a small and unimportant country like Norway.

In 1967 we were told that S I MULA was wonderful, but the lifetime of a programming
language was only three to five years, and we have to earn back our expenses during that
time period.

We had very small resources, and we had to fight for them. We wanted S IMU LA to be
an "exis t ing" language, and our definition of that term is given on Frame 9.

These were our ambitions. To achieve these objectives, we needed the compilers to be
of "high s tandard," a term which is defined on Frame 10.

The period from the spring of 1968 until the summer of 1970 was a crucial phase in
S IMULA 67's life. The Control Data implementations were on the way, but S IMU LA
would not exist unless we got it onto IBM and Univac, and this was something which we

"Existing" language:
- - available on most of the

major computer systems
- - being used over a long

period of time by a
substantial number of
people throughout the world

- - having a significant impact
upon the development of
future programming languages.

Frame 9 x

486 Part IX

[Nygaar1981a]

Thursday, 25 August 2011

Modern Class Prefixing

24

diagrams from IBM developerworks

Thursday, 25 August 2011

Modern Class Prefixing

24

diagrams from IBM developerworks

Inheritance

Thursday, 25 August 2011

The Importance of Inheritance

Since 1989, thanks to William Cook, we have
known that inheritance can be translated into
fixpoints of generators of self-referential
functions. [Cook1989a]

So much for the theory.

Are functions parameterized by functions as good
as inheritance?

In theory: yes.

In practice: no.

25
[Cook1989a] W. Cook and J. Palsberg. A denotational semantics of inheritance and
its correctness. In Conference on Object-oriented programming systems, languages
and applications, pages 433–443, New Orleans, LA USA, 1989. ACM Press.

Thursday, 25 August 2011

The Importance of Inheritance

Since 1989, thanks to William Cook, we have
known that inheritance can be translated into
fixpoints of generators of self-referential
functions. [Cook1989a]

So much for the theory.

Are functions parameterized by functions as good
as inheritance?

In theory: yes.

In practice: no.

25
[Cook1989a] W. Cook and J. Palsberg. A denotational semantics of inheritance and
its correctness. In Conference on Object-oriented programming systems, languages
and applications, pages 433–443, New Orleans, LA USA, 1989. ACM Press.

Thursday, 25 August 2011

Parameterized functions
instead of Inheritance?

26

Thursday, 25 August 2011

Parameterized functions
instead of Inheritance?
When you parameterize a function, you have

to plan ahead and make parameters out of
every part that could possibly change.

functional programmers call this “abstraction”

26

Thursday, 25 August 2011

Parameterized functions
instead of Inheritance?
When you parameterize a function, you have

to plan ahead and make parameters out of
every part that could possibly change.

functional programmers call this “abstraction”

Two problems:

1. Life is uncertain

2. Most people think better about the concrete
than the abstract

26

Thursday, 25 August 2011

The value of Inheritance

When you inherit from a class or an object, you
still have to plan ahead and make methods
out of every part that could possibly change.

o-o programmers call this “writing short methods”

Two benefits:

1. You don’t have to get it right

2. The short methods are concretions, not
abstractions

27

Thursday, 25 August 2011

Inheritance Example

Rectangle extends Object
 def bounds — my bounding box
 def inset — space around me
Rectangle » drawOn(aCanvas)
 self drawFrameOn(aCanvas)
 self fillRegionOf(aCanvas)
Rectangle » drawFrameOn(aCanvas)
 aCanvas strokeRectangle(bounds+inset)
Rectangle » fillRegionOf(aCanvas)
 aCanvas fillRectangle(bounds)

28

Thursday, 25 August 2011

Inheritance Example

Circle extends Rectangle
 def radius — my radius

Circle » fillRegionOf(aCanvas)
 aCanvas

 fillCircleWithCenterAndRadius
 (bounds center, radius)

29

Thursday, 25 August 2011

People Learn from Examples

Inheritance provides a concrete example,and
then generalizes from it.

