The Expression Problem

9%@@

Andrew P. Black
Portland State University

Portland State

IIIIIIIIII

Monday, 6 July 2015

Sy
S,
Cli 1
. .
.
-
-

—_
-
ST
I = s
e
B A

5)
§ —l if .1
0 MISSOU/)‘_‘. Minot Y 5 Ll me ! "
. Great Falls : a L e 4 -
3 ;
Salem O MOHNTAHNA 0 MINHESOTA

) 2 MAINE

y) ; Sherbroake
Eugene 4 H : : 2
OREGOH '

) 1 * s : '-.' Augusta

L {}) Boston

7 Jasn
A ST

(=) "
co SIN ©

........................ Milwa kee

é.reB,I:I Bay

MICHIGSH

San

Francisco Sacra%hento
O‘é :

] —h 1) Ls oF ‘ d
{:;‘:).-:- T :E ! | HE) ;. jFort i - :“. w‘a New York
HEVADA ;_; = ; P : o ‘r 4 ‘% Philadelphia
o :

. : : e g - : gl . WL .i.n[')'iaver
San Jose . : : snafi ' " A &o L

Fresno - : Denver 5 3! ¢ ¢ 5 .;‘gl?:sh"_]gton,
© : : . b .

; : ¥ @

IFORHIA ~_ st George ; Colorado Springs
Las Vegas ' ;

Bakersfield

Virginia
°G Beach

LETT

: 5 : o ‘
o : S b e O . Greenville
Los Angeles™, . : : ¥

San Diego L

I__'Tq"melo
Birminigham

I % s "
. gNogales: | Y. g : 5
i T :

4 Corpus
5\ Christi

Portland State

UNIVERSITY

Monday, 6 July 2015

The Expression
Problem

Oliveira & Cook (ECOOP

2012):

“The “expression problem”. (EP)
138, 10, 46] is now a classical
problem in programming languages.

It refers to the difficulty of writing
data abstractions that can be easily

extended with both new operations
and new data variants.”

Portland State

UNIVERSITY

Monday, 6 July 2015

Extensibility for the Masses
Practical Extensibility with Object Algebras

Bruno C. . S. Oliveiral and William R. Cook2

'National University of Singapore
bruno@ropas .Snu.ac.kr
2 University of Texas, Austin
wcook@cs. utexas . edy

What zs the Expression Problem?

e Consider a simple implementation of
(immutable) lists

Operations
first rest ISEmpty

.| ConsList
2l return e return | false
ol &
S |
~ =|EmptyList error error true

D)

Portland State

IIIIIIIIII

Monday, 6 July 2015

Algebraic data types:

* Organize program by columns

Operations
first rest ISEmpty
.| ConsList
. return e return | false
» S((e)
o ©
-
O _
~ | EmptyList error error true
O
c - ~ S
S S 2.2
3 3 £ 9
= = sal=
o= 2 2| o=
12 7
i= L

Portland State

IIIIIIIIII

Monday, 6 July 2015

Algebraic data types:

* Organize program by columns

- easy to add a new column, but hard to add a

necw row
Operations
first rest ISEmpty
.| ConsList
. return e return | false
» S((e)
o ©
-
O _
~ | EmptyList error error true
O
= - ~ S
S E 2.2
3 3 £ 9
= = sal=
o= 2 2| &=
12 7
i= 2

Portland State

IIIIIIIIII

Monday, 6 July 2015

Objects

* Organize program by rows

Operations

Repres-

entations

first

Portland State

UNIVERSITY

Monday, 6 July 2015

Objects

* Organize program by rows

- easy to add a new row; but hard to add a new
column

Operations

first

Repres-
entations

Portland State

IIIIIIIIII

Monday, 6 July 2015

Example: add an operation

* One new function with algebraic data, but
two new methods in two classes with objects

Operations

return e

entations
e
=
-
@

Repres-

iISEmpty
function

first function
rest function
print function

Portland State

IIIIIIIIII

Monday, 6 July 2015

Why is this “difficult™

* An editing problem
- assumption: adding methods to two classes
involves editing two files
* A packaging problem
- assumption: the class is the smallest unit of
modularity, so editing a class breaks modularity
* A typing problem

- assumption: fields of the objects have been
given types that allow just the base operations

Portland State

IIIIIIIIII

Monday, 6 July 2015

Some History ...

