The Left Hand of Equals

IIIIIIIIII

The Left Hand of Equals

James Noble

Victoria University of Wellington
New Zealand

kjx@ecs.vuw.ac.nz

Michael Homer

Victoria University of Wellington
New Zealand

mwh@©@ecs.vuw.ac.nz

Abstract

When is one object equal to another object? While object
identity is fundamental to object-oriented systems, object
equality, although tightly intertwined with identity, is harder
to pin down. The distinction between identity and equality
is reflected in object-oriented languages, almost all of which
provide two variants of “equality”’, while some provide many
more. Programmers can usually override at least one of these
forms of equality, and can always define their own methods
to distinguish their own objects.

This essay takes a reflexive journey through fifty years
of identity and equality in object-oriented languages, and
ends somewhere we did not expect: a “left-handed” equality
relying on trust and grace.

Categories and Subject Descriptors D.3.3 [Programming
Languages): Language Constructors and Features—Classes
and objects.

Keywords equality, identity, abstraction, object-orientation

Andrew P. Black

Portland State University
U.S.A.

black@cs.pdx.edu

Kim B. Bruce

Pomona College
US.A

kim@cs.pomona.edu

Mark S. Miller

Google Inc.
U.S.A.

erights@google.com

We began with Simula. This is hard to say now, for all
of us who came of age in the golden years of programming
language design feel in our bones that the world began with
Smalltalk. Even though we know it’s not so, we cherish the
memories of the dusty underground shelf where the library
hid the Smalltalk books, of the Tektronix 4404 Smalltalk
machine, equipped with a “cat” as well as a “mouse”, and
of loading Smalltalk-80 off the Apple-branded floppy disks
onto a Lisa. So much romance! Meanwhile, down in the
basement machine room, Simula had been chugging along
happily on the DECSYSTEM-10 since 1975. That Simula
system lacked the sexy graphics of the Lisa and the 4404,
but did offer an online debugging facility with breakpoints
that has evolved but slightly into the debuggers of today.

We finish with Grace. Or perhaps: we hope to finish with
grace, to finish gracefully. Much of our recent professional
lives have been occupied with the design of a new object-
oriented language——Grace——intended be useful in educa-
tion (Black et al. 2012). Grace follows in the tradition of
Simula, Smalltalk, Self, Basic, and Pascal, mixing in Java,
Ruby, Python, Newspeak and many other languages. If this

H * n.‘-. -'-Ll
i'm.!@

UNIVERSITY

@ Portland State

‘ 1: A PARADE IN ERHENRANG |

Erom the Archives of Hain. Transcript of Ansible
Document 01-01101-934-2-Gethen: To the Stabile on
Ollul: Report from Genly Ai, First Mobile on
Gethen|Winter, Hainish Cycle 93 Ekumenical Year

1490-97.

‘ I’11 make my report as if I told a story, for I was taught as |
d a child on my homeworld that Truth is a matter of the |
|

| imagination. The soundest fact may fail or prevail in the
| styleofits telling: like that singular organic jewel of our
| seas, which grows brighter as one woman wears it and,
worn by another, dulls and goes to dust. Facts are no
more solid, coherent, round, and real than pearls are.

But both are sensitive.

Portland State

IIIIIIIIII

1: A PARADE IN ERHENRANG

FErom the Archives of Hain. Transcript of Ansible

Document 01-01101-934-2-Gethen: To the Stabile on
Ollul: Report from Genly Ai, First Mobile on
Gethen|Winter, Hainish Cycle 93 Ekumenical Year

1490-97.

I’11 make my report as if I told a story, for I was taught as
a child on my homeworld that Truth is a matter of the
imagination. The soundest fact may fail or prevail in the
style of its telling: like that singular organic jewel of our
seas, which grows brighter as one woman wears it and,

| worn by another, dulls and goes to dust. Facts are no

more solid, coherent, round, and real than pearls are.
But both are sensitive.

r__.,_____ww_
[

TRSULALeGUIN

\ I‘ H (@ ‘ @ g({ (J} SRl ”
rortiang, s ot D

IIIIIIIIII

19| ’ﬂ'% NF7a e j
A ICIKINESS '
Fa

A CLASSIC O """f.. i o 4 '

B

Prof Stéph: Prof Andrew:

Prof Stéph: Prof Andrew:

Prof Stéph: Prof Andrew:

Prot Stéph:

Prof Andrew:

Prof Stéph: Prof Andrew:

720 an essay; nead ct

TL: DR 7 nead ct aloud at SPLASH

Prof Stéph: Prof Andrew:

'MZMMW 720 an essay; nead ct
TL: DR 7 nead ct aloud at SPLASH

Give ws judl U eosence

Prot Stéph:

TMMMW

TL; DR

Give ws judl U eosence

Prof Andrew:

720 an essay; nead ct

9 nead ¢t aloud at SPLASH

OK, 7 U tny to do that

We begin with Simula ...

Portland State

IIIIIIIIII

Portland State

UNIVERSITY

Simula

Associated with an object there is a unique
“object reference’” which identifies the object. . ..
Two object references X and Y are said to be
“identical” if they refer to the same object.

SIMULA-67 Common Base Standard (1970) (Dahl et al.
1970).

NORSK REG!

COMMON BASE LANGUAGE
by

Portland State

UNIVERSITY

Simula

Portland State

IIIIIIIIII

Simula

|
|
|
=
|

Reference Equality

Do two references refer to the same object?

Portland State

IIIIIIIIII

Simula

|
|
|
=
|

Reference Equality

Do two references refer to the same object?

|
——
|

Value Equality

Do two objects contain equal values?