For example:

1. Solve the problem for n = 4

2. Then make the changes necessary for 4 to
approach infinity

30

Thursday, 25 August 2011

Object-oriented Frameworks

31

Thursday, 25 August 2011

Object-oriented Frameworks

In my view, one of the most significant
contributions of SIMULA 67:

31

Thursday, 25 August 2011

Object-oriented Frameworks

In my view, one of the most significant
contributions of SIMULA 67:

Allowing SIMULA to be expressed as a framework
within SIMULA 67

31

Thursday, 25 August 2011

Object-oriented Frameworks

In my view, one of the most significant
contributions of SIMULA 67:

Allowing SIMULA to be expressed as a framework
within SIMULA 67

SIMULA begin … end

31

Thursday, 25 August 2011

Object-oriented Frameworks

In my view, one of the most significant
contributions of SIMULA 67:

Allowing SIMULA to be expressed as a framework
within SIMULA 67

SIMULA begin … end

SIMULATION begin … end

31

Thursday, 25 August 2011

Object-oriented Frameworks

In my view, one of the most significant
contributions of SIMULA 67:

Allowing SIMULA to be expressed as a framework
within SIMULA 67

SIMULA begin … end

SIMULATION begin … end

class SIMSET, and
SIMSET class SIMULATION

31

Thursday, 25 August 2011

What is an O-O Framework?

Generalization of a subroutine library:
client calls subroutines in a library, which always

return to the caller
in a Framework:

client method calls methods in the framework
framework methods call methods in the client

e.g., a simulation framework might tell objects
representing reactor control rods or industrial
saws to perform

perform methods might ask the framework about
environmental conditions

32

Thursday, 25 August 2011

Smalltalk

Smalltalk-72 was clearly inspired by Simula
It took:
Classes, Objects, Inheritance, Object References

It refined and explored:
Objects as little computers: “a recursion on the

notion of computer itself” [Kay1993]

Objects combining data and the operations on
that data

It dropped:
Objects as processes, classes as packages

33
[Kay1993] A. C. Kay. The early history of Smalltalk. In The second ACM SIGPLAN
conference on History of programming languages, HOPL-II, chapter XI, pages 511–598.
ACM, New York, NY, USA, 1993.

Thursday, 25 August 2011

From Snyder: The Essence of
Objects [Snyder1991]

34

Warning:

Unlike Simula and Smalltalk, this is a descriptive
work, not a prescriptive one

[Synder1991] A. Snyder. The essence of objects: Common concepts and
terminology. Technical Report HPL-91-50, June 1991.

Thursday, 25 August 2011

From Snyder: The Essence of
Objects [Snyder1991]

The essential concepts
• An object embodies an abstraction characterized by services.
• Clients request services from objects.

Clients Issue requests.
Objects are encapsulated.
Requests Identify operations.
Requests can Identify objects.

• New objects can be created.
• Operations can be generic.
• Objects can be classified In terms of their services (interface hierarchy).
• Objects can share Implementations.

Objects can share a common Implementation (multiple Instances).
Objects can share partial Implementations

(implementation Inheritance or delegation).

2 The Essential Concepts
This section defines the essential concepts of an object system. An object system con-
tains entities calledobjects that playa visible role in providing services to clients. The
exact nature ofclients and services depends upon the particular object system. In
general, a client can be a person or a program, and a service can be any activity that
can be performed at the request of a client. The essential concepts define the common
characteristics ofobject systems. (The papers byWegner9and Thomas'? present sim-
ilar material in a more tutorial form.)

An object embodies an abstraction characterized by services.
An object embodies an abstraction.
An object explicitly embodies an abstraction that is meaningful to its clients. Al-
though an object may involve data, an object is not just a data structure or a collection
of bits; the purpose of the data is to represent information.
Benefit: Clients manipulate meaningful entities. Clients are not responsible for provid-
ing an interpretation for data.
Contrast: A non-object model is that data is simply a string of bits that is given an in-
terpretation only implicitly by programs that read or write the bits, possibly different
interpretations by different programs. With this model, clients must knowhowthe data
is intended to be interpreted. Furthermore, the data may be misinterpreted ifit is given
to the wrong program.

