
Extreme Programming:

 “Once over lightly”

Andrew Black

Presentation based on material from Nick Southwell, WilliamWake, and others

Slide 2

XP is...

A lightweight development methodology that
emphasizes:
– ongoing user involvement
– testing
– pay-as-you-go design

Slide 4

Background: Cost of Changes

t

$

t

$

ÒThenÓ (exponential) ÒNowÓ (flattened)

Slide 5

Background: Cost of Money

t

$
ÒUp-front designÓ

ÒPay as you goÓ

$$

Slide 6

Key values of XP

• Communication
– Problems with projects can invariably be traced back to somebody not

talking to somebody else.

• Simplicity
– It is better to do a simple thing today, and pay a little more tomorrow,

than to do a complicated thing today that may never be used.

• Concrete Feedback
– Feedback at all time scales keeps the project on track.

• Courage
– Together with the first three values, Courage allows you to make high-

risk, high-reward experiments. Without them, it’s just hacking.

Slide 7

XP values

Concrete
Feedback

Courage

Simplicity

Communication

Slide 8

XP Principles

• Get rapid feedback
• Assume simplicity
• Incremental change
• Embrace Change
• Do quality work

Slide 9

XP Practices

• Planning Game
• Metaphor
• Testing
• Refactoring
• Pair programming
• Small releases
• On-site customer

• Simple design
• Collective ownership
• Continuous

integration
• 40-hour week
• Coding Standards

Slide 10

Planning Game

User stories = lightweight use cases
• 2-3 sentences on a file card that

—the customer cares about
—can be reasonably tested
—can be estimated & prioritized

Slide 11

Planning Game (cont.)

• Users write stories
• Developers estimate them
• Users split, merge, & prioritize
• Plan overall release (loosely) and the next

iteration
– Don’t plan too far ahead

Slide 12

Small Releases
• Make every release as small as possible

– Release makes sense as a whole

• Make simple designs, sufficient for the
current release

• Small releases provide:
– rapid feedback
– sense of accomplishment
– reduced risk
– customer confidence
– adjustments to changing requirements

Slide 13

Metaphor

• Guide the project with a single Metaphor
– e.g., the UI is a desktop

• Must represent the architecture
– makes it easier to discuss

• The customer must be comfortable with it

Slide 14

Simple Design
• The right design for software:

– Runs all the tests.

– Has no duplicated logic (DRY principle)

– States every intention important to the programmers.

– Has the fewest possible classes and methods

• Don’t worry about having to change a design later

Slide 15

Testing

• XP tests everything that might possibly
break, all the time

• The tests are the specification:
– An executable specification

• Two kinds of tests:
– Functional Tests
– Unit Tests

Slide 16

Functional Tests

• Specified by the user
• Implemented by users, developers, and/or

test team
• Automated
• Run at least daily
• Part of the specification

Slide 17

Unit Tests

• Written by developers
• Written before and after coding
• Always run at 100%
• Support design, coding, refactoring, and

quality.

Slide 18

Pair Programming
• Role of one partner

– uses the mouse and the keyboard
– thinks about the best way implementing the method

• Role of the other
– is the approach going to work

– think about test cases
– can it be done simpler

• Pairing is dynamic
• Pairing provides discipline
• Pairing spreads knowledge about the system

Slide 19

Collective Code Ownership
• Anybody can add to any portion of the code

– subject to current requirements
– subject to simple design

• Unit tests protect the system functionality
• Whoever find a problem, solves it
• Everybody is responsible for the whole

system

Slide 20

Continuous Integration
• Integration of tested code every few hours

(max. a day)
• All unit tests need to run successfully
• If a test fails the pair has to repair it
• If you can’t repair it, throw away the code

and start again

Slide 21

40 Hour Week
• If you can’t do your work in 40 hours, then

you have too much work
• 40-Hour weeks keeps you fresh to tackle

problems
• It prevents making silly, hard to find mistakes

late at night
• Frequent planning prevents you from having

too much work
• Overtime is a symptom of a serious problem

Slide 22

On-site Customer

If you can’t get an On-site Customer, maybe
the project isn’t important enough?