Portland State

IIIIIIIIII

Simula

Portland State

IIIIIIIIII

Simula

Value Assignment

Portland State

IIIIIIIIII

Simula

Reference Assignment

Value Assignment

Portland State

IIIIIIIIII

Families ot Operators

* For each equality operator = , we assume:
- an inequality operator #

- an operation hash

e with the usual properties:
- a#b& 4 (21 = b)

- a=b =>ahash =Db hash

]| won’t mention this again

Portland State

IIIIIIIIII

10

Simula

Simula keeps things mostly straightforward:
* no value equality (or assignment) for objects

* no reference equality (or assignment) for
values

So:
* objects use reference equality
e numbers and characters use value equality

Portland State 11

IIIIIIIIII

Simula Strings

Strings (texts) have both reference
equality and value equality

Portland State

IIIIIIIIII

Simula Strings

Strings (texts) have both reference
equality and value equality

If T and U are texts, then “the relations T=U and
T=/=U may both have the value true”

Dahl et al.
SIMULA Common Base Language, 1970

uuuuuu

COMMON BASE LANGUAGE
by
Ole-Johan Dahl, Bjorn Myhrhaug
and
Kristen Nygaard

Portland State 12

UNIVERSITY

Simula Strings

Strings (texts) have both reference
equality and value equality

If T and U are texts, then “the relations T=U and
T=/=U may both have the value true”

Dahl et al.
SIMULA Common Base Language, 1970

NORWEGIAN COM!

COMMON BASE LANGUAGE
by

“Here is the worm in our ganﬁ’n _of Eden”’

Portland State 12

UNIVERSITY

On to Smalltalk

Portland State

IIIIIIIIII

SMALLTALK-80

THE LANGUAGE AND ITS IMPLEMENTATION

, jAdeIe Qoldberg and David Robson

TN Y T —
I
—

Portland State

IIIIIIIIII

Smalltalk

Comparing Since all information in the system is represented as objects, there is a
Objects | basic protocol provided for testing the identity of an object and for copy-
ing objects. The important comparisons specified in class Object are
equivalence and equality testing. Equivalence (==) is the test of

whether two objects are the same object. Equality (=) is the test of
whether two objects represent the same component. The decision as to
what it means to be “represent the same component” is made by the re-
ceiver of the message; each new kind of object that adds new instance
variables typically must reimplement the = message in order to specify
which of its instance variables should enter into the test of equality.
For example, equality of two arrays is determined by checking the size
of the arrays and then the equality of each of the elements of the ar-
rays; equality of two numbers is determined by testing whether the two
numbers represent the same value; and equality of two bank accounts
might rest solely on the equality of each account identification number.

-~ SMALLULK-80

THE LANGUAGE AND ITS IMPLEMENTATION

Adele Goldberg and David Robson
Smalltalk: The Language and its Implementation

Portland State

UNIVERSITY

Adele Goldberg and David Robson

——

Smalltalk

Portland State

IIIIIIIIII

Smalltalk

|l
Il
l
{

Reference Equality

Do two references refer to the same object?

Portland State

IIIIIIIIII

I5

Smalltalk

|l
Il
l
{

Reference Equality

Do two references refer to the same object?

Il
{
I

Value Equality

Do two objects contain equal values?

Portland State

IIIIIIIIII

I5

Smalltalk

Il
Il
l
{

Reference Equality

Do two references refer to the same object?

Il
{
I

L : f N
Y= ' Lo v SIS 2
T PN X py»

S . - € SaZed
. PR 2 e A AT
TR o g o AT
& - 4+ =

- Do

. N » = v e < -
- iy .A‘”? V ;— r-/"""a g n al ‘ Ill
£r0 ; -'-.".'. e & n E

=y - = -
RN R e . o
T T2 e o
D '.,, . -'_ = o :..\.. -
@ - .
<

UUUUUUUUUU

15

Smalltalk

Reference Equality

Do two references refer to the same object?

Il
{
I

Abstract Equality

Do two objects represent the same abstract value?

Portland State

IIIIIIIIII

15

Lisp and EGAL

Portland State

IIIIIIIIII

Lisp and EGAL

6.3. Equality Predicates 1
|

Common Lisp provides a spectrum of predicates for testing for equality of two
objects: eq (the most specific), eql, equal, and equalp (the most general). eq
and equal have the meanings traditional in Lisp. eql was added because it is
frequently needed, and equalp was added primarily in order to have a version
of equal that would ignore type differences when comparing numbers and case
differences when comparing characters. If two objects satisfy any one of these
equality predicates, then they also satisfy all those that are more general.

|

W -— - ——— -

GUY L. STEELE JR.

COMMON

LISP

52

THE LANGUAGE
SECOND EDITION
Portland State

UNIVERSITY

eq x y [Function]

(eq x y) is true if and only if x and y are the same identical object. (Implemen-

tationally, x and y are usually eq if and only if they address the same identical
memory location.)

eql x y [Function]

The eql predicate is true if its arguments are eq, or if they are numbers of the
same type with the same value, or if they are character objects that represent the
same character. For example:

SEIVIAR AT LY 3,}‘:)'..1{‘-;‘,,.1\4[,\{

A5
% g

A
¥
P

e —

Nl . . ——

[t should be noted that things that print the same are not necessarily eq to each
other. Symbols with the same print name usually are eq to each other because of
the use of the intern function. However, numbers with the same value need not
be eq, and two similar lists are usually not eq. For example:

In Common Lisp, unlike some other Lisp dialects, the implementation is permitted
to make “copies” of characters and numbers at any time. (This permission is
granted because it allows tremendous performance improvements in many common
situations.) The net effect i1s that Common Lisp makes no guarantee that eq will be
true even when both its arguments are “the same thing” if that thing is a character
or number. For example:

(let ((x 5)) (eq x x)) might be true or false. i e

COMMON

LISP

S,

THE LANGUAGE
SECOND EDITION

[t should be noted that things that print the same are not necessarily eq to each
other. Symbols with the same print name usually are eq to each other because of
the use of the intern function. However, numbers with the same value need not
be eq, and two similar lists are usually not eq. For example:

‘?’—‘ - — —— ———————

In CommonlsiesmaiiikE some other 1sp dialects, the implementation-is pe mitted

P

® Y . - o - > L
=% make “copies” of characters and numbers at any time. (Thls permission 1S =
granted because it allows tremendous performance improvements in many common
wsituations.) The net effect is that Common Lisp makes no guarantee that eq wi

mezhen_both its argur nents are “the Same hing” if tha haracter

— -— -
— —

or number. For example:

N\

(let ((x 5)) (eq x x)) might be true or false. e

COMMON

LISP

THE LANGUAGE
SECOND EDITION

[t should be noted that things that print the same are not necessarily eq to each
other. Symbols with the same print name usually are eq to each other because of
the use of the intern function. However, numbers with the same value need not
be eq, and two similar lists are usually not eq. For example:

‘?’—‘ - — —— ———————

In CommonlsiesmaiiikE some other 1sp dialects, the implementation is-permitted

=% make “copies” of characters and numbers at any time. (ThlS perrmssnon 1S =y
granted because it allows tremendous performance improvements in many common
wsituations.) The net effect is that Common Lisp makes no guarantee that eq wi

mezhen_both its arguments are “ “the same thing” if th: haracter

—_—
e — —_——— —— -— == -

or number. For example:

N\

(let ((x 5)) (eq x x)) might be true or false. e

COVIVON
LISP
They should have read ... —%«*

1 THE LANGUAGE
SECOND EDITION

Efficient Message Handling

It should be obvious that to [implement the system the way
that it 1s specified] ... will result in a slow system ... The
implementor must cheat, but not get caught. In other words,
the user of the system should not perceive any non-
uniformity.

Portland State 19

IIIIIIIIII

Efficient Message Handling

It should be obvious that to [implement the system the way
that it 1s specified] ... will result in a slow system ... The
implementor must cheat, but not get caught. In other words,
the user of the system should not perceive any non-
uniformity.

Dan Ingalls,

The Smalltalk-76 Programming System
POPL V (1978)

Portland State 19

IIIIIIIIII

Baker’s EGAL.:
one equality operator to rule them all

Portland State

IIIIIIIIII

20

Portland State

UNIVERSITY

A Quarterly Publication of the
Special Interest Group on
Programming Languages

VOLUME 4 NUMBER 4 OCTOBER 1993

CONTENTS: A Short Note from the Editor 1

TECHNICAL CONTRlBUTlONS:

Henry G. Baker: . Equal Rights for Functional Objects or, The 2!
More Things Change, The More They are
the Same
June Power . The Object in Perspective 28
Pei-Chi Wu - Applying Classification and Inheritance 33
Feng-Jian Wang into Compiling
W. Craig Scratchley: - Using smalltalk for Wait-Free lmplementation 44

of High\y—Concurrent Objects

21

VOLUME 4

NUMBER 4 OCTOBER 1993

A Short Note from the Editor

TECHNICAL CONTRIBUTIONS:

Henry G. Baker:

June Power

Pei-Chi Wu
Feng-Jian Wang

W. Craig Scratchley:

. Equal Rights for Functional Objects or, The

More Things Change, The More They are
the Same

. The Object in Perspective

. Applying Classification and Inheritance

into Compiling

. Using Smalltalk for Wait-Free Implementation

of Highly-Concurrent Objects

28

33

44

VOLUME 4

NUMBER 4 OCTOBER 1993

A Short Note from the Editor

TECHNICAL CONTRIBLTIONS:

Henry G. Baker:

June Power

Pei-Chi Wu
Feng-Jian Wang

W. Craig Scratchley:

. Equal Rights for Functional Objects or, The

More Things Change, The More They are
the Same

. The Object in Perspective

. Applying Classification and Inheritance

into Compiling

. Using Smalltalk for Wait-Free Implementation

of Highly-Concurrent Objects

28

33

44

Portland State

UNIVERSITY

Equal Rights for Functional Objects’ or,
The More Things Change, The More They Are the Same?

Henry G. Baker

Nimble Computer Corporation
16231 Meadow Ridge Way, Encino, CA 91436 (818) 501-4956 (818) 986-1360 FAX

August, October, 1990, October, 1991, and April, 1992
This work was supported in part by the U.S. Department of Energy Contract No. DE-AC03-88ER80663

We argue that intensional object identity in object-oriented programming languages and databases is best defined
operationally by side-effect semantics. A corollary is that "functional” objects have extensional semantics. This
model of object identity, which is analogous to the normal forms of relational algebra, provides cleaner semantics for
the value-transmission operations and built-in primitive equality predicate of a programming language, and
eliminates the confusion surrounding "call-by-value” and "call-by-reference” as well as the confusion of multiple
equality predicates.

Implementation issues are discussed, and this model is shown to have significant performance advantages in
persistent, parallel, distributed and multilingual processing environments. This model also provides insight into the
"type equivalence" problem of Algol-68, Pascal and Ada.

1. INTRODUCTION

Parallel, distributed and persistent programming languages are leaving the laboratories for more wide-spread use.
Due to the substantial differences between the semantics and implementations of these languages and traditional
serial programming languages, however, some of the most basic notions of programming languages must be refined
to allow efficient, portable implementations. In this paper, we are concerned with defining object identity in
parallel, distributed and persistent systems in such a way that the intuitive semantics of serial implementations are
transparently preserved. Great hardware effort and expense—e.g., cache coherency protocols for shared memory
multiprocessors—are the result of this desire for transparency. Yet much of the synchronization cost of these
protocols is wasted on functionallimmutable objects, which do not have a coherency problem. If programming
languages distinguish functional/immutable objects from non-functional/mutable objects, and if programs utilize a
"mostly functional" style, then such programs will be efficient even in a non-shared-memory ("message-passing”)
implementation. Since it is likely that a cache-coherent shared-memory paradigm will not apply to a large fraction
of distributed and persistent applications, our treatment of object identity provides increased cleanliness and efficiency
even for non-shared-memory applications.