2

35

Thursday, 25 August 2011

US & Scandinavian Objects
Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling":

attributes
exposed

attributes
encapsulated

Objects characterized
by offered services

Active Objects Yes No "Associated Concept"

Dynamic Objects Yes Yes Yes
Classes Yes Yes "Shared

implementations"
Subclassing Yes Yes "shared partial

implementations"
Overriding under control

of superclass
under control of
subclass

optional;
delegation
permitted

Classes as
packages

Yes No No

36

Thursday, 25 August 2011

US & Scandinavian Objects
Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling":

attributes
exposed

attributes
encapsulated

Objects characterized
by offered services

Active Objects Yes No "Associated Concept"

Dynamic Objects Yes Yes Yes
Classes Yes Yes "Shared

implementations"
Subclassing Yes Yes "shared partial

implementations"
Overriding under control

of superclass
under control of
subclass

optional;
delegation
permitted

Classes as
packages

Yes No No

36

Thursday, 25 August 2011

US & Scandinavian Objects
Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling":

attributes
exposed

attributes
encapsulated

Objects characterized
by offered services

Active Objects Yes No "Associated Concept"

Dynamic Objects Yes Yes Yes
Classes Yes Yes "Shared

implementations"
Subclassing Yes Yes "shared partial

implementations"
Overriding under control

of superclass
under control of
subclass

optional;
delegation
permitted

Classes as
packages

Yes No No

36

Thursday, 25 August 2011

US & Scandinavian Objects
Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling":

attributes
exposed

attributes
encapsulated

Objects characterized
by offered services

Active Objects Yes No "Associated Concept"

Dynamic Objects Yes Yes Yes
Classes Yes Yes "Shared

implementations"
Subclassing Yes Yes "shared partial

implementations"
Overriding under control

of superclass
under control of
subclass

optional;
delegation
permitted

Classes as
packages

Yes No No

36

Thursday, 25 August 2011

US & Scandinavian Objects
Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling":

attributes
exposed

attributes
encapsulated

Objects characterized
by offered services

Active Objects Yes No "Associated Concept"

Dynamic Objects Yes Yes Yes
Classes Yes Yes "Shared

implementations"
Subclassing Yes Yes "shared partial

implementations"
Overriding under control

of superclass
under control of
subclass

optional;
delegation
permitted

Classes as
packages

Yes No No

36

Thursday, 25 August 2011

US & Scandinavian Objects
Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling":

attributes
exposed

attributes
encapsulated

Objects characterized
by offered services

Active Objects Yes No "Associated Concept"

Dynamic Objects Yes Yes Yes
Classes Yes Yes "Shared

implementations"
Subclassing Yes Yes "shared partial

implementations"
Overriding under control

of superclass
under control of
subclass

optional;
delegation
permitted

Classes as
packages

Yes No No

36

Thursday, 25 August 2011

US & Scandinavian Objects
Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling":

attributes
exposed

attributes
encapsulated

Objects characterized
by offered services

Active Objects Yes No "Associated Concept"

Dynamic Objects Yes Yes Yes
Classes Yes Yes "Shared

implementations"
Subclassing Yes Yes "shared partial

implementations"
Overriding under control

of superclass
under control of
subclass

optional;
delegation
permitted

Classes as
packages

Yes No No

36

Thursday, 25 August 2011

US & Scandinavian Objects
Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling":

attributes
exposed

attributes
encapsulated

Objects characterized
by offered services

Active Objects Yes No "Associated Concept"