Oliveira & Cook (ECOOP

2012):

“The “expression problem” (EP)
138, 10, 46] is now a classical
problem in programming
languages.”

Portland State

UNIVER SITY

Monday, 6 July 2015

38. Reynolds, J.C.: User-defined types and

procedural data structures as complementary
approaches to type abstraction. In: Schuman,
S.A. (ed.) New Directions in Algorithmic
Languages, pp. 157-168 (1975)

. Cook,W.R.: Object-oriented programming

versus abstract data types. In:Proceedings of
the REX School/Workshop on Foundations of
Object-Oriented Languages. pp. 151-178.
Springer-Verlag (1991)

46. Wadler, P.: The Expression Problem. Email

(Nov 1998), discussion on the Java
Genericity mailing list

II

Some History ...

Krishnamurthi et al. captured the

. Krishnamurthi, S., Felleisen, M., and
1SSuUc:

Friedman, D. P. 1998. Synthesizing object-
oriented and functional design to promote re-

“ A recursive l)/ a’eﬁn ed set Of data use. In ECOOP’98 — Object-Oriented
b 15 10 Programming, E. Jul, Ed. LNCS vol. 1445.
must be processed by several different Springer, pp. 91-113.
tools. In anticipation of future
extensions, the data spectfication and
the tools should therefore be

tmplemented such that it is easy to

1. add a new variant of data and

gaf/’u st the exi1 sting tools 46. Wadler, P.: The Expression Problem. Email

dccom’z'ngly, and (Nov 19.98), d1.s§:uss%on on the Java
Genericity mailing list

2. extend the collection of tools.”

Portland State

12
||||||||||

Monday, 6 July 2015

Some History ...

Krishnamurthi et al. captured the

. Krishnamurthi, S., Felleisen, M., and
1SSuUc:

Friedman, D. P. 1998. Synthesizing object-
oriented and functional design to promote re-

“ A recursive l)/ a’eﬁn ed set Of data use. In ECOOP’98 — Object-Oriented
b 15 10 Programming, E. Jul, Ed. LNCS vol. 1445.
must be processed by several different Springer, pp. 91-113.
tools. In anticipation of future
extensions, the data spectfication and

the tools should therefore be

tmplemented such that it is easy to
1. add a new variant of data and

ddffﬂft the existing tools 46. Wadler, P.: The Expression Problem. Email
dccom’z'ngly and m (Nov 1998), discussion on the Java
J

Genericity mailing list

2. extend the collection of tools.”

Portland State

12
||||||||||

Monday, 6 July 2015

Some History ...

Krishnamurthi et al. captured the

. Krishnamurthi, S., Felleisen, M., and
1SSuUc:

Friedman, D. P. 1998. Synthesizing object-
oriented and functional design to promote re-

“ A recursive l)/ a’eﬁn ed set Of data use. In ECOOP’98 — Object-Oriented
b 15 10 Programming, E. Jul, Ed. LNCS vol. 1445.
must be processed by several different Springer, pp. 91-113.
tools. In anticipation of future
extensions, the data spectfication and

the tools should therefore be

tmplemented such that it is easy to
1. add a new variant of data and

ddffﬂft the existing tools 46. Wadler, P.: The Expression Problem. Email
dccom’z'ngly and m (Nov 1998), discussion on the Java
J

Genericity mailing list

2. extend the collection of toc

Portland State

IIIIIIIIII

MaU
SUwWN102

12

Monday, 6 July 2015

Some History ...

Krishnamurthi et al. captured the

. Krishnamurthi, S., Felleisen, M., and
1SSUcC:

Friedman, D. P. 1998. Synthesizing object-
oriented and functional design to promote re-
use. In ECOOP’98 — Object-Oriented
Programming, E. Jul, Ed. LNCS vol. 1445.
Springer, pp. 91-113.

