
Grace A New Educational

Object-O!ented Programming

Langua"

James Noble

Andrew Black

Kim Bruce

5

ECOOP 2010, Maribor, Slovenia
6

Supporters
Peter Andreae, Victoria
University of Wellington

Gilad Bracha, Ministry of Truth

John Boyland, University of
Wisconsin, Milwaukee

Pascal Constanza, Vrije
Universiteit Brussel

Sophia Drossopoulou, Imperial
College, London

Susan Eisenbach, Imperial
College, London

Michael Hicks, University of
Maryland

Michael Kölling, University of
Kent at Canterbury

Gary Leavens, University of
Central Florida

Shane Markstrum, Bucknell
University

Doug Lea, SUNY Oswego

Dirk Riehle, Friedrich-
Alexander-University of
Erlangen-Nürnberg

Ewan Tempero, The University
of Auckland

Dave Thomas, Bedarra
Research Labs

Laurence Tratt, Middlesex
University

Jan Vitek, Purdue University
7

Design by a really small committee

Supported by a wide community

Public Blog: http://www.gracelang.org

8

http://www.gracelang.org
http://www.gracelang.org

Obvious Questions:
What is an educational language?

Why not use a “real” language?

Why not Java? Scala? Python?

Why now?

Non-Questions:

why start with objects?

why teach objects at all?

9

What is an educational
programming language?

Designed specifically for novices

Can have limited or broad domain of
application

We are interested in broad domain

Main focus is on programming in the small,
but some modularity features.

10

Teach Industrial- Strength Languages?

Too much conceptual redundancy

High overhead for simple programs

Too hard to read and write

Conceptual clarity sacrificed for practicality

Saddled w/backward compatibility

11

Why Not Java?

Overloading

Confusing subtyping
with inheritance

No user-defined
operators

Primitive & Object
types

No lambdas

Weak support for
Generics

Covariant arrays

Equality not
automatic

No definable control
structures

Synchronized
12

Why Not Scala?

Too complex for novices

Multiple ways of doing everything

Weak generics

Powerful, but complex, type system

13

Why Not Python?

Weak encapsulation

Can’t teach typed programming

Mismatch between method declarations &
message sends

__init__

Implicit creation of fields

14

Why Now?
Happy teaching Java next 3-5 years

In 2015, Java will be 20 years old

State of the art has advanced

- patches look like … patches

New languages bring good ideas

… but are for professionals, not students

To be ready in 2015, we need to start now.

15

Our User Model

First year students in OO CS1 or CS2

objects early or late,

static or dynamic types,

functionals first or scriptings first or …

Second year students

Faculty & TAs — assignments and libraries

16

We are in the dog food business

User model:
Beginning
students

Customer:
experienced
instructors

The consumer is not the customer

17

The Big Question

What do we hope the students learn?

1. To program well in Grace?

2. To understand and use the o-o model?

3. To be prepared for other languages
and models?

My position: 3 is less important than 1
and 2

18

Features
Uncluttered code;
layout significant
Structural typing
Local type inference
Subtyping separated
from inheritance
User-definable
operators
Sensible generics
Lambdas

Allows both static
and dynamic typing
Parallel programming
Equals & hashcode
work automatically
v instead of getV()
for access
Minimize
“incantations”
public static void main

19

Warning!

20

Warning!

Design is in early phases

20

Warning!

Design is in early phases

Ambitious goals

20

Warning!

Design is in early phases

Ambitious goals

Still disagree on many details

20

Grace Fundamentals

Everything is an object

Simple method dispatch

Single inheritance via cloning and
concatenation

Language levels for teaching

Extensible via Libraries (control & data)

Java / C / Python / Scala programmers
should be able to read Grace programs

21

method average -> Number
//!reads numbers from this stream and averages them
{! var total := 0
! var count := 0
! until {atEnd} do {
 ! count := count + 1
 ! total := total + readNumber }
 if (count = 0) then {return 0}
! return total / count }

Simple Grace Example

22

method average -> Number
//!reads numbers from this stream and averages them
{! var total := 0
! var count := 0
! until {atEnd} do {
 ! count := count + 1
 ! total := total + readNumber }
 if (count = 0) then {return 0}
! return total / count }