Dynamic Objects Yes Yes Yes
Classes Yes Yes "Shared

implementations"
Subclassing Yes Yes "shared partial

implementations"
Overriding under control

of superclass
under control of
subclass

optional;
delegation
permitted

Classes as
packages

Yes No No

36

Thursday, 25 August 2011

US & Scandinavian Objects
Feature Simula 67 Smalltalk 80 Snyder (1991)
Abstraction "Modelling":

attributes
exposed

attributes
encapsulated

Objects characterized
by offered services

Active Objects Yes No "Associated Concept"

Dynamic Objects Yes Yes Yes
Classes Yes Yes "Shared

implementations"
Subclassing Yes Yes "shared partial

implementations"
Overriding under control

of superclass
under control of
subclass

optional;
delegation
permitted

Classes as
packages

Yes No No

36

Thursday, 25 August 2011

Abstraction

37

Thursday, 25 August 2011

Abstraction: key idea of O-O

38

Simula doesn't mention abstraction specifically. It
speaks of “modelling”
a model: an abstraction with a mission

The idea of separating the internal (concrete) and
external (abstract) views of data was yet to
mature.

Hoare 1972 — Proof of Correctness of Data
Representations

Parnas 1972 — Decomposing Systems into
Modules

CLU — 1974–5 — rep, up, down and cvt

Thursday, 25 August 2011

Type Abstraction ≠ Procedural
Abstraction

39

Data
Abstraction

Type Abstraction Procedural Abstraction

[Reynol1975] J. C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data abstraction. In Conference
on New Directions in Algorithmic Languages, Munich, Germany, August
1975. IFIP Working Group 2.1.

Thursday, 25 August 2011

Don’t need types

multiple implement-
ations can co-exist

Autognostic

Type Abstraction ≠ Procedural
Abstraction

39

Data
Abstraction

Type Abstraction Procedural Abstraction

[Reynol1975] J. C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data abstraction. In Conference
on New Directions in Algorithmic Languages, Munich, Germany, August
1975. IFIP Working Group 2.1.

Thursday, 25 August 2011

Don’t need types

multiple implement-
ations can co-exist

Autognostic

Type Abstraction ≠ Procedural
Abstraction

39

Data
Abstraction

Type Abstraction Procedural Abstraction

Types are essential

exactly one
implementation

Pasignostic

[Reynol1975] J. C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data abstraction. In Conference
on New Directions in Algorithmic Languages, Munich, Germany, August
1975. IFIP Working Group 2.1.

Thursday, 25 August 2011

O
bj

ec
ts Don’t need types

multiple implement-
ations can co-exist

Autognostic

Type Abstraction ≠ Procedural
Abstraction

39

Data
Abstraction

Type Abstraction Procedural Abstraction

Types are essential

exactly one
implementation

Pasignostic

[Reynol1975] J. C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data abstraction. In Conference
on New Directions in Algorithmic Languages, Munich, Germany, August
1975. IFIP Working Group 2.1.

Thursday, 25 August 2011

O
bj

ec
ts

A
lgebraic D

ata Types

Don’t need types

multiple implement-
ations can co-exist

Autognostic

Type Abstraction ≠ Procedural
Abstraction

39

Data
Abstraction

Type Abstraction Procedural Abstraction

Types are essential

exactly one
implementation

Pasignostic

[Reynol1975] J. C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data abstraction. In Conference
on New Directions in Algorithmic Languages, Munich, Germany, August
1975. IFIP Working Group 2.1.

Thursday, 25 August 2011

C
o-

al
ge

br
ai

c
da

ta
 ty

pe
sA

lgebraic D
ata Types

Don’t need types

multiple implement-
ations can co-exist

Autognostic

Type Abstraction ≠ Procedural
Abstraction

39

Data
Abstraction

Type Abstraction Procedural Abstraction

Types are essential

exactly one
implementation

Pasignostic

[Reynol1975] J. C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data abstraction. In Conference
on New Directions in Algorithmic Languages, Munich, Germany, August
1975. IFIP Working Group 2.1.