“A recursively defined set of dat

must be processed by several differen
tools. In anticipation of future
extensions, the data spectfication and

the tools should therefore be

tmplemented such that it is easy to

1. add a new variant of data and

adjust the existing tools 46
accordingly, and m

2. extend the collection of tools_

M
=
Portland State

IIIIIIIIII

SUwWN102

12

Monday, 6 July 2015

Some History ...

Wadler made this “problem” famous
in 1998 (by coining a catchy name)

“The Expresion Problem delineates a
central tension in language design.
Accordingly, it has been widely discussed,
including Reynolds (1975), Cook (1990),
and Krishnamurthi, Felleisen and
Friedman (1998); the latter includes a
more extensive list of references. It bas
also been discussed on this maziling list by
Corky Cartwright and Kim Bruce. Tet I
know of no widely-used language that
solves The Expression Problem while
satisfying the constraints of independent
compilation and static typing.”

Portland State

UNIVERSITY

Monday, 6 July 2015

38.

10.

Reynolds, J.C.: User-defined types and
procedural data structures as complementary
approaches to type abstraction. In: Schuman,
S.A. (ed.) New Directions in Algorithmic
Languages, pp. 157-168 (1975)

Cook,W.R.: Object-oriented programming
versus abstract data types. In:Proceedings of
the REX School/Workshop on Foundations of
Object-Oriented Languages. pp. 151-178.
Springer-Verlag (1991)

46. Wadler, P.: The Expression Problem. Email

(Nov 1998), discussion on the Java
Genericity mailing list

15

Some History ...

Wadler made this “problem” famous 38.Reynolds, J.C.: User-defined types and

in 1998 (by. coining a catchy name) procedural data structures as complementary
approaches to type abstraction. In: Schuman,
“Tlge Expresjon Problesa deljnedtes a S.A. (ed) New Directions in Algorithmic

Languages, pp. 157-168 (1975)

central tension in language agan.
Accordingly, it bas been widely dMgssed,
including Reynolds (1975), Cook (1990
and Krishnamurthi, Felleisen and
Friedman (1998); the latter includes a
more extensive list of references. It bas
also been discussed on this maziling list by
Corky Cartwright and Kim Bruce. Yet 1
know of no widely-used language that
solves The Expression Problem while
satisfying the constraints of independent
compilation and static typing.”

10. Cook ,W.R.: Qbd
Versus

Qeramming
oS of
) Of

Portland State 13

UNIVERSITY

Monday, 6 July 2015

Why wait until 19987

* Simula ’67, C++
- have algebraic data as well as objects
e Smalltalk 8o

- classes are not the unit of modularity

e Visitor Pattern (name Visitor coined 1993)

- solves the problem, at the cost of pre-planning

Portland State

IIIIIIIIII

Monday, 6 July 2015

Why wait until 19987

Portland State

IIIIIIIIII

Why wait until 19987

‘;:_.{) Java

«~

—

IIIIIIIIII

Why wait until 19987

Back to the future ...

* How was this “problem” solved in Smalltalk?

Classes named by global variables
methods are the unit of compilation & packaging

a package contains both new classes (and their
methods) and extensions to existing classes (zew

methods)

loading a package into a Smalltalk system:

» changes some existing classes (overrides and adds
methods, adds instance variables)

» introduces some new classes

Portland State

Monday, 6 July 2015

UUUUUUU

ITY

16

0606 Snapshot Browser: Grace-Parser (@)

*Extensions PPToken ~ *Grace-Parser symbol
Grace-Parser PPTokenParser

PositionableStream
SequenceableCollectio

Stream

String

Text
<— >

symbol
~ self asParser token trimSpaces

_/\Q/Q/ =

@

* Grace-Parser (Grace-Parser-AndrewBlack.30)
* Grace-ParserTests (Grace-ParserTests-Andrd | http//www.squeaksource.com/GraceParser
* PetitParser (PetitParser-AndrewBlack.212)
* System-Support (System-Support-MarcusDel
* Tools (Tools-MarcusDenker.407)
AST-Core (AST-Core-Ir.79)
AST-Semantic (AST-Semantic-r11)
AST-Tests-Core (AST-Tests-Core-r10)
Announcements (Announcements-adrian_lienhz
ArchiveViewer (ArchiveViewer-MarianoMartinez
AutomaticMethodCategorizer (AutomaticMethc
AutomaticMethodCateqgorizerOB (AutomaticMe
Balloon (Balloon-StephaneDucasse.49)
BitBItPen (BitBItPen-StephaneDucassel)
Bogus (Bogus-cwp.18)