The most intuitive notion of object identity is offered by simple Smalltalk implementations in which "everything is
a pointer”. In these systems, an "object" is a sequence of locations in memory, and all "values" are homogeneously
implemented as addresses (pointers) of such "objects". There are several serious problems with this model. First,
"objects” in two different locations may have the same bit pattern both representing the integer "9"; an
implementation must either make sure that copies like this cannot happen, or fix the equality comparison to
dereference the pointers in this case. Second, the “everything is a pointer" model often entails an "everything is
heap-allocated" policy, with its attendant overheads; an efficient implementation might wish to manage small fixed-
size "things" like complex floating point numbers directly, rather than through pointers. Third, read access to the
bits of an object may become a bottleneck in a multiprocessor environment due to locking and memory contention,
even when the object is functional/immutable and could be transparently copied. In light of these problems, we seek
a more efficient and less implementation-dependent notion of object identity than that of an address in a random-
access computer memory.

A more efficient, but also more confusing, notion of object identity is offered by languages such as Pascal, Ada and
C. These languages can be more efficient because they directly manipulate values other than pointers. This
efficiency is gained, however, at the cost of an implementation-dependent notion of object identity. To a first

I"Functional objects" is triply overloaded, meaning immutable objects, function closures or objects with functional
dependencies.

2pJus ca change, plus c'est la méme chose—Alphonse Karr, as translated in [Cohen60,p.214].

25

3. OUR MODEL OF OBJECT IDENTITY
A. Mutability Definition of Object Identity

Our model for object identity is similar to Scheme's concept of "operational identity" [Rees86], in' which objects
which behave the same should be the same. However, since "behave the same" is undecidable for functions and
function-closures, we back down from "operational identity" to "operational identity of data structure
representations”. Operational identity for data structures is much easier than operational identity for function-
closures, because there are only a few well-defined operations on data structures, but function-closures can do
anything. We define a single, computable, primitive equality predicate called EGAL which we show is consistent
with the notion of "operational identity of data structures”. Egal is the obsolete Norman term for equal, and Egalité
is the French word for social equality. "During the seventeenth century two parallel vertical lines were frequently
used [to denote equality], especially in France, instead of =" [Young11]; we will later find that || is a remarkably
satisfying infix symbol for egal.

Our model for object identity distinguishes mutable objects from immutable objects, and mutable components of
aggregate objects from immutable components. We consider an immutable component of an object to be an integral
part of the object's identity, since it cannot be separated from the object. Unlike a normalized (factored) relational
database, which attempts to minimize the size of a "key" which holds the essence of an entity [Ullman80,s.5.4], we
maximize the size of the object "key" to include all of its static components. Because these components are static,
we cannot create any "update anomalies" with this policy. In particular, this object identity can be used as akey to a
Common Lisp hash table [Steele90,p.435], and no hash entries will become inaccessible as a result of a key element

being modified.

Portland State 23

UNIVERSITY

3. OUR MODEL OF OBJECT IDENTITY
A. Mutability Definition of Object Identity

Our model for object identity is similar to Scheme's concept of "operational identity" [Rees86], in- which objects
which behave the same should be the same. However, since "behave the same"” is undecidable for functions and
function-closures, we back down from "operational identity" to "operational identity of data structure
representations”. Operational identity for data structures is much easier than operational identity for function-
closures, because there are only a few well-defined operations on data structures, but function-closures can do
anything. We define a single, computable, primitive equality predicate called EGAL which we show is consistent
with the notion of "operational identity of data structures”. Egal is the obsolete Norman term for equal, and Egalité
is the French word for social equality. "During the seventeenth century two parallel vertical lines were frequently
used [to denote equahty], esp 01a11 in France instead of == [Wounalll. we will later find that || 13 a remarkably
sausf = Te coal. ' o) B e :

=Our model for object identity distinguishes mutable objects from immutable objects, and mutable components of £
aggregate objects from immutable components. We consider an immutable component of an object to be an inte
S a2 ohiect's identity, since it cannot be sepated from the omect Unlike a normalizas e onal

- =

B e e — g

database, WhICH atleIpts tOTreervemnee < ST TTOas Uie essence of an entity [Ullmang0,s.5 4], we
maximize the size of the object "key to 1nclude all of its static components Because these components are static,
we cannot create any "update anomalies" with this policy. In particular, this object identity can be used as akey to a
Common Lisp hash table [Steele90,p.435], and no hash entries will become inaccessible as a result of a key element

being modified.

Portland State 23

UNIVERSITY

EGAL

Compare mutable objects with reference equality, and
immutable objects with value equality.

Portland State

IIIIIIIIII

24

EGAL

Compare mutable objects with reference equality, and
immutable objects with value equality.

EGAL is stable:
- it does not depend on mutable state

- it’s an always equal operator

Portland State

IIIIIIIIII

24

Clojure

Portland State

IIIIIIIIII

EGAL

Portland State

IIIIIIIIII

Clojure

Reference Equality
identical

25

Clojure

EGAL Reference Equality
= identical

Pyret

 Reference Equality Value Equality
<=> identical =~ equals-now

EGAL

= equals-always
Portland State 2§

IIIIIIIIII

The zntention ot equality

* Should some (or all) equality operators be
equivalence relations?

* What does it mean for two objects to be
equal?

Portland State

IIIIIIIIII

Java Specifies an Intention:

public boolean equals(Object obj)

Indicates whether some other object 1s “equal to”
this one.