Thursday, 25 August 2011

C
o-

al
ge

br
ai

c
da

ta
 ty

pe
sA

lgebraic D
ata Types

Don’t need types

multiple implement-
ations can co-exist

Autognostic

Type Abstraction ≠ Procedural
Abstraction

39

Data
Abstraction

Type Abstraction Procedural Abstraction

Types are essential

exactly one
implementation

Pasignostic

duality

[Reynol1975] J. C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data abstraction. In Conference
on New Directions in Algorithmic Languages, Munich, Germany, August
1975. IFIP Working Group 2.1.

Thursday, 25 August 2011

Type Abstraction ≠ Procedural
Abstraction

40

CLU provides ADTs: fundamentally different
from objects!
Did Liskov and the CLU team realize this?

Simula’s class construct can be used to
generate both records (unprotected, or
protected by type abstraction) and objects
(protected by procedural abstraction)

C++ can also be used to program data
abstractions as well as objects

Thursday, 25 August 2011

Active Objects

41

Thursday, 25 August 2011

Active Objects

Active objects is an idea that has become lost
to the object-oriented community.

Activity was an important part of Simula

“quasi-parallelism” was a sweet-spot in 1961

Hewitt’s Actor model [1973] built on this idea

Emerald used it [Black1986]

But activity has gone from “mainstream” O-O

42
[Hewitt1973] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for
artificial intelligence. In IJCAI, pages 235–245, August 1973.
[Black1986] A. P. Black, N. Hutchinson, E. Jul, and H. M. Levy. Object structure in the
Emerald system. In OOPSLA, pages 78–86, 1986.

Thursday, 25 August 2011

Why are Smalltalk Objects passive?

43

I don’t know

Perhaps: Kay and Ingalls had a philosophical
objection to combining what they saw as separate
ideas

Or

Perhaps: The realities of programming on the Alto set
limits as to what was possible

Or

Perhaps: They wanted real processes, not co-routines

Thursday, 25 August 2011

Erlang Process Challenge
Joe Armstrong COP

Challenge 1

Put N processes in a ring:

Send a simple message round the ring M times.

Increase N until the system crashes.

How long did it take to start the ring?

How long did it take to send a message?

When did it crash?

Can you create more processes in your
language than the OS allows?

Is process creation in your language faster than
process creation in the OS?

Distributed Systems Laboratory 2

44

Thursday, 25 August 2011

Process-creation Times

Joe Armstrong COP

Process creation times

Distributed Systems Laboratory 3

45

Thursday, 25 August 2011

Process-creation Times

Joe Armstrong COP

Process creation times

Distributed Systems Laboratory 3

Pharo 1.1.1 on Cog

45

Thursday, 25 August 2011

Message-passing times

Joe Armstrong COP

Message passing times

Distributed Systems Laboratory 4

46

Thursday, 25 August 2011

Message-passing times

Joe Armstrong COP

Message passing times

Distributed Systems Laboratory 4

Pharo 1.1.1 on Cog

46

Thursday, 25 August 2011

Classes & Objects

47

Thursday, 25 August 2011

Does Object-O mean Class-O?

48

Historically, most of the ideas in o-o came
from the class concept

But it’s the dynamic objects, not the classes,
that form the system model

Classes are interesting only as a way of
creating the dynamic system model of
interacting objects
They are a great tool if you want hundreds of

similar objects
But what if you want just one object?

Thursday, 25 August 2011

Classes are Meta

Classes are meta, and meta isn’t always betta!

if you need one or two objects, it’s simpler
and more direct to describe them in the
program directly …

rather than to describe a factory (class) to
make them, and then use it once or twice.