Simple Grace Example

22

Might appear in a stream object

method average -> Number
//!reads numbers from this stream and averages them
{! var total := 0
! var count := 0
! until {atEnd} do {
 ! count := count + 1
 ! total := total + readNumber }
 if (count = 0) then {return 0}
! return total / count }

Simple Grace Example

22

method average -> Number
//!reads numbers from this stream and averages them
{! var total := 0
! var count := 0
! until {atEnd} do {
 ! count := count + 1
 ! total := total + readNumber }
 if (count = 0) then {return 0}
! return total / count }

Simple Grace Example

22

implicit self.implicit self.

method average -> Number
//!reads numbers from this stream and averages them
{! var total := 0
! var count := 0
! until {atEnd} do {
 ! count := count + 1
 ! total := total + readNumber }
 if (count = 0) then {return 0}
! return total / count }

Simple Grace Example

22

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

23

const welcomeAction := { print "Hello" }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

23

const welcomeAction := { print "Hello" }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

23

object { method apply
! ! ! ! ! ! { print "Hello" } }

const welcomeAction := { print "Hello" }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

23

const welcomeAction := { print "Hello" }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

23

const welcomeAction := { print "Hello" }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

23

const welcomeAction := { print "Hello" }

welcomeAction.apply

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

23

const welcomeAction := { print "Hello" }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

24

const orderingFunction := { a, b → a.name ≤ b.name }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

24

const orderingFunction := { a, b → a.name ≤ b.name }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

24

object { method apply(a, b) {
! ! ! ! a.name ≤ b.name } }

const orderingFunction := { a, b → a.name ≤ b.name }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

24

const orderingFunction := { a, b → a.name ≤ b.name }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

24

const orderingFunction := { a, b → a.name ≤ b.name }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

24

const orderingFunction := { a, b → a.name ≤ b.name }

if orderingFunction.apply(x, y) then { … }

Everything is an Object
except for methods

Functions are objects

as in Smalltalk, lambda expressions create
objects that mimic functions

24

const orderingFunction := { a, b → a.name ≤ b.name }

But every object is not an instance of a class

Instead: objects are self-contained

Objects are created by executing an object
constructor:

25

object {
 const x:Number := 2
 const y:Number := 3
 method distanceTo other:Point → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

Everything is an Object

26

object {
 const x:Number := 2
 const y:Number := 3
 method distanceTo other:Point → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

26

x y distance
To 2 3

object {
 const x:Number := 2
 const y:Number := 3
 method distanceTo other:Point → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

27

object {
 const x:Number := 2
 const y:Number := 3
 method distanceTo other:Point → Number {
 ((x - other.x)^2 + (y - other.y)^2) } }

Design Decisions:
fields and methods share the same namespace

p.x might be a field access or a method request

the implementation can replace a field by a
method without the client knowing

What about classes?
Pro

Instructors are
familiar with
classes

Classes capture a
common pattern: a
"factory" object
that makes similar
"instance" objects

Brevity

28

Con

Unnecessary — just
use objects

The common pattern
usually lies in some
way

Restrictive, e.g.
Smalltalk's parallel
hierarchies

Grace has classes; they resemble a block
containing an object constructor

We try to make the syntax familiar, but not
so familiar that we lie

Classes are restrictive, but the full power of
object constructors is available to implement
the general case

29

Compromise Design

Point Class

30

const Point := class { x’: Number, y’:Number →
 const x:Number := x’
 const y:Number := y’
 method distanceTo other:Point → Number {
 ((x - other.x)^2 + (y - other.y)^2) }
 }

Point Class

30

new(x',y')
xydxy

const Point := class { x’: Number, y’:Number →
 const x:Number := x’
 const y:Number := y’
 method distanceTo other:Point → Number {
 ((x - other.x)^2 + (y - other.y)^2) }
 }

Point Class

30

new(x',y') x y distance
To x' y'

const Point := class { x’: Number, y’:Number →
 const x:Number := x’
 const y:Number := y’
 method distanceTo other:Point → Number {
 ((x - other.x)^2 + (y - other.y)^2) }
 }

Point Class

30

const Point := class { x’: Number, y’:Number →
 const x:Number := x’
 const y:Number := y’
 method distanceTo other:Point → Number {
 ((x - other.x)^2 + (y - other.y)^2) }
 }

