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The Expression 
Problem
Oliveira & Cook (ECOOP 
2012): 

“The “expression problem” (EP) 
[38, 10, 46] is now a classical 
problem in programming languages. 
It refers to the difficulty of writing 
data abstractions that can be easily 
extended with both new operations 
and new data variants.”
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Abstract. This paper presents a new solution to the expression problem(EP) that works in OO languages with simple generics (including Javaor C#). A key novelty of this solution is that advanced typing features,including F-bounded quantification, wildcards and variance annotations,are not needed. The solution is based on
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r pattern, but without many of its drawbacks: they areextensible, remove the need for accept methods, and do not compromiseencapsulation. We show applications of object algebras that go beyondtoy examples usually presented in solutions for the expression problem.In the paper we develop an increasingly more complex set of features fora mini-imperative language, and we discuss a real-world application ofobject algebras in an implementation of remote batches. We believe thatobject algebras bring extensibility to the masses: object algebras work inmainstream OO languages, and they significantly reduce the conceptualoverhead by using only features that are used by everyday programmers.

1 Introduction

The “expression problem” (EP) [38, 10, 46] is now a classical problem in program-ming languages. It refers to the difficulty of writing data abstractions that canbe easily extended with both new operations and new data variants. Tradition-ally the kinds of data abstraction found in functional languages can be extendedwith new operations, but adding new data variants is difficult. The traditionalobject-oriented approach to data abstraction facilitates adding new data variants(classes), while adding new operations is more difficult. The
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What is the Expression Problem?
• Consider a simple implementation of 
(immutable) lists
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Rows or Columns?
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Algebraic data types:
• Organize program by columns

 

Haskell’s ADTs use Columns
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Algebraic data types:
• Organize program by columns
- easy to add a new column, but hard to add a 

new row
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Objects
• Organize program by rows
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Smalltalk’s Objects use Rows
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Objects
• Organize program by rows
- easy to add a new row, but hard to add a new 

column
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Example: add an operation
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Add an Operation
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• One new function with algebraic data, but 
two new methods in two classes with objects
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Why is this “difficult”?

• An editing problem
- assumption: adding methods to two classes 

involves editing two files

• A packaging problem
- assumption: the class is the smallest unit of 

modularity, so editing a class breaks modularity

• A typing problem
- assumption: fields of the objects have been 

given types that allow just the base operations

10
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Some History …
Oliveira & Cook (ECOOP 
2012): 

“The “expression problem” (EP) 
[38, 10, 46] is now a classical 
problem in programming 
languages.”
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Some History …
Krishnamurthi et al. captured the 
issue:

“A recursively defined set of data 
must be processed by several different 
tools. In anticipation of future 
extensions, the data specification and 
the tools should therefore be 
implemented such that it is easy to
1. add a new variant of data and 

adjust the existing tools 
accordingly, and 

2.  extend the collection of tools.”
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Friedman, D. P. 1998. Synthesizing object-
oriented and functional design to promote re-
use. In ECOOP’98 — Object-Oriented 
Programming, E. Jul, Ed. LNCS vol. 1445. 
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Genericity mailing list 
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Some History …
Wadler made this “problem” famous 
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solves The Expression Problem while 
satisfying the constraints of independent 
compilation and static typing.”
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Restrictions: 
1. Static type safety (no 
casts)
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Why wait until 1998?

• Simula ’67, C++
- have algebraic data as well as objects

• Smalltalk 80
- classes are not the unit of modularity

• Visitor Pattern (name Visitor coined 1993)
- solves the problem, at the cost of pre-planning

14
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Why wait until 1998?
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Why wait until 1998?
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Why wait until 1998?
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Back to the future …
• How was this “problem” solved in Smalltalk?
- Classes named by global variables
- methods are the unit of compilation & packaging
- a package contains both new classes (and their 

methods) and extensions to existing classes (new 
methods)

- loading a package into a Smalltalk system:
‣ changes some existing classes (overrides and adds 

methods, adds instance variables)
‣ introduces some new classes

16
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Why does this work?