This is the idea behind Self, Emerald,
NewtonScript and JavaScript

Classes (object factories) can in any case be
defined as objects

49

Thursday, 25 August 2011

Types

50

Thursday, 25 August 2011

O
bj

ec
ts

A
lgebraic D

ata Types

Don’t need types

multiple implement-
ations can co-exist

Autognostic

Type Abstraction ≠ Procedural
Abstraction

51

Abstraction

Type Abstraction Procedural Abstraction

Types are essential

exactly one
implementation

species-knowing

Thursday, 25 August 2011

Types for Objects are Optional

Algebraic data types need types to get
encapsulation

Objects don’t: they enjoy procedural
encapsulation.

Object-oriented abstraction
can exist without types.

52

Thursday, 25 August 2011

Types are Optional

Why would one want to add type annotations
to an object-oriented program?
To add redundancy
Type annotations are assertions

just like assert s.notEmpty

Redundancy is a “good thing”:

It provides more information for readers

It means that more errors can be detected
sooner

53

Thursday, 25 August 2011

Claim: types can be harmful!

54

Thursday, 25 August 2011

Claim: types can be harmful!

Question:
If types add redundancy, and redundancy is

good, how can types be harmful?

54

Thursday, 25 August 2011

Claim: types can be harmful!

Question:
If types add redundancy, and redundancy is

good, how can types be harmful?

Answer:
Because types are too much of an invitation to

mess up your language design!

54

Thursday, 25 August 2011

Two approaches to type-checking

The “laissez faire”, or George W. Bush
interpretation:
Do what you want, we won’t try to

stop you. If you mess up, the PDIC
will bail you out.

The “nanny state” or Harold Wilson
interpretation.
We will look after you. If it is even

remotely possible that something
may go wrong, we won’t let you try.

55

Thursday, 25 August 2011

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

Two approaches to type-checking

The “laissez faire”, or George W. Bush
interpretation:
Do what you want, we won’t try to

stop you. If you mess up, the PDIC
will bail you out.

The “nanny state” or Harold Wilson
interpretation.
We will look after you. If it is even

remotely possible that something
may go wrong, we won’t let you try.

55

Program debugger and
interactive checker

Thursday, 25 August 2011

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

Two approaches to type-checking

The “laissez faire”, or George W. Bush
interpretation:
Do what you want, we won’t try to

stop you. If you mess up, the PDIC
will bail you out.

The “nanny state” or Harold Wilson
interpretation.
We will look after you. If it is even

remotely possible that something
may go wrong, we won’t let you try.

55

Thursday, 25 August 2011

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

Two approaches to type-checking

The “laissez faire”, or George W. Bush
interpretation:
Do what you want, we won’t try to

stop you. If you mess up, the PDIC
will bail you out.

The “nanny state” or Harold Wilson
interpretation.
We will look after you. If it is even

remotely possible that something
may go wrong, we won’t let you try.

55

Thursday, 25 August 2011

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

A third interpretation is useful:

The “laissez faire”, or
George W. Bush interpretation

The “nanny state”, or
Harold Wilson interpretation

56

Thursday, 25 August 2011

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

A third interpretation is useful:

The “laissez faire”, or
George W. Bush interpretation

The “nanny state”, or
Harold Wilson interpretation

The “Proceed with caution”, or
Edward R. Murrow, interpretation
The checker has been unable to

prove that there are no type errors
in your program. It may work; it
may give you a run-time error.
Good night, and good luck.

57

Thursday, 25 August 2011

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

Three interpretations

Under all three interpretations, an error-free
program has the same meaning.
Under Wilson: conventional static typing

An erroneous program will result in a static error, and
won’t be permitted to run.

Some error-free programs won’t be permitted to run

58

Thursday, 25 August 2011

Three interpretations

Under all three interpretations, an error-free
program has the same meaning.
Under Bush: conventional dynamic typing

all checks will be performed at runtime
Even those that are guaranteed to fail

a counter-example is more useful than a type-error
message

59

Thursday, 25 August 2011

Three interpretations

Under all three interpretations, an error-free
program has the same meaning

Under Wilson, you are not permitted to run a
program that might have a type-error

Under Bush, any program can be run, but you
will get no static warnings.