Point Class

31

const Point = object {
 method new (x’:Number, y’:Number) {
! ! ! object {
! ! ! ! const x:Number := x’
 ! ! ! const y:Number := y’
 ! ! ! method distanceTo other:Point→Number {
 ! ! ! ! ((x - other.x)^2 + (y - other.y)^2) }}}
}

Class: Summary

32

const Point := class { x’: Number, y’:Number →
 const x:Number := x’
 const y:Number := y’
 method distanceTo other:Point → Number {
 ((x - other.x)^2 + (y - other.y)^2) }
 }

23

const Point := object {
 !! method new (x’:Number, y’:Number) {
! ! ! object {
! ! ! ! const x:Number := x’
 !! ! ! const y:Number := y’
 !! ! ! method distanceTo other:Point→Number {
 !! ! ! ((x - other.x)^2 + (y - other.y)^2) }}}
}

One true message send
Like Smalltalk and Self:

no overloading

"method request" names the method and provides
the arguments

"dynamic dispatch" selects the correspondingly-
named method in the receiver

"method execution" occurs in the receiver

field access is via methods

33

One true message send
Like Smalltalk and Self:

no overloading

"method request" names the method and provides
the arguments

"dynamic dispatch" selects the correspondingly-
named method in the receiver

"method execution" occurs in the receiver

field access is via methods

33

(I'm trying to learn not to say "message-send" or
"method call".)

const andrewInfo := object {
! var firstName := "Andrew"
! const lastName := "Black"
! method printOn s:Stream {
! ! s.puts firstName
! ! s.puts ' '
! ! s.puts lastName }
}

Example: a Contact Object

34

const andrewInfo := object {
! var firstName := "Andrew"
! const lastName := "Black"
! method printOn s:Stream {
! ! s.puts firstName
! ! s.puts ' '
! ! s.puts lastName }
}

Example: a Contact Object

34

Creates a
method
lastname

const andrewInfo := object {
! var firstName := "Andrew"
! const lastName := "Black"
! method printOn s:Stream {
! ! s.puts firstName
! ! s.puts ' '
! ! s.puts lastName }
}

Example: a Contact Object

34

Creates a
method
lastname

Creates 2 methods:
firstName and firstName:=

const andrewInfo := object {
! privar ¿firstName?
! method firstName -> String { ¿firstName? }
! method firstName:= s:String { ¿firstName? := s }
! ¿firstname? := "Andrew"
! priconst ¿lastName?
! method lastName -> String { ¿lastName? }
! ¿lastname? := "Black"
! method printOn s:Stream {
! ! s.puts firstName
! ! s.puts ' '
! ! s.puts lastName }
}

Contact Object Expanded

35

const andrewInfo := object {
! privar ¿firstName?
! method firstName -> String { ¿firstName? }
! method firstName:= s:String { ¿firstName? := s }
! ¿firstname? := "Andrew"
! priconst ¿lastName?
! method lastName -> String { ¿lastName? }
! ¿lastname? := "Black"
! method printOn s:Stream {
! ! s.puts firstName
! ! s.puts ' '
! ! s.puts lastName }
}

Contact Object Expanded

35

Creates a
method
lastname

Not
proposed for
surface syntax

const contact := object {
! method named (first, last) -> Contact {
! ! object {
! ! ! var firstName:String := first
! ! ! var lastName:String := last
! ! ! method printOn s:Stream {
! ! ! ! s.puts firstName
! ! ! ! s.puts ' '
! ! ! ! s.puts lastName } } }
! const database := MutableSequence.empty
! method add c:Contact {
! ! database addLast c }
!
!

}

Contact Factory

36

const contact := object {
! method named (first, last) -> Contact {
! ! object {
! ! ! var firstName:String := first
! ! ! var lastName:String := last
! ! ! method printOn s:Stream {
! ! ! ! s.puts firstName
! ! ! ! s.puts ' '
! ! ! ! s.puts lastName } } }
! const database := MutableSequence.empty
! method add c:Contact {
! ! database addLast c }
!
!

}

Contact Factory

36

attributes of the
outer "factory"

object

const contact := object {
! method named (first, last) -> Contact {
! ! object {
! ! ! var firstName:String := first
! ! ! var lastName:String := last
! ! ! method printOn s:Stream {
! ! ! ! s.puts firstName
! ! ! ! s.puts ' '
! ! ! ! s.puts lastName } } }
! const database := MutableSequence.empty
! method add c:Contact {
! ! database addLast c }
!
!