• Classes are (mutable) objects
- adding (or changing) a method mutates the class 

• Classes are named by global variables
- loading a new version of a class definition changes 

the value of the global variable, and recompiles all 
existing methods

• Objects created by a methods in a class

• No modular type-checking
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Why doesn’t it work in Java?

• Classes are not objects, and are immutable
- Classes can be changed only by editing the 

source and recompiling

• Classes have global names, and cannot be 
renamed, assigned, or aliased

• Objects created by a language built-in new
• Modular type-checking

19
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Java

e = new EmptyList
o = e.append(23)

Smalltalk

e := EmptyList new
o := e ++ 23

20
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Java

e = new EmptyList
o = e.append(23)

Smalltalk

e := EmptyList new
o := e ++ 23

20

Data (row) extensibility is easy: add a new package 
defining a new class  (but also must change 
creation code)
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Java

e = new EmptyList
o = e.append(23)

Smalltalk

e := EmptyList new
o := e ++ 23

20

Data (row) extensibility is easy: add a new package 
defining a new class  (but also must change 
creation code)

Operation (column) extensibility is impossible: can't 
change an existing class without editing the 
source.
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• What about subclassing?
- idea: subclass all of the original classes to 

create new variants with the additional 
operations.

- Wadler focussed on generalizing the Java type 
system to make it possible to write those 
subclasses.

• But this doesn't help!
- We still have to change all the creation code to use 

the new classes instead of the existing classes.

21
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Grace

• new, simple O-O language
- designed for teaching novice programmers the 

concepts of object-oriented programming

• block-structured within a module

• modules are objects

• no global variables
- modules are imported under a name chosen by 

the client

22
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Oliveira and Cook’s Example

23

Re
pr
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en

ta
tio

ns
exp_baseexp_base Operations

eval

lit(n) n

sum(e1, e2) e1.eval + e2.eval
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Oliveira and Cook’s Example

24

Re
pr

es
en

ta
tio

ns

exp+prettyexp+pretty OperationsOperations

eval pretty

lit(n) n "{n}"

sum(e1, e2) e1.eval + e2.eval "{e1.pretty} + 
{e2.pretty}"
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Oliveira and Cook’s code
from their paper, translated into Grace

25

exp_base.grace

module "exp_base"
dialect "staticTypes"

2

type Value = Object
4 type Exp = { eval �> Value }

6 factory method lit(i:Number) �> Exp {
method x �> Number { i }

8 method eval �> Value { x }
}

10 factory method sum(a:Exp, b:Exp) �> Exp {
method l �> Exp { a }

12 method r �> Exp { b }
method eval �> Value { l.eval + r.eval }

14 }
// Demonstration:

16 def threePlusFour:Exp = sum(lit 3, lit 4)
print "{threePlusFour} = {threePlusFour.eval}"

18 // prints: an object = 7

Figure 1: The exp_base module in Grace: the base code that
we will extend.

1. there are no global variables;
2. modules, implemented as files, become objects at runtime;
3. within a module, Grace is block-structured; and
4. modules are imported under a name chosen by the client.
If you would like to run the examples that follow yourself,
you can do so in your web browser (Chrome or Firefox) at
http://www.cs.pdx.edu/~grace/minigrace/exp. The code
is at http://www.cs.pdx.edu/~grace/minigrace/expProb/.

Figure 1 shows a minimal version of a module defin-
ing basic expressions in Grace; the code is based on that of
Oliveira and Cook [6], but simplified into idiomatic Grace.
(The original code is in the appendix, together with an expla-
nation of the changes.) The ruled box indicates a file, which
is compiled into a module object containing the features de-
fined therein. Grace treats the file as if it were bracketed by
object { ... }; the expression object { ... } is an object con-
structor, which manufactures a new object each time it is
executed.