Under Murrow interpretation, you will get a mix
of compile-time warnings and run-time checks.

60

Thursday, 25 August 2011

I’m for Murrow!

I believe that the Murrow interpretation of
types is the most useful for programmers

Wilson’s “Nanny Statism” is an invitation to
mess up your language design!

language designers don’t want to include any
construct that can’t be statically checked

61

Thursday, 25 August 2011

SIMULA was for Murrow too!

62

Thursday, 25 August 2011

Core Ideas of SIMULA

According to Nygaard:

1. Modelling
The actions and interactions of the objects
created by the program model the actions and
interactions of the real-world objects that they
are designed to simulate.

2. Security
The behavior of a program can be understood
and explained entirely in terms of the semantics
of the programming language in which it is
written.

63

Thursday, 25 August 2011

Modelling came first!

SIMULA did not compromise its modelling
ability to achieve security

It compromised its run-time performance
incorporating explicit checks where necessary

when a construct necessary for modelling
was not statically provable as safe

64

SIMULA was for Murrow too!

Thursday, 25 August 2011

The “Wilson obsession”

Results in:

type systems of overwhelming complexity

languages that are

larger

less regular

less expressive

65

Thursday, 25 August 2011

Example: parametric superclasses

class Dictionary extends Hashtable {
method findIndex (predicate) overrides { … }
method at (key) put (value) adds { … }
…

This is fine so long as Hashtable is a globally
known class

But suppose that I want to let the client
choose the actual class that I’m extending?

66

Thursday, 25 August 2011

Example: parametric superclasses

class Dictionary (ht) extends ht {
method findIndex (predicate) overrides { … }
method at (key) put (value) adds { … }
…

This is not so fine:

we need a new notion of “heir types” so we can
statically check that arguments to Dictionary
have the right properties

67

Thursday, 25 August 2011

Example: parametric superclasses

This is not so fine:

we need a new notion of “heir types” so we can statically
check that arguments to Dictionary have the right
properties

Or:

we need a new function & parameter mechanism for
classes

Or:

we ban parametric superclasses, add global variables, add
open classes, and still decrease usability

Or:

68

Thursday, 25 August 2011

Virtual Classes

Virtual classes, as found in BETA, are another
approach to this problem

They feature co-variant methods

methods whose arguments are specialized along with
their results

Not statically guaranteed to be safe

Nevertheless, useful for modelling real systems

69

Thursday, 25 August 2011

Example: type parameters

Types need parameters, e.g.,
Set.of (Informatician)

where Informatician is another type

Obvious solution:
Represent types as Objects, and use the normal

method & parameter mechanism.
Bad news: type checking is no longer decidable

70

Thursday, 25 August 2011

Type-checking is not decidable!
Murrow Reaction:

So what? Interesting programs will need
some run-time checking anyway.

Wilson Reaction:
Shock! Horror! We can’t do that!

Invent a new parameter passing mechanism for
types, with new syntax, and new semantics, and a
bunch of restrictions to ensure decidability
Some programs will still be untypeable (Gödel)
Result: language becomes larger, expressiveness is
reduced.

71

Thursday, 25 August 2011

Type-checking is not decidable!
Murrow Reaction:

So what? Interesting programs will need
some run-time checking anyway.

Wilson Reaction:
Shock! Horror! We can’t do that!

Invent a new parameter passing mechanism for
types, with new syntax, and new semantics, and a
bunch of restrictions to ensure decidability
Some programs will still be untypeable (Gödel)
Result: language becomes larger, expressiveness is
reduced.

71

Thursday, 25 August 2011

The Future of Objects
(according to Black)

72

Thursday, 25 August 2011

Current Trends in Computing

73

Multicore → Manycore

Energy-Efficiency

Mobility and “the cloud”

Reliability

Distributed development teams

Thursday, 25 August 2011

Multicore and Manycore

What do objects have to offer us in the era of
manycore?

Processes interacting through messages!