}

Contact Factory

36

const contact := object {
! method named (first, last) -> Contact {
! ! object {
! ! ! var firstName:String := first
! ! ! var lastName:String := last
! ! ! method printOn s:Stream {
! ! ! ! s.puts firstName
! ! ! ! s.puts ' '
! ! ! ! s.puts lastName } } }
! const database := MutableSequence.empty
! method add c:Contact {
! ! database addLast c }
!
!

}

Contact Factory

36

returns a contact object
initialized to (first, last)

const contact := object {
! method named (first, last) -> Contact {
! ! object {
! ! ! var firstName:String := first
! ! ! var lastName:String := last
! ! ! method printOn s:Stream {
! ! ! ! s.puts firstName
! ! ! ! s.puts ' '
! ! ! ! s.puts lastName } } }
! const database := MutableSequence.empty
! method add c:Contact {
! ! database addLast c }
!
!

}

Contact Factory

36

Sample client code

const host := contact.named("Graham", "Hutton")

const guest := contact.named("Andrew", "Black")
contact.database.add host
contact.database.add guest

37

Inheritance

Grace's
inheritance
story is based
on an old idea
of Taivalsaari

Cloning + Concatenation = inheritance
ACM SIGPLAN OOPS Messenger Volume 6 Issue 3, July 1995

38

andrewInfo
first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

Suppose that we have an object:

39

andrewInfo
first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

Suppose that we have an object:

We want to add a telephone number. The "delta" is:

39

andrewInfo

andrewPhone

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411"

Suppose that we have an object:

We want to add a telephone number. The "delta" is:

39

andrewInfo

andrewPhone

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411"

1. Clone both objects

Suppose that we have an object:

We want to add a telephone number. The "delta" is:

39

andrewInfo

andrewPhone

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411"

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411"

1. Clone both objects

Suppose that we have an object:

We want to add a telephone number. The "delta" is:

39

andrewInfo

andrewPhone

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411"

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411"

1. Clone both objects

Suppose that we have an object:

We want to add a telephone number. The "delta" is:

2. Concatenate the copies
39

andrewInfo

andrewPhone

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411"

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"work

phone
work

phone:=
"+1 503

725 2411"

andrewPhone extends andrewInfo

40

In code:
const andrewInfo := object {
! var firstName := "Andrew"
! const lastName := "Black"
! method printOn s:Stream {
! ! s.puts firstName
! ! s.puts ' '
! ! s.puts lastName }
}

const andrewPhone := object {
! var officePhone := "503 725 2411"
}

const andrewPhoneInfo := andrewPhone extends andrewInfo
41

No need to name
intermediate objects:

const andrewPhoneInfo := object {
! var officePhone := "503 725 2411"
} extends contact.named ("Andrew", "Black")

42

Notice what this means:

clone means shallow copy:

new object gets copies of the fields and the
methods of the orignal objects

it’s possible for an object to have two or
more methods with the same name

43

Let’s fix printOn…

const andrewPhoneInfo := object {
! var officePhone := "503 725 2411"
! method printOn s:Stream {
! ! super.printOn s
! ! s.puts ' '
! ! s.puts officePhone
! }
} extends contact.new ("Andrew", "Black")

44

andrewPhoneInfo

45

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411" printOn

andrewPhoneInfo

45

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411" printOn

method printOn s:Stream {
! ! super.printOn s
! ! s.puts ' '
! ! s.puts officePhone
}

andrewPhoneInfo

45

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411" printOn

method printOn s:Stream {
! ! super.printOn s
! ! s.puts ' '
! ! s.puts officePhone
}

super.printOn
means the next printOn

in the object

andrewPhoneInfo

45

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411" printOn

method printOn s:Stream {
! ! super.printOn s
! ! s.puts ' '
! ! s.puts officePhone
}

super.printOn
means the next printOn

in the object

andrewPhoneInfo

45

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411" printOn

method printOn s:Stream {
! ! super.printOn s
! ! s.puts ' '
! ! s.puts officePhone
}

super.printOn
means the next printOn

in the object

andrewPhoneInfo

45

first
Name

last
Name

last
Name:= printOn "Andrew" "Black"

work
phone

work
phone:=

"+1 503
725 2411" printOn

method printOn s:Stream {
! ! super.printOn s
! ! s.puts ' '
! ! s.puts officePhone
}

super.printOn
means the next printOn

in the object

next might be a better keyword than super

Not your Grandfather’s Inheritance

46

Not your Grandfather’s Inheritance

What’s more important:

To have a simple, explicable, inheritance
story?