» Bogusinfo (Bogusinfo-Ir.22)

Portland State 17

UNIVERSITY

Monday, 6 July 2015

B . e L 3
066 Snapshot Browser: Grace-Parser) \

*Extensions PPToken ~ *Grace-Parser symbol
Grace-Parser PPTokenParser

PositionableStream
SequenceableCollectio 6066 Shout Workspace

Stream ' i symbol

String
Text

<_>

@)

~ self asParser token trimSpaces

40

U\Q/Q/

@

* Grace-Parser (Grace-Parser-AndrewBlack.30)
* Grace-ParserTests (Grace-ParserTests-Andrd | http//www.squeaksource.com/GraceParser
* PetitParser (PetitParser-AndrewBlack.212)

* System-Support (System-Support-MarcusDel
* Tools (Tools-MarcusDenker.407)

AST-Core (AST-Core-Ir.79)

AST-Semantic (AST-Semantic-r11)
AST-Tests-Core (AST-Tests-Core-r10)
Announcements (Announcements-adrian_lienhz
ArchiveViewer (ArchiveViewer-MarianoMartinez
AutomaticMethodCategorizer (AutomaticMethc
AutomaticMethodCateqgorizerOB (AutomaticMe
Balloon (Balloon-StephaneDucasse.49)
BitBItPen (BitBItPen-StephaneDucassel)
Bogus (Bogus-cwp.18)

» Bogusinfo (Bogusinfo-Ir.22)

Portland State 17

UNIVERSITY

Monday, 6 July 2015

e T

066 Snapshot Browser: Grace-Parser)
*Extensions PPToken ~ *Grace-Parser symbol
Grace-Parser PPTokenParser
PositionableStream
SequenceableCollectio 666 Shout Workspace -
Stream G e -
String
Text 3
- S -
0060 a PPTrimmingParser e
¥ a PPTrimmingParser(trimSpaces) a PPTrimmingParser(trimSpaces)
symbol ¥ parser: a PPTokenParser(357826560)
~ celf asP: v parser: a PPLiteralSequenceParser(356253696, 'if')
» literal : 'if’
» message : "if" expected'
» properties : nil e
> size: 2
» properties : nil
» tokenClass : GraceToken —
» properties : a Dictionary (size:1)
Y trimmer : a PPLiteralObjectParser(384565248, Character space) Backport
» literal : Character space
» message : "' " expected' iro Grace Pars
» properties : nil Parser
AulViiguurmizouivu.alotyul LS VD \Ruwviiiauwimc
Balloon (Balloon-StephaneDucasse 49)
BitBItPen (BitBItPen-StephaneDucassel)
Bogus (Bogus-cwp.18)
» Bogusinfo (Bogusinfo-Ir.22)
Portland State 17
UNIVERSITY

Monday, 6 July 2015

Why does this work?

 (Classes are (mutable) objects
- adding (or changing) a method mutates the class
* (Classes are named by global variables

- loading a new version of a class definition changes
the value of the global variable, and recompiles all
existing methods

* Objects created by a methods in a class

* No modular type-checking

Portland State

IIIIIIIIII

Monday, 6 July 2015

Why doesn’t it work in Java?