The equals method implements an equivalence re-
lation on non-null object references:

e It is reflexive: for any non-null reference value x,
x.equals(x) should return true.

e It is symmetric: for any non-null reference values
x and y, x.equals(y) should return true if and only 1f
y.equals(x) returns true.

e It is transitive: for any non-null reference values x,
y, and z, if x.equals(y) returns true and y.equals(z)
returns true, then x.equals(z) should return true.

Portland State

UNIVERSITY

e It is consistent: for any non-null reference values
x and y, multiple invocations of x.equals(y) con-
sistently return true or consistently return false,
provided no information used in equals comparisons
on the objects 1s modified.

e For any non-null reference value x, x.equals(null)
should return false.

Returns:

true if this object is the same as the obj argument; false
otherwise.

The Java Platform (Gosling et al. 2005)
(our underlining)

Java’s specification allows

objects to be equal when they are
not EGAL

e.g., two distinct mutable objects can never be
EGAL, but they can be equals

Portland State

IIIIIIIIII

The First Lesson

Specifying an intention
conditioned on no object changing its state
is not very useful in a world of

stateful objects

Portland State

IIIIIIIIII

Pragmatics of Equality

* Once a programmer knows that two objects
are equal, what can they assume?

* Cook, and Ungar, argue that equal always

should mean bi-simulation

Portland State

IIIIIIIIII

equal-always

Portland State

IIIIIIIIII

equal-always

e (Given two references, A and B, A == B implies that
for any message 72, you could send 7 to A or send
m to B and there would be no observable change in
the future response to messages of the system.

Portland State 31

IIIIIIIIII

equal-always

e (Given two references, A and B, A == B implies that
for any message 72, you could send 7 to A or send
m to B and there would be no observable change in
the future response to messages of the system.

-~ This is equal-always, but not necessarily
reference equality

Portland State 31

IIIIIIIIII

equal-always

e (Given two references, A and B, A == B implies that
for any message 72, you could send 7 to A or send
m to B and there would be no observable change in
the future response to messages of the system.

-~ This is equal-always, but not necessarily
reference equality

Portland State 31

IIIIIIIIII

equal-always

e (Given two references, A and B, A == B implies that
for any message 72, you could send 7 to A or send
m to B and there would be no observable change in
the future response to messages of the system.

-~ This is equal-always, but not necessarily
reference equality

m >

Portland State

IIIIIIIIII

31

equal-always

e (Given two references, A and B, A == B implies that
for any message 72, you could send 7 to A or send
m to B and there would be no observable change in
the future response to messages of the system.

-~ This is equal-always, but not necessarily
reference equality

Portland State

IIIIIIIIII

31

equal-always

e (Given two references, A and B, A == B implies that
for any message 72, you could send 7 to A or send
m to B and there would be no observable change in
the future response to messages of the system.

-~ This is equal-always, but not necessarily
reference equality

Portland State 31

IIIIIIIIII

equal-always

e (Given two references, A and B, A == B implies that
for any message 72, you could send 7 to A or send
m to B and there would be no observable change in
the future response to messages of the system.

-~ This is equal-always, but not necessarily
reference equality

Portland State 31

IIIIIIIIII

equal-always

e (Given two references, A and B, A == B implies that
for any message 72, you could send 7 to A or send
m to B and there would be no observable change in
the future response to messages of the system.

-~ This is equal-always, but not necessarily
reference equality

Portland State 31

IIIIIIIIII

equal-always

e (Given two references, A and B, A == B implies that
for any message 72, you could send 7 to A or send
m to B and there would be no observable change in
the future response to messages of the system.

-~ This is equal-always, but not necessarily
reference equality

IIIIIIIIII

31

equal-now

e Weaker: equal-always = equal-now

- Given two references, A and B, A is equal-now
to B implies that if you sent m to A and
received R as the result, or if you sent m to B
and received S as the result, R and S would be
equal now.

Portland State

IIIIIIIIII

32

equal-now

e Weaker: equal-always = equal-now

- Given two references, A and B, A is equal-now
to B implies that if you sent m to A and
received R as the result, or if you sent m to B
and received S as the result, R and S would be
equal now.

Portland State

IIIIIIIIII

32

equal-now

e Weaker: equal-always = equal-now

- Given two references, A and B, A is equal-now
to B implies that if you sent m to A and
received R as the result, or if you sent m to B
and received S as the result, R and S would be
equal now.

B

Portland State

IIIIIIIIII

32

equal-now

e Weaker: equal-always = equal-now

- Given two references, A and B, A is equal-now
to B implies that if you sent m to A and
received R as the result, or if you sent m to B
and received S as the result, R and S would be
equal now.

m

-2
B

Portland State

IIIIIIIIII

32

equal-now

e Weaker: equal-always = equal-now

- Given two references, A and B, A is equal-now
to B implies that if you sent m to A and
received R as the result, or if you sent m to B
and received S as the result, R and S would be
equal now.

- P JR
“
“
L . “““
“
/' ‘I
“

Portland State 32

IIIIIIIIII

equal-now

e Weaker: equal-always = equal-now

- Given two references, A and B, A is equal-now
to B implies that if you sent m to A and
received R as the result, or if you sent m to B
and received S as the result, R and S would be
equal now.

."‘V
B
— i

>

Portland State 32

IIIIIIIIII

equal-now

e Weaker: equal-always = equal-now

- Given two references, A and B, A is equal-now
to B implies that if you sent m to A and
received R as the result, or if you sent m to B
and received S as the result, R and S would be
equal now.

Portland State

IIIIIIIIII

32

equal-now

e Weaker: equal-always = equal-now

- Given two references, A and B, A is equal-now
to B implies that if you sent m to A and
received R as the result, or if you sent m to B
and received S as the result, R and S would be
equal now.