To have an inheritance story that’s like the
mainstream languages of the 1990’s?

46

Not your Grandfather’s Inheritance

What’s more important:

To have a simple, explicable, inheritance
story?

To have an inheritance story that’s like the
mainstream languages of the 1990’s?

Or:

Teachability, vs. familiar to instructors

46

Objects include data and actions

So it’s essential to be able to define new
control operations on new objects

Example: a new kind of dictionary

It must be possible to define new
iterators, lookups, etc. with a syntax that’s
as convenient for the user as the “built
in” objects

47

Extensible via libraries

We achieve this!
Nothing is built in!

As in SELF, all built-in objects are really
defined in libraries, including the Booleans.

if ‹condition› then ‹block› else ‹block›,
while ‹block› do ‹block›, and
with ‹collection› do ‹block›
are all method requests.

The methods are defined on object Grace,
and inherited by all other objects

48

object Grace := {
 method if c:Boolean
 then t:Block[→α]
 else f:Block[→α] → α {
 c ifTrue t ifFalse f }

 method while c:Block[→Boolean]
 do a:NullaryBlock → void {
 c.apply ifTrue { a.apply; while c do a }

 method until c:Block[→Boolean]
 do a:NullaryBlock → void {
 while {c.apply.not} do a }

}
49

object true := {
 method ifTrue t:Block[→α]
 ifFalse f:Block[→α] → α {
 t.apply } }

object false := {
 method ifTrue t:Block[→α]
 ifFalse f:Block[→α] → α {
 f.apply } }

50

object Grace = { …
 method with c:Collection[ε]
 do a:Block[ε→void] {
 c do a }

 method with c:Collection[ε]
 map a:Block[ε→α] → Collection[α] {
 c collect a }

 method with c: Collection[ε]
 select a:Block[ε→Boolean]
 → Collection[ε] {
 c.select a }
}

51

class interval = {
 const start:Number
 const stop:Number
 const step:Number

 method do action:Block[Number→void] {
 var element
 var index := 0
 while {index < self size}
 do { element := start + (index × step)
 index := index + 1
 action.apply element } }

… }

52

What about case?
Pro

Instructors are
familiar with case

Case is concise

Students will meet
case in other
languages

53

Con

Unnecessary — just use
method dispatch

Assume “open classes”

Case violates object
encapsulation

“Tell, don’t ask”

What about case?
Pro

Instructors are
familiar with case

Case is concise

Students will meet
case in other
languages

53

Con

Unnecessary — just use
method dispatch

Assume “open classes”

Case violates object
encapsulation

“Tell, don’t ask”

Can we devise a simple, object-oriented dispatch?

What about case?
Pro

Instructors are
familiar with case

Case is concise

Students will meet
case in other
languages

53

Con

Unnecessary — just use
method dispatch

Assume “open classes”

Case violates object
encapsulation

“Tell, don’t ask”

Can we devise a simple, object-oriented dispatch?

Should we?

How can we teach case without case?

Add algebraic types and pattern matching?

Adopt Newspeak-style quad-dispatch case?

Scala case-classes?

54

Pattern-matching through method dispatch
(James Noble, via Gilad Bracha)

Case as object (Andrew Black, via Blume,
Acar & Chae)

55

The last 2 men standing…

Pattern-matching
through method dispatch

56

s:Scrutinee p:Pattern

Pattern-matching
through method dispatch

56

s:Scrutinee p:Pattern

matchPattern(p)

Pattern-matching
through method dispatch

56

s:Scrutinee p:Pattern

matchPattern(p)

matchObject(s)

Pattern-matching
through method dispatch

56

s:Scrutinee p:Pattern

matchPattern(p)

matchObject(s)

matchObject does
different things in
different patterns:

Type patterns
ask s for its
type

Literal patterns
check for =

 etc

Pattern-matching
through method dispatch

56

s:Scrutinee p:Pattern

matchPattern(p)

matchObject(s)