* (lasses are not objects, and are immutable

- Classes can be changed only by editing the

source and recompiling

e Classes have global names, and cannot be
renamed, assigned, or aliased

* Objects created by a language built-in new

* Modular type-checking

Portland State

Monday, 6 July 2015

IIIIIIIIII

Java Smalltalk

e = nhew EmptyList e .= EmptyList new

0 = e.append(23) 0 :.=€ ++ 23

Portland State

IIIIIIIIII

Monday, 6 July 2015

Java Smalltalk

e = nhew EmptyList e .= EmptyList new

0 = e.append(23) 0 :.=€ ++ 23

Data (row) extensibility is easy: add a new package
defining a new class (but also must change
creation code)

Portland State

IIIIIIIIII

Monday, 6 July 2015

Java Smalltalk

e = nhew EmptyList e .= EmptyList new
0 = e.append(23) 0 :.=€ ++ 23
Data (row) extensibility is easy: add a new package

defining a new class (but also must change
creation code)

Operation extensibility is impossible: can't
change an existing class without editing the
source.

Portland State

IIIIIIIIII

Monday, 6 July 2015

* What about subclassing?

- idea: subclass all of the original classes to
create new variants with the additional
operations.

- Wadler focussed on generalizing the Java type
system to make it possible to write those
subclasses.

* But this doesn't help!

- We still have to change all the creation code to use
the new classes instead of the existing classes.

Portland State

Monday, 6 July 2015

IIIIIIIIII

21

(srace

* new, simple O-O language

- designed for teaching novice programmers the
concepts of object-oriented programming

® block-structured within a module
* modules are objects

* no global variables

- modules are imported under a name chosen by
the c/zent

Portland State

IIIIIIIIII

Monday, 6 July 2015

22

Oliveira and Cook’s Example

exp_base Operations

eval

N

= |

= lit(n) n

)

=

2

O

fis): sum(es, e2) | es.eval + ez.eval

oz

Portland State

IIIIIIIIII

Monday, 6 July 2015

Oliveira and Cook’s Example

exp+pretty Operations
eval pretty
=
-% lit(n) n "fn}"
=
2
O "{e1.pretty} +
54% sum(ei, e2) | es.eval + es.eval O

Portland State

IIIIIIIIII

Monday, 6 July 2015

24

dialect "staticTypes" Oliveira and Cook’s code

f hei] :
type Value = Object rom their paper, translated into Grace

type Exp = { eval —> Value }

factory method lit(i:Number) —> Exp { exp_base.grace
method x —> Number { i}
method eval —> Value { x }
}
factory method sum(a:Exp, b:Exp) —> Exp {
method | —> Exp { a}
methodr —> Exp { b }
method eval —> Value { l.eval + r.eval }

)

// Demonstration:

def threePlusFour:Exp = sum(lit 3, lit 4)
print "{threePlusFour} = {threePlusFour.eval}"
// prints: an object =7

Portland State 25

IIIIIIIIII

Monday, 6 July 2015

dialect "staticTypes" OliVCiI‘ d and COOk’S code

type Value = Object from their paper, translated into Grace

type Exp = { eval —> Value }

factory method lit(i:Number) —> Exp { exp_base.grace
method x —> Number { | }
method eval —> Value { x }
}
factory method sum(a:Exp, b:Exp) —> EXxp {
method | —> Exp { a}
methodr —> Exp { b}
method eval —> Value { l.eval + r.eval }

}

// Demonstration:

def threePlusFour:Exp = sum(lit 3, lit 4)
print "{threePlusFour} = {threePlusFour.eval}"

//pl’anS an 0bj€Ct — 7 $ apbmg exp_base_grace
self.sum[0x0x7fc6cbclb9f8] = 7

$

Portland State

IIIIIIIIII

Monday, 6 July 2015

(3raceful solution

dialect "static Types"”
import "exp base" as baseExp
type Exp = baseExp.Exp & type { pretty —> String }

factory method lit(i:-Number) —> Exp {

inherits baseEXpllt(l) eXp+prettygrace
method pretty { x.asString }

}
factory method sum(a:Exp, b:Exp) —> EXp {

inherits baseExp.sum(a, b)
method pretty { "{l.pretty} + {r.pretty}" }
]

// Demonstration:

def threePlusFour:Exp = sum(lit 3, lit 4)
print "{threePlusFour.pretty} = {threePlusFour.eval}"
// prints: 3 +4=7