In this case, the module object contains two types, from
the declarations on lines 3 and 4, and two methods, from
the declarations on lines 6–14. (The definition on line 16
is not visible outside the module.) A factory method is a
method that creates and returns a new object that contains
the features in the factory method’s body. In other words,
factory method m { ... } is equivalent to

method m {
object { ... }

}

So, for example, the factory method sum (which corresponds
to Oliveira and Cook’s add) creates a new object with meth-
ods l, r and eval.

module "exp_and_pretty"
dialect "staticTypes"

2 import "exp_base" as baseExp
type Exp = baseExp.Exp & type { pretty �> String }

4

factory method lit(i:Number) �> Exp {
6 inherits baseExp.lit(i)

method pretty { x.asString }
8 }

factory method sum(a:Exp, b:Exp) �> Exp {
10 inherits baseExp.sum(a, b)

method pretty { "{l.pretty} + {r.pretty}" }
12 }

// Demonstration:
14 def threePlusFour:Exp = sum(lit 3, lit 4)

print "{threePlusFour.pretty} = {threePlusFour.eval}"
16 // prints: 3 + 4 = 7

Figure 2: The exp+pretty module, which extends exp with a
method pretty.

Line 16 and 7 demonstrate the use of these expressions.
Notice that attempting to print threePlusFour outputs an
object. This is the result of the default asString method of
sum objects.

One other feature of Grace is important for our discus-
sion: the code implementing the module does not give the
module a name. This is left to the clients of the module, who
can choose any name they like.

Figure 2 shows an extension to exp_base in the operations
dimension — the dimension that is “difficult” for object-
oriented languages. The import statement on line 2 gives
the name baseExp to the module object from Figure 1. The
module exp_and_pretty adds a pretty method (correspond-
ing to Oliveira and Cook’s print) to both of the variants of
the composite. Notice that the type Exp in this module is a
subtype of Exp in the exp_base module. Because of this, the
requests of pretty on line 11 are not well-typed, because the
methods l and r return baseExp.Exp, which has no method
pretty.

I believe that this problem can be solved using SelfType,
in a manner similar to that employed in Bruce’s LOOJ [3].
The basic idea would be to change the type annotations on
methods l and r in Figure 1 from Exp to SelfType, where
SelfType denotes the declared type of the current object,
here Exp. When baseExp.sum is inherited (on line 10 of
Figure 2), the return types of the inherited methods l and r
would still be SelfType, and this would again be interpreted
to mean the declared type of the current object, now the
enhanced type Exp declared on line 3 of Figure 2. However,
the design of Grace’s type-system is not yet mature enough
for me to assert that this idea actually works out once all of
the details are taken into account.

The extension in the data dimension is shown in Fig-
ure 3. This is straightforward, as we would expect for the
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$ apbmg exp_base.grace
self.sum[0x0x7fc6cbc1b9f8] = 7
$
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factory method m { ... } is equivalent to

method m {
object { ... }

}

So, for example, the factory method sum (which corresponds
to Oliveira and Cook’s add) creates a new object with meth-
ods l, r and eval.

module "exp_and_pretty"
dialect "staticTypes"

2 import "exp_base" as baseExp
type Exp = baseExp.Exp & type { pretty �> String }

4

factory method lit(i:Number) �> Exp {
6 inherits baseExp.lit(i)

method pretty { x.asString }
8 }

factory method sum(a:Exp, b:Exp) �> Exp {
10 inherits baseExp.sum(a, b)

method pretty { "{l.pretty} + {r.pretty}" }
12 }

// Demonstration:
14 def threePlusFour:Exp = sum(lit 3, lit 4)

print "{threePlusFour.pretty} = {threePlusFour.eval}"
16 // prints: 3 + 4 = 7

Figure 2: The exp+pretty module, which extends exp with a
method pretty.