Pattern-matching
through method dispatch

56

s:Scrutinee p:Pattern

matchPattern(p)

matchObject(s)

extract

Pattern-matching
through method dispatch

56

s:Scrutinee p:Pattern

matchPattern(p)

matchObject(s)

extract

extract returns
a tuple
containing the
“internal state”
of the scrutinee

Pattern-matching
through method dispatch

56

s:Scrutinee p:Pattern

matchPattern(p)

matchObject(s)

extract

Pattern-matching
through method dispatch

56

s:Scrutinee p:Pattern

matchPattern(p)

matchObject(s)

extract

Treat any lambda-expression as a pattern

Case as Object

57

s:Scrutinee c:caseObject

Case as Object

57

s:Scrutinee c:caseObject

match(c)

Case as Object

57

s:Scrutinee c:caseObject

match(c)

branchi(internal state)

Open Issues

Statements as well as Expressions?

case statement?

58

Open Issues

Statements as well as Expressions?

case statement?

58

details of class syntax

Open Issues

Statements as well as Expressions?

case statement?

58

details of class syntax

Open Issues

Statements as well as Expressions?

case statement?

58

details of class syntax

Open Issues

Statements as well as Expressions?

case statement?

58

details of class syntax

What have we decided?
Types are optional

Lambdas-expressions are supported

Extensibility via libraries

Types (= interfaces) are structural

Classes define an interface corresponding to
the operations on their instances

Support for immutable objects

Classes are open
59

Types are Optional

This means more than inferring type
declarations:

“Untyped semantics”: types don’t change
the semantics of correct programs — and
not the syntax either!

explicit type annotations are assertions

just like assert s.notEmpty

60

dynamic and static type-checking:
two interpretations of the same program

61

dynamic and static type-checking:
two interpretations of the same program

The Laissez faire or George W. Bush
interpretation:

do what you want, we won’t try to stop you.
If you mess up, the PDIC will bail you out.

61

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

dynamic and static type-checking:
two interpretations of the same program

The Laissez faire or George W. Bush
interpretation:

do what you want, we won’t try to stop you.
If you mess up, the PDIC will bail you out.

Program debugger and interactive checker

61

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

dynamic and static type-checking:
two interpretations of the same program

The Laissez faire or George W. Bush
interpretation:

do what you want, we won’t try to stop you.
If you mess up, the PDIC will bail you out.

The “The Nanny State” or Harold Wilson
interpretation.

We will look after you. If it is even remotely
possible that something may go wrong, we
won’t let you try.

62

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

dynamic and static type-checking:
two interpretations of the same program

The Laissez faire or George W. Bush
interpretation:

The “The Nanny State” or Harold Wilson
interpretation.

63

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

A third interpretation is useful:

The Laissez faire or George W. Bush
interpretation:

The “The Nanny State” or Harold Wilson
interpretation.

The “Proceed with caution”, or Edward R.
Murrow, interpretation.

The checker has been unable to prove that
there are no type errors in your program. It
may work; it may give you a run-time error.
Good night and good luck.

64

http://www.u-s-history.com/pages/h844.html
http://www.u-s-history.com/pages/h844.html

Three interpretations

Under all three interpretations, an error-free
program has the same meaning.

Under the Wilson interpretation:

some error-free programs won’t be
permitted to run

an erroneous program will result in a
checked run-time error.

65

Three interpretations

Under all three interpretations, an error-free
program has the same meaning.

Under the Bush interpretation, all checks will
be performed at runtime.

Even those that are guaranteed to fail —
because a counter-example is more useful
than a type-error message

66

Three interpretations

Under all three interpretations, an error-free
program has the same meaning.

Under the Bush interpretation, all checks will
be performed at runtime.

Under the Murrow interpretation, you will get a
mix of compile-time warnings and run-time
checks.

Under the Wilson interpretation, you won't be
permitted to run a program that might have a
type-error

67

Help!

Supporters

Programmers

Implementers

Library Writers

IDE Writers

Testers

Teachers

Students

Tech Writers

Textbook Authors

Blog editors

Community Builders

68

Schedule

2011: 0.1, 0.2 and 0.5 language releases,
hopefully prototype implementations

2012 0.8 language spec, some mostly complete
implementations

2013 0.9 language spec, reference
implementation, experimental classroom use

2014 1.0 language spec, robust implementations,
textbooks, initial adopters for CS1/CS2

2015 ready for general adoption?
69

No conclusions —
we aren’t done yet

70

Questions

Comments

Suggestions

Brickbats