26

Monday, 6 July 2015

(5raceful solution

dialect "static Types"”
import "exp base" as baseExp
type Exp = baseExp.Exp & type { pretty —> String }

factory method lit(i:-Number) —> Exp {

method pretty { x.asString }

}

factory method sum(a:Exp, b:Exp) —> Exp {
inherits baseExp.sum(a, b)
method pretty { "{l.pretty} + {r.pretty}" }

}

// Demonstration:
def threePlusFour:Exp = sum(lit 3, lit 4)

print "{threePlusFour.pretty} = {threePlusFour.eval}"
// prints: 3 +4=7

$ apbmg exp+pretty.grace
self.add [0x0x7f9d40523c58] = 7

3 +4 =7
$

Monday, 6 July 2015

Oliveira and Cook's Example

exp and pretty Operations
eval pretty

=

% ||t(n) N Il{n}ll

=

2

O "{e1.pretty} +
§ sum(e1, e2) | es.eval + ez, eval fes.pretty)”

Portland State

IIIIIIIIII

Monday, 6 July 2015

Oliveira and Cook's Example

exp+pretty+bool Operations
eval pretty
lit(n) n n}"
=
S sum(ei, €2) | ei.eval + ez eval |'{e1.pretty} + {e2.pretty}"
Qe
5
& bool(b) b {b}"
a,
=
if(c.eval)then "If {c.pretty} then
Iff(c, th, el) {th.eval) else {th.pretty} else
{el.eval} {el.pretty}"

Portland State

Monday, 6 July 2015

IIIIIIIIII

28

dialect "staticTypes"

import "exp_and_pretty" as baseExp
type Exp = baseExp.Exp

type Value = Object

exp+pretty+bool.grace

method sum(l:Exp, r:Exp) —> Exp { baseExp.sum(l, r) }
method lit(x:Number) —> Exp { baseExp.lit(x) }

factory method bool(b:Boolean) —> Exp {
method x —> Boolean { b }
method eval —> Value { x }
method pretty —> String { b.asString }
)
factory method iff(c:Exp, t:Exp, f:Exp) —> Exp {
method eval —> Value {
if (c.eval) then { t.eval } else { f.eval }
}
method pretty —> String {
"if ({c.pretty}) then {t.pretty} else {f.pretty}"

}
}

def e3plus4:Exp = sum(lit 3, lit 4)

def e2plus6:Exp = sum(lit 2, lit 6)

def ett:Exp = bool(true)

def ifExpr:Exp = iff(ett, e3plus4, e2plusb)
print "{ifExpr.pretty} = {ifExpr.eval}"

// prints: if (true) then 3 + 4 else 2 + 6 =7 29

Monday, 6 July 2015

dialect "staticTypes"

import "exp_and_pretty" as baseExp
type Exp = baseExp.Exp

type Value = Object

exp+pretty+bool.grace

method sum(l:Exp, r:Exp) —> Exp { baseExp.sum(l, r) }
method lit(x:Number) —> Exp { baseExp.lit(x) }

factory method bool(b:Boolean) —> Exp {
method x —> Boolean { b }
method eval —> Value { x }
method pretty —> String { b.asString }
)
factory method iff(c:Exp, t:Exp, f:Exp) —> EXp {
method eval —> Value {
If (c.eval) then { t.eval } else { f.eval }
}
method pretty —> String {
"if ({c.pretty}) then {t.pretty} else {f.pretty}"

}
}

def e3plus4:Exp = sum(lit 3, lit 4)

def e2plus6:Exp = sum(lit 2, lit 6)

def ett:Exp = bool(true)

def ifExpr:Exp = iff(ett, e3plus4, e2plusb)
print "{ifExpr.pretty} = {ifExpr.eval}"

// prints: if (true) then 3 + 4 else 2 + 6 =7

then 3 + 4 else 2 + 6 =7

29

Monday, 6 July 2015

Object Algebras

* Oliveira and Cook. “Extensibility for the
masses”. ECOOP 2012

- Avoids typing issues (beyond type parameters)

and permits re-use of creation code.