Line 16 and 7 demonstrate the use of these expressions.
Notice that attempting to print threePlusFour outputs an
object. This is the result of the default asString method of
sum objects.

One other feature of Grace is important for our discus-
sion: the code implementing the module does not give the
module a name. This is left to the clients of the module, who
can choose any name they like.

Figure 2 shows an extension to exp_base in the operations
dimension — the dimension that is “difficult” for object-
oriented languages. The import statement on line 2 gives
the name baseExp to the module object from Figure 1. The
module exp_and_pretty adds a pretty method (correspond-
ing to Oliveira and Cook’s print) to both of the variants of
the composite. Notice that the type Exp in this module is a
subtype of Exp in the exp_base module. Because of this, the
requests of pretty on line 11 are not well-typed, because the
methods l and r return baseExp.Exp, which has no method
pretty.

I believe that this problem can be solved using SelfType,
in a manner similar to that employed in Bruce’s LOOJ [3].
The basic idea would be to change the type annotations on
methods l and r in Figure 1 from Exp to SelfType, where
SelfType denotes the declared type of the current object,
here Exp. When baseExp.sum is inherited (on line 10 of
Figure 2), the return types of the inherited methods l and r
would still be SelfType, and this would again be interpreted
to mean the declared type of the current object, now the
enhanced type Exp declared on line 3 of Figure 2. However,
the design of Grace’s type-system is not yet mature enough
for me to assert that this idea actually works out once all of
the details are taken into account.

The extension in the data dimension is shown in Fig-
ure 3. This is straightforward, as we would expect for the

Graceful solution
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exp+pretty.grace 

$ apbmg exp+pretty.grace
self.add[0x0x7f9d40523c58] = 7
3 + 4 = 7
$

module "exp_base"
dialect "staticTypes"

2

type Value = Object
4 type Exp = { eval �> Value }

6 factory method lit(i:Number) �> Exp {
method x �> Number { i }

8 method eval �> Value { x }
}

10 factory method sum(a:Exp, b:Exp) �> Exp {
method l �> Exp { a }

12 method r �> Exp { b }
method eval �> Value { l.eval + r.eval }

14 }
// Demonstration:

16 def threePlusFour:Exp = sum(lit 3, lit 4)
print "{threePlusFour} = {threePlusFour.eval}"

18 // prints: an object = 7

Figure 1: The exp_base module in Grace: the base code that
we will extend.

1. there are no global variables;
2. modules, implemented as files, become objects at runtime;
3. within a module, Grace is block-structured; and
4. modules are imported under a name chosen by the client.
If you would like to run the examples that follow yourself,
you can do so in your web browser (Chrome or Firefox) at
http://www.cs.pdx.edu/~grace/minigrace/exp. The code
is at http://www.cs.pdx.edu/~grace/minigrace/expProb/.

Figure 1 shows a minimal version of a module defin-
ing basic expressions in Grace; the code is based on that of
Oliveira and Cook [6], but simplified into idiomatic Grace.
(The original code is in the appendix, together with an expla-
nation of the changes.) The ruled box indicates a file, which
is compiled into a module object containing the features de-
fined therein. Grace treats the file as if it were bracketed by
object { ... }; the expression object { ... } is an object con-
structor, which manufactures a new object each time it is
executed.

In this case, the module object contains two types, from
the declarations on lines 3 and 4, and two methods, from
the declarations on lines 6–14. (The definition on line 16
is not visible outside the module.) A factory method is a
method that creates and returns a new object that contains
the features in the factory method’s body. In other words,
factory method m { ... } is equivalent to

method m {
object { ... }

}

So, for example, the factory method sum (which corresponds
to Oliveira and Cook’s add) creates a new object with meth-
ods l, r and eval.

module "exp_and_pretty"
dialect "staticTypes"

2 import "exp_base" as baseExp
type Exp = baseExp.Exp & type { pretty �> String }

4

factory method lit(i:Number) �> Exp {
6 inherits baseExp.lit(i)

method pretty { x.asString }
8 }

factory method sum(a:Exp, b:Exp) �> Exp {
10 inherits baseExp.sum(a, b)

method pretty { "{l.pretty} + {r.pretty}" }
12 }

// Demonstration:
14 def threePlusFour:Exp = sum(lit 3, lit 4)

print "{threePlusFour.pretty} = {threePlusFour.eval}"
16 // prints: 3 + 4 = 7

Figure 2: The exp+pretty module, which extends exp with a
method pretty.