Portland State

IIIIIIIIII

32

equal-now

e Weaker: equal-always = equal-now

- Given two references, A and B, A is equal-now
to B implies that if you sent m to A and
received R as the result, or if you sent m to B
and received S as the result, R and S would be
equal now.

Portland State

IIIIIIIIII

32

Object-Orientation

O is for Object,
which is the granddaddy of all soap bubbles.

Brian Alexander, ABC’s for object-gifted children,
(Alexander 1992)

Portland State

IIIIIIIIII

objects have
identity, methods
and state

Portland State

IIIIIIIIII

_ d state

Portland State

IIIIIIIIII

Portland State

IIIIIIIIII

b] tS h 4

identity, 4i%¢ tho ds
’ nd state™

34

* The Scandinavian view:
- an OO system is one whose creators realise that
programming is modelling.

Portland State

IIIIIIIIII

35

e The Scandinavian view:

- an OO system is one whose creators realise that
programming is modelling.

* The mystical view:

- an OO system is one that is built out of objects
that communicate by sending messages to each
other, and computation is the messages flying
from object to object.

Portland State 35

IIIIIIIIII

e The Scandinavian view:

- an OO system is one whose creators realise that
programming is modelling.

* The mystical view:

- an OO system is one that is built out of objects
that communicate by sending messages to each
other, and computation is the messages flying
from object to object.

* The software engineering view:

- an OO system is one that supports data
abstraction, polymorphism by late-binding of
function calls, and inheritance.

Portland State Ralph Johnson

Cook’s Autognostic Principle

William Cook
On Understanding Data Abstraction, Revisited

Portland State

UNIVERSITY

Cook’s Autognostic Principle

William Cook
On Understanding Data Abstraction, Revisited

An object can access other objects only ‘
through their public interfaces.

Portland State

IIIIIIIIII

William Cook
On Understanding Data Abstraction, Revisited
OOPSLA 2009

Portland State

UNIVER SITY

* Autognosis means “self knowledge”

* An autognostic object can have detailed
knowledge only of itself. All other objects

are abstract.

* The converse is useful: any programming
model that allows inspection of the
representation of more than one abstraction
at a time is 7ot object-oriented.

William Cook
On Understanding Data Abstraction, Revisited
OOPSLA 2009

Portland State

IIIIIIIIII

37

Equality operators for
autognostic languages

e What’s the best we can do?

* What’s the least we can get away with?

Portland State

IIIIIIIIII

Left-handed Equality

Left-handed Equality

S

Ty

e

8
i

ety

Know Thyself: Inscription on Apollo’s Temple at Delphi

Consequences of Autognosticism

Portland State

IIIIIIIIII

40

Consequences of Autognosticism

* No “third party” identity test

- object y can’t ask if z ==

Portland State

IIIIIIIIII

40

Consequences of Autognosticism

* No “third party” identity test
- object y can’t ask if @ == b

* Example: strings. Whether they are intern’ed
Oor not 1s an implementation secret.

- abstract equality keeps that secret

- a third-party == test (as in Java) exposes it

Portland State

IIIIIIIIII

40

Portland State

UNIVERSITY

Object Identity
A Position Paper for -WOOOS ’93

Andrew P. Black
Cambridge Research Laboratory
Digital Equipment Corporation

This position paper discusses the role of Object Iden-
tity in object-oriented systems. A distinction is drawn
between object identity and object identifier; the for-
mer is an intrinsic part of an object-oriented system,
while the latter is not. An equality test on object
identifiers breaches encapsulation; such a test should
therefore only be enabled at the specific request of the
implementor of an abstraction.

1 Object identity is fundamental

I believe that object identity is fundamental to
object-oriented systems: the existence of some con-
cept of object identity is one of the attributes that
makes a system object-oriented.

Consider the semantic equations that give mean-
ing to the constructs of an object-oriented language.
Clearly, the meaning of self depends on the identity
of the containing object. The meaning of any identi-
fier 7 also depends on the identity of the containing
object. Thus, the semantic function that defines the
meaning of an expression like ¢ must take amongst
its parameters some indication of the identity of the
current object.

An application built on an object-oriented operat-
ing system may have its own notion of identity that
differs from that provided by the underlying system.
For example, clients of a replicated directory service
may wish to regard all the replicas of a particular di-
rectory as identical. Because these replicas are (by de-
sign) distinct system-level objects, they have different
identities as far as the underlying system is concerned.
Indeed, understanding that they are distinct objects is
vital to the correct implementation of the replication
protocol. The fact that different notions of identity
exist at different levels of abstraction is not an argu-
ment against the centrality of the concept of identity
to object-orientation.

2 “Identity” should be distinguished
from “Identifier”

Just because identity is essential, it does not fol-
low that it must be possible to reify the identity of
an object into a form that can be manipulated in the
language itself. For example, it is possible to give a
perfectly satisfactory semantics for an object-oriented
language by representing each object as a separate
state function: rather than having a single global state
from which the right part must be extracted by in-
dexing with some sort of object identifier, each object
can instead be represented as a separate state. These
states, being functions from locations to values, might
not themselves be expressible in the language. Even
if they are expressible, they cannot be compared for
equality.

3 Should Objects have Identifiers?

The question that we should ask, then, is not
whether the concept of object identity should be man-
ifest to programmers, but in what ways should pro-
grammers be allowed to manipulate object identity.
Given a reference to an object, what can be done with
it, beyond invoking the object to perform one of the
operations in its protocol? At one extreme is the an-
swer “nothing at all”; the other extreme is to give
object references a full set of operations, like those
available on integers.