- Basic idea: abstract over creation by defining a
method that builds the structure on demand

- Argument to that method is the “Object
Algebra” — a factory object

Portland State

Monday, 6 July 2015

IIIIIIIIII

30

objectAlgerbra.grace (1)

dialect "staticTypes"
import "exp_base" as exp
type Exp = exp.Exp

// define the Object Algebra machinery

type IntAlg<A> = {
lit(x:Number) —> A
sum(el:A, e2:A) —> A

}

factory method intFactory —> IntAlg<Exp> {
method lit(x:Number) —> Exp { exp.lit(x) }
method sum(a:Exp, b:Exp) —> Exp { exp.sum(a, b) }

}

method mk3Plus4<A>(v:IntAlg<A>) —> A {
v.sum(v.lit(3), v.lit(4))

}

// compare the above with the normal expression:
// def e3Plus4:Exp = sum(lit 3, lit 4)

Portland State 31

IIIIIIIIII

Monday, 6 July 2015

// add pretty—printing to expressions "retroactively”

type Pretty = { pretty —> String }
factory method prettyFactory —> IntAlg<Pretty> { .
factory method lit(x:Number) { objectAlgerbra.grace (2)

method pretty —> String { x.asString }
}
factory method sum(a:Pretty, b:Pretty) {
method pretty —> String { "{a.pretty} + {b.pretty}" }

}
}

// demonstration

def x = mk3Plus4(intFactory)

// print "{x.pretty} = {x.eval}"

// fails: no method 'pretty' in object x
def s = mk3Plus4(prettyFactory)
// print "{s.pretty} = {s.eval}"

// fails: no method 'eval’ in object s
print "{s.pretty} = {x.eval}"

/ prints: 3+4=7

Portland State 32

IIIIIIIIII

Monday, 6 July 2015

// add pretty—printing to expressions "retroactively”

type Pretty = { pretty —> String }
factory method prettyFactory —> IntAlg<Pretty> { .
factory method lit(x:Number) { objectAlgerbra.grace (2)

method pretty —> String { x.asString }
|
factory method sum(a:Pretty, b:Pretty) {
method pretty —> String { "{a.pretty} + {b.pretty}" }

]
]

// demonstration

def x = mk3Plus4(intFactory)

// print "{x.pretty} = {x.eval}"

// fails: no method 'pretty' in object x
def s = mk3Plus4(prettyFactory)
// print "{s.pretty} = {s.eval}"

// fails: no method 'eval’ in object s
print "{s.pretty} = {x.eval}"

// prints: 3 +4=7

Portland State 32

IIIIIIIIII

Monday, 6 July 2015

Independent Extensibility

In real life, a much more common scenario than Fig. 1
followed by Fig. 2 followed by Fig. 3 would be like
this. Some party A defines exp_and_pretty. Another
party B independently defines exp_and_bool. A third
party C' finds those and wants to combine them to
exp_and_pretty_and_bool. This should be possible so
that C' need only define pretty for bool (in addition

to importing the two previous modules). Can Grace
handle that?

e Adding pretty uses inheritance, while adding
bool uses composition.

- If both the original extensions used
inheritance, we couldn't guarantee that we
could combine them

Portland State

IIIIIIIIII

Monday, 6 July 2015

33

Independent Extensibility

In real life, a much more common scenario than Fig. 1 Yes!

followed by Fig. 2 followed by Fig. 3 would be like

this. Some party A defines exp_and_pretty. Another - But solution is
party B independently defines exp_and_bool. A third

party C finds those and wants to combine them to not fuuy
exp_and_pretty_and_bool. This should be possible so general

that C' need only define pretty for bool (in addition

to importing the two previous modules). Can Grace
handle that?

e Adding pretty uses inheritance, while adding
bool uses composition.

- If both the original extensions used
inheritance, we couldn't guarantee that we
could combine them

Portland State 33

IIIIIIIIII

Monday, 6 July 2015

Conclusions

e Wadler's version of the expression problem
is unsolvable

* Wadler saw it as a challenge for type systems

*] see it as a challenge for even more
fundamental features of a language:

- global constants vs local namespaces

- presence of built-in “non-objects”,

- client object creation with method request or
primitive

Portland State

IIIIIIIIII

Monday, 6 July 2015

34