Line 16 and 7 demonstrate the use of these expressions.
Notice that attempting to print threePlusFour outputs an
object. This is the result of the default asString method of
sum objects.

One other feature of Grace is important for our discus-
sion: the code implementing the module does not give the
module a name. This is left to the clients of the module, who
can choose any name they like.

Figure 2 shows an extension to exp_base in the operations
dimension — the dimension that is “difficult” for object-
oriented languages. The import statement on line 2 gives
the name baseExp to the module object from Figure 1. The
module exp_and_pretty adds a pretty method (correspond-
ing to Oliveira and Cook’s print) to both of the variants of
the composite. Notice that the type Exp in this module is a
subtype of Exp in the exp_base module. Because of this, the
requests of pretty on line 11 are not well-typed, because the
methods l and r return baseExp.Exp, which has no method
pretty.

I believe that this problem can be solved using SelfType,
in a manner similar to that employed in Bruce’s LOOJ [3].
The basic idea would be to change the type annotations on
methods l and r in Figure 1 from Exp to SelfType, where
SelfType denotes the declared type of the current object,
here Exp. When baseExp.sum is inherited (on line 10 of
Figure 2), the return types of the inherited methods l and r
would still be SelfType, and this would again be interpreted
to mean the declared type of the current object, now the
enhanced type Exp declared on line 3 of Figure 2. However,
the design of Grace’s type-system is not yet mature enough
for me to assert that this idea actually works out once all of
the details are taken into account.

The extension in the data dimension is shown in Fig-
ure 3. This is straightforward, as we would expect for the

Graceful solution
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Re
pr

es
en

ta
tio

ns

exp and prettyexp and pretty OperationsOperations

eval pretty

lit(n) n "{n}"

sum(e1, e2) e1.eval + e2. eval "{e1.pretty} + 
{e2.pretty}"
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Oliveira and Cook's Example
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Re
pr

es
en

ta
tio

ns

exp+pretty+boolexp+pretty+bool OperationsOperations
eval pretty

lit(n) n "{n}"

sum(e1, e2) e1.eval + e2. eval "{e1.pretty} + {e2.pretty}"

bool(b) b "{b}"

iff(c, th, el)
if(c.eval)then 
{th.eval) else 

{el.eval}

"if {c.pretty} then 
{th.pretty} else 

{el.pretty}"
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exp+pretty+bool.grace

module "exp_and_pretty_and_bool"
dialect "staticTypes"

2 import "exp_and_pretty" as baseExp
type Exp = baseExp.Exp

4 type Value = Object

6 method sum(l:Exp, r:Exp) �> Exp { baseExp.sum(l, r) }
method lit(x:Number) �> Exp { baseExp.lit(x) }

8

factory method bool(b:Boolean) �> Exp {
10 method x �> Boolean { b }

method eval �> Value { x }
12 method pretty �> String { b.asString }

}
14 factory method iff(c:Exp, t:Exp, f:Exp) �> Exp {

method eval �> Value {
16 if (c.eval) then { t.eval } else { f.eval }

}
18 method pretty �> String {

"if ({c.pretty}) then {t.pretty} else {f.pretty}"
20 }

}
22

def e3plus4:Exp = sum(lit 3, lit 4)
24 def e2plus6:Exp = sum(lit 2, lit 6)

def ett:Exp = bool(true)
26 def ifExpr:Exp = iff(ett, e3plus4, e2plus6)

print "{ifExpr.pretty} = {ifExpr.eval}"
28 // prints: if (true) then 3 + 4 else 2 + 6 = 7

Figure 3: The exp+pretty+bool module, which extends the
module exp+pretty with a new data variant for booleans.