74

Thursday, 25 August 2011

Most computing models treat computation as
the expensive resource
it was so when those models were developed!

e.g. moving an operation out of a loop is an
“optimization”

Today: computation is free
it happens “in the cracks” between data fetch

and data store
Data movement is expensive both in time and

energy

75

A Cost Model for Manycore

Thursday, 25 August 2011

Today’s computing models can’t even express
the thing that needs to be carefully
controlled on a manycore chip:

Data movement

76

A Problem:

Thursday, 25 August 2011

A Cost Model for Manycore
Spatial arrangement of Small Objects

small method suite as well as small data
local operations are free

optimization means reducing the size of the
object, not the number of computations

message-passing is costly

cost of message = (amount of data) x (distance)

the “message.byte.nm” model

77

O-O

Thursday, 25 August 2011

Mobility and the Cloud

Fundamentally relies on replication and
caching for performance and availability

Do Objects help?

Best model for distributed access seems to be
(distributed) version control

svn, Hg, git

Can we adapt objects to live in a versioned
world?

Object identity is problematic

78

Thursday, 25 August 2011

Object references in a Versioned
world
Learn from Erlang:

Erlang messages can be sent to a prodessId, or
to a processName (“controllerForArea503”)

Perhaps: we should be able to reference
objects either by a descriptor

e.g. “Most recent version of the Oslo talk”

or

by an Object id?
Object16x45d023f

79

Thursday, 25 August 2011

Reliability

Failures are always partial

What’s the unit of failure in the object model?

Is it the object, or is there some other unit?

Whatever it is must “leak failure”

How to mask failure:

replication in space

replication in time

80

Thursday, 25 August 2011

Distributed Development Teams

What’s this to do with objects?

Packaging!
Collaborating in loosely-knot teams demands

better tools for packaging code

All modules are parameterized by other modules
No global namespace?

URLs as the global namespace?

Versioned objects as the basis of a shared
programming environment?

81

Thursday, 25 August 2011

Algol 60 and Simula:

Dahl recognized that the runtime structures of
Algol 60 already contained the mechanisms that
were necessary for simulation.

It is the runtime behavior of a simulation system that
models the real world, not the program text.

82

Thursday, 25 August 2011

Agile Design:

Agile software development is a methodology in which a
program is developed in small increments, in close
consultation with the customer.

The code runs at the end of the first week, and new
functions are added every week.

How could this possibly work! Isn’t it important to
design the program?

Yes! Design is important. It’s so important, we don’t
do it only when we know nothing about the program.
We design every day. The program is continuously re-
designed as the programmers learn from the behavior
of the running system.

83

Thursday, 25 August 2011

Insight:

84

The program’s run-time behavior is what matters!

This is obvious if programs exist to control
computers; less so, if programs are system
descriptions

Program behavior, not programs, model real-
world systems

The program-text is a meta-description of the
program behavior.

It’s not always easy to infer the behavior from the
meta-description

Thursday, 25 August 2011

Observation:

85

I know that I have succeeded as a teacher
when students anthropomorphize their objects

This happens more often and more quickly
when I teach with Smalltalk than when I teach
with Java

Smalltalk programmers talk about objects,
Java programmers talk about classes

Why is this?

Thursday, 25 August 2011

The Value of Dynamism:

86

Smalltalk is a “Dynamic Language”

Many features of the language and the
programing environment help the programmer
to interact with objects, rather than with code

Proposed definition: a “Dynamic
Programming Language” is one designed to
facilitate the programmer learning from the
run-time behavior of the program.

Thursday, 25 August 2011

Summary

What are the major concepts of object-
orientation?

it depends on the social and political context!

After 50 years, there are still ideas in SIMULA
to be mined to solve 21st century problems.
1000 years from now, there may not be any
programming,
but I’m willing to wager that Dahl’s ideas will
still, in some form, be familiar to
programmers in 2061.

87

Thursday, 25 August 2011