The minimal set of operations that enable a
programmer to implement more complex operations

seems to be
hash : object — integer

equal : object X object — Boolean
In theory, hash is superfluous: it is possible to
implement hash using equal and exhaustive search.
Although the inefficiency that this would introduce
makes hash desirable in practice, for the purpose of
theoretical analysis we can confine discussion to the

41

Portrana >tate

IIIIIIIIII

OI the containing object. 1he meaning OI any ldenti-
fier + also depends on the identity of the containing
object. Thus, the semantic function that defines the
meaning of an expression like z must take amongst
its parameters some indication of the identity of the
current object.

An application built on an object-oriented operat-
ing system may have its own notion of identity that
differs from that provided by the underlying system.
For example, clients of a replicated directory service
may wish to regard all the replicas of a particular di-
rectory as identical. Because these replicas are (by de-
sign) distinct system-level objects, they have different
identities as far as the underlying system is concerned.
Indeed, understanding that they are distinct objects is
vital to the correct implementation of the replication
protocol. The fact that different notions of identity
exist at different levels of abstraction is not an argu-
ment against the centrality of the concept of identity
to object-orientation.

The ques
whether the
ifest to prog
grammers b
Given a refe:
it, beyond 1
operations 1
swer “nothi:
object refer
avallable on

The min
programmer
seems to be

h
€q

In theory
implement
Although ¢t}
makes hash
theoretical ¢

42

Portrana >tate

UNIVERSITY

OI the containing object. 1he meaning OI any ldenti-
fier + also depends on the identity of the containing
object. Thus, the semantic function that defines the
meaning of an expression like z must take amongst

1ts parameters seme=ingicationol-firs=dentitv of the
smzient object.

An application built on an object-oriented operat-
ing system may have its own notion of identity that
differs from that provided by the underlying system.
For example, clients of a replicated directory service
may wish to regard all the replicas of a particular di-
rectory as identical. Because these replicas are (by de-
sigi=dtistinct svstem-level objects, they have.2ifcrent
identities as far as the underlying system is concerned.
Indeed, understanding that they are distinct objects is
vital to the correct implementation of the replication
protocol. The fact that different notions of identity
exist at different levels of abstraction is not an argu-
ment against the centrality of the concept of identity

to object-orientation.

The ques
whether the
ifest to prog
grammers b
Given a refe:
1t;-beyond 1
operatians 1
swer “notai
object refe
avallable < a

Tka min
programmer
seems to be

h
€q

In theory
implement
Although ¢t}
makes hash
theoretical ¢

42

Consequences of Autognosticism

Portland State

IIIIIIIIII

43

Consequences of Autognosticism

e [t's OK to ask

self == other

Portland State

IIIIIIIIII

43

Consequences of Autognosticism

e [t’s OK to ask

self == other

Self Reference Equality

Does another reference refer to self?

Portland State

IIIIIIIIII

43

e Reference equality is used — crucially — to
define equals for java.lang Object

public boolean equals(Object obj) {
return (this == obj);
}

Portland State 44

IIIIIIIIII

e Reference equality is used — crucially — to
define equals for java.lang Object

public boolean equals(Object obj) {
return (this == obj);
}

* (Almost) the same code can be used to define a
self-referential equality:

Portland State 44

IIIIIIIIII

e Reference equality is used — crucially — to
define equals for java.lang Object

public boolean equals(Object obj) {
return (this == obj);
}

* (Almost) the same code can be used to define a
self-referential equality:

- 4entid)

G pubit boolean refEqualsSelf(Object obj) {
return (this == obj);
}

Portland State 44

IIIIIIIIII

lettEquals

e Assume an autognostic reference quality test
refEqualSelf(other)

* An object that wishes to expose an identity
test to its clients can define

method leftEquals(other:0bject) {
refEqualSelf(other)

)

* Big difference: == is trustworthy

Portland State

IIIIIIIIII

45

Trust

the truth is not an obstacle for someone such as me,
she said, because you see

we all create our own reality

and if a problem should arise

the best thing you can say is

don’t worry, be happy, and have a nice day

Portland State
Truth is Out of Style, (MC 900 Ft. Jesus 1989)

Trust

the truth is not an obstacle for someone such as me,
she said, because you see

we all create our own reality

and if a problem should arise

the best thing you can say is

don’t worry, be happy, and have a nice day

Portland State
Truth is Out of Style, (MC 900 Ft. Jesus 1989)

Trust and the obeys predicate

Portland State

IIIIIIIIII

47

Trust and the obeys predicate

® trust 1S an assumption, not an assertion

Portland State

IIIIIIIIII

47

Trust and the obeys predicate

® trust 1S an assumption, not an assertion

* does an object obey its specification?

Portland State

IIIIIIIIII

47

Trust and the obeys predicate

® trust 1S an assumption, not an assertion

* does an object obey its specification?
- that’s a question about its implementation

- when we encapsulate implementations, we @/so
encapsulate therr correctness

Portland State 47

IIIIIIIIII

Left-handed Equality

a.leftEquals(b)

means

a obeys t = t(a, b)

where € is a specification of leftEquality

Portland State

IIIIIIIIII

~.lefttEquals()
is not an equivalence relation

if even one object does not obey the specification

Portland State

IIIIIIIIII

49

~.lefttEquals()
is not an equivalence relation

if even one object does not obey the specification

def perverse = object {
method leftEquals(other : Object) — Boolean { true }

}

Portland State

IIIIIIIIII

49

~.lefttEquals()
is not an equivalence relation

if even one object does not obey the specification

def perverse = object {
method leftEquals(other : Object) — Boolean { true }

}

perverse.leftEquals(o) ~ true Vo

o.leftEquals(perverse) » false Vo& U\perverse

Portland State

IIIIIIIIII

49

Practical Consequences

Portland State

IIIIIIIIII

Practical Consequences

* If you are trying to compare objects for
identity; be sure that you trust the receiver

Portland State

IIIIIIIIII

Practical Consequences

* If you are trying to compare objects for
identity; be sure that you trust the receiver

* Example:

someVariable == false

Portland State

IIIIIIIIII

Practical Consequences

* If you are trying to compare objects for
identity; be sure that you trust the receiver

* Example:

IIIIIIIIII

Practical Consequences

* If you are trying to compare objects for
identity; be sure that you trust the receiver

false == someVariable

Portland State

IIIIIIIIII

50

The Second Lesson

Object-oriented equality

1s not, and should not be,

an equivalence relation

Portland State

IIIIIIIIII

Reflection

—— and !== should usually be avoided; if you
really care about object identities then you should
probably be using mirrors, since object identity is a
reflective concept.