• Writes functional tests
• Makes priority and scope decisions for

the programmers
• Answers questions
• Does his or her own work

Slide 23

Coding Standards
• Complicated constructions are not allowed

– let’s keep things simple

• Code looks uniform
– easier to read

• No need to reformat the code
– no ‘curly brackets wars’

Slide 24

Design

• Pay as you go
• Re-design when necessary
• “You aren’t gonna need it”
• “Simplest thing that could possibly work”
• “Once And Only Once”

Slide 25

Refactoring

• Refactor = to improve the structure of code
without affecting its external behavior

• Done in small steps
• Supported by unit tests, simple design, and pair

programming
• Seek “once and only once”
• Refactoring in pairs gives you more courage

and confidence

Slide 26

Refactoring Example

Replace Magic Number
by Constant:

return 32.5 *
 miles_traveled;

static final double
 MILEAGE_RATE = 32.5;
…
return MILEAGE_RATE *
 miles_traveled;

Separate Query from
Modifier:

Stack:
 Object getTopAndPop();

 Object getTop();
 void pop();

Slide 1

Planning XP

Why Plan?

– To do the most important thing

– To coordinate with others

– To be able to respond to the unexpected

Slide 2

The Balance of Power

Business people make business decisions

– dates

– scope

– priority

Developers make development decisions

– estimates

Slide 3

Two kinds of planning:

– Release Planning

– Iteration planning

Slide 4

Release Planning

– Customers write stories

– Developers estimate them

– stories that are too complex to estimate go back to
the customer to be split

– Customer prioritizes the stories and fills a
three week “bucket” with their choice

– don’t worry about “dependencies”

– Do one, two (or even three?) releases like this

Slide 5

Iteration Planning

For the current release:

– Developers split each story into tasks

– Estimate the tasks collectively

– Individuals sign up to do the tasks

Which tasks do you do first?

– The riskiest ones!

Slide 6

Measure what you do

It’s OK to try almost anything on an XP
project, as long as you learn from it!

– an XP team is a learning organization

– it must constantly compare its performance
against its estimates

– if a practice helps, do more of it.

– if a practice hinders, do less of it

Slide 27

Adopting XP

• Some practices can be done solo, others
by team, others require users to help.
—Customer involvement
—Functional tests and unit tests
—Simple design & refactoring
—Pair programming

Slide 28

Nick Southwell (Motorola Personal

Networks) asks: Can We Use XP?

• XP is for small teams
– XP relies on verbal communication instead of formal documentation

• XP is for “greenfield” as opposed to “legacy” projects
– We have lots of code with no tests, or documentation

– We have no coding standards
– Many parts of the system are understood by only one person

• XP requires leadership, discipline and team buy-in
– All the team must believe that XP can work
– There are no shortcuts

– Need a leader to drive XP

Slide 29

Pretty Adventuresome
Programming (PAP)

• About as much excitement as you’re going to
want

• Dials up pretty high: 9.3 or so.
• Wow that XP is neat! We almost do it too!

See Alistair Cockburn at
http://c2.com/cgi/wiki?PrettyAdventuresomeProgramming

Slide 30

Extreme Programming
Requires:

• Pair Programming
• Deliver an increment every 3 weeks
• Customer on the team full-time
• Regression tests that pass 100% of the time

Slide 31

In return you donÕt have to:

• Put comments in the code
• Write formal requirements
• Write design documents

Slide 32

Now, on this project weÕre pretty
close:

• Our guys are spread around the building and
the country, so we don’t actually do pair
programming

• Actually, we deliver our increments every 4-6
months

• We don’t have customers anywhere in sight
• We don’t have any unit tests

Slide 33

But at least:

• We don’t have many comments in the code
• We don’t have formal requirements document
• We don’t have design documents

Slide 34

So weÕre ALMOST extreme!

DonÕt use XP to legitimize not
doing those things that you donÕt
want to do, without doing the XP
practices that protect you from not
doing them!

“Almost XP” = not XP at all

Slide 35

Internet Links to XP
• http://www.xprogramming.com

– Ron Jeffries's site. Explains xp and offers resources for learning more.

• http://www.extremeprogramming.org/
– Don Well's site. A great intro to XP. Presents rules and practices clearly.

• http://c2.com/cgi/wiki?ExtremeProgramming
– The Twelve Practices of ExtremeProgramming

• http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
– roadmap to find your way to the most important pages in a logical order.

• http://www.ObjectMentor.com/
– Offers XP training. Based in Libertyville. Various papers on XP.

• http://www.cs.utah.edu/~lwilliam/Papers/
– Articles on Pair Programming

Slide 36

Books About XP

Slide 37

Other Approaches

• UML: XP uses it on the whiteboard
(if at all)

• Rational Unified Process: XP has many
fewer roles & documents; XP emphasizes
team over artifacts

• SCRUM: XP compatible

Slide 38

Summary

• XP is code centered
– do only those things that speed up code production

– do only those things developers like to do
• coding and direct feedback through testing

• XP is people oriented
– knowledge transfer through communication with real people

• XP is lightweight
– do away with all overhead

– create quality products by rigorously testing the code
– only tested for small groups of developers

• The XP principles are not new