Portland State

IIIIIIIIII

52

Reflection

—— and !== should usually be avoided; if you
really care about object identities then you should
probably be using mirrors, since object identity Is a
reflective concept.

Portland State David Ungar, self source code

Reflection

—— and !== should usually be avoided; if you
really care about object identities then you should
probably be using mirrors, since object identity Is a
reflective concept.

Reflective Equality

Do two mirrors reflect on the same object?

Portland State David Ungar, self source code

Portland State

IIIIIIIIII

53

Portland State

UNIVERSITY

LIST OF PRINCIPLES

Abstraction: Avoid requiring something to be stated more than once; factor
out the recurring pattern.

Automation: Automate mechanical, tedious, or error-prone activities.
Defense in Depth: Have a series of defenses so that if an error isn't caught by
one, it will probably be caught by another.

Information Hiding: The language should permit modules designed so that (1)
the user has all of the information needed to use the module correctly, and
nothing more; (2) the implementor has all of the information needed to
implement the module correctly, and nothing more.

Labeling: Avoid arbitrary sequences more than a few items long; do not require
the user to know the absolute position of an item in a list. Instead, associate a
meaningful label with each item and allow the items to occur in any order.

Localized Cost: Users should only pay for what they use; avoid distributed
costs.

Manifest Interface: All interfaces should be apparent (manifest) in the syntax.

Orthogonality: Independent functions should be controlled by independent
mechanisms.

Portability: Avoid features or facilities that are dependent on a particular
machine or a small class of machines.

Preservation of Information: The language should allow the representation of
information that the user might know and that the compiler might need.

Regularity: Regular rules, without exceptions are easier to learn, use, describe,
and implement.

Security: No program that violates the definition of the language, or its own
intended structure, should escape detection.

Simplicity: A language should be as simple as possible. There should be a
minimum number of concepts with simple rules for their combination.

Structure: The static structure of the program should correspond in a simple
way with the dynamic structure of the corresponding computations.

Syntactic Consistency: Similar things should look similar; different things
different.

Zero-One-Infinity: The only reasonable numbers are zero, one, and infinity.

54

Regularity: Regular rules, without exceptions are easier to learn, use, describe,
and implement.

Security: No program that violates the definition of the language, or its own
intended structure, should escape detection.

Simplicity: A language should be as simple as possible. There should be a
minimum number of concepts with simple rules for their combination.

Structure: The static structure of the program should correspond in a simple
way with the dynamic structure of the corresponding computations.

Syntactic Consistency: Similar things should look similar; different things
different.

Zero-One-Infinity: The only reasonable numbers are zero, one, and infinity.

Portland State 55

IIIIIIIIII

/

Regularity: Regular rules, without exceptions are easier to learn, use, describe,
and implement.

Security: No program that violates the definition of the language, or its own
intended structure, should escape detection.

Simplicity: A language should be as simple as possible. There should be a
minimum number of concepts with simple rules for their combination.

Structure: The static structure of the program should correspond in a simple
way with the dynamic structure of the corresponding computations.

Syntactlc C0n515tenc : Similar, things should imilar; different things
l 2 ,;’fJ/ il A e Al -

‘
Zero-One-Infinlty The only reasonable numbers are zero, one, and mﬁmty 3

_—

— = ~) —

les
Programmmg
Languages

P aae
Design,Evaluaton, and Implementation

Portland State

IIIIIIIII

J.R.R. Tolkien

Portland State 56

IIIIIIIIII

w/ s, W

W W 2 w 9
;\. ‘L7 y) "' .4

One Ring to rule them all, One Ring to find them,
One Ring to bring them all, and in the darkness bind them...

J.R.R. Tolkien

Portland State 56

IIIIIIIIII

Hence:

(Grace should have one

- autognostic
- left-handed

- abstract equality

represented by the method ==

Portland State

IIIIIIIIII

57

Implementation

* a confidential method isMe, inherited by all
objects from graceObject

* a trait that defines a public method == in
terms of isMe, available to any object that
chooses to use it

* an == method on an object’s mirror that
determines if anotherMirror images the
same object as self

Portland State

IIIIIIIIII

type Object = interface {
(other : Object) - Boolean
hash — Boolean

¥

trait graceObject {
// root of the inheritance hierarchy
method isMe(other:0bject) - Boolean
is primitive, confidential { }
method # (other : Object) { (self == other).not }

¥

trait identity {
method ==(other:0bject) - Boolean { self.isMe(other) }
h

type Reflection = interface {
reflect(reflectee:0Object) —~ ObjectMirror

¥

type ObjectMirror = Object & interface {
== (other) - Boolean

The story is not all mine, nor told by me alone.
Indeed I am not sure whose story it is.

Ursula Le Guin, The Left Hand of Darkness, (LeGuin 1969)

Portland State 60

IIIIIIIIII

Acknowledgements

William Cook

Sophia Drossopoulou
Shriram Krishnamurthi

Joe Gibs Politz

The reviewers

Portland State

IIIIIIIIII

Acknowledgements

William Cook

Sophia Drossopoulou

Shriram Krishnamurthi
Joe Gibs Politz

The reviewers

James Noble

Portland State

IIIIIIIIII