“easy” dimension. Lines 3–7 give local (unqualified) names
to features imported from baseExp. The factory method bool
(line 9) defines the data variant for boolean literals, and the
factory method iff (line 14) defines the data variant for if-
then-else expressions. Here there is no typing problem, be-
cause the types baseExp and Exp are identical, and Grace
uses structural, rather than nominal, types.

What of the creation code — can this be reused? The
absence of global constants from Grace makes it fairly easy
to do so. Modules that create instances of the composite
structure must contain a statement like

import "exp_base" as exp

If this is changed to
import "exp_and_pretty_and_bool" as exp

then the balance of the creation code can be re-purposed
without change. If we wish to strictly observe the require-
ment not to change the source code, then an alternative
(which we will not follow here) is to rename the source files.
In either case, the module must be recompiled.

3.4 Object Algebras
Oliveira and Cook addressed the issues of complex paramet-
ric types and the reusability of creation code using Object

module "objectAlgebra"
2 dialect "staticTypes"

import "exp_base" as exp
4 type Exp = exp.Exp

6 // define the Object Algebra machinery
type IntAlg<A> = {

8 lit(x:Number) �> A
sum(e1:A, e2:A) �> A

10 }
factory method intFactory �> IntAlg<Exp> {

12 method lit(x:Number) �> Exp { exp.lit(x) }
method sum(a:Exp, b:Exp) �> Exp { exp.sum(a, b) }

14 }
method mk3Plus4<A>(v:IntAlg<A>) �> A {

16 v.sum(v.lit(3), v.lit(4))
}

18 // compare the above with the normal expression:
// def e3Plus4:Exp = sum(lit 3, lit 4)

20

// add pretty�printing to expressions "retroactively"
22 type Pretty = { pretty �> String }

factory method prettyFactory �> IntAlg<Pretty> {
24 factory method lit(x:Number) {

method pretty �> String { x.asString }
26 }

factory method sum(a:Pretty, b:Pretty) {
28 method pretty �> String { "{a.pretty} + {b.pretty}" }

}
30 }

32 // demonstration
def x = mk3Plus4(intFactory)

34 // print "{x.pretty} = {x.eval}"
// fails: no method 'pretty' in object x

36 def s = mk3Plus4(prettyFactory)
// print "{s.pretty} = {s.eval}"

38 // fails: no method 'eval' in object s
print "{s.pretty} = {x.eval}"

40 // prints: 3 + 4 = 7

Figure 4: The objectAlgebra module, which is a translation
of Oliveira and Cook’s solution to the expression problem.

Algebras [6]. Their basic idea is to abstract over the creation
of the composite structure: rather than actually building the
tree for an expression, they instead define a method that will
build the tree on demand. This “tree maker” method is pa-
rameterized by the factory method that will build the tree
nodes with necessary operations. Object Algebras rely on
parametric types, but not on self types or F-bounds.

Figure 4 shows Oliveira and Cook’s code translated into
Grace. The module objectAlgebra shows extension in the op-
eration dimension. Lines 11–17 abstract over the base code
imported on line 2. The factory method intFactory encapsu-
lates all of the data variants: it constructs an “algebra” with
a method for each of the data variants in the base. Method
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exp+pretty+bool.grace

…
3 + 4 = 7
if (true) then 3 + 4 else 2 + 6 = 7
$

module "exp_and_pretty_and_bool"
dialect "staticTypes"

2 import "exp_and_pretty" as baseExp
type Exp = baseExp.Exp

4 type Value = Object

6 method sum(l:Exp, r:Exp) �> Exp { baseExp.sum(l, r) }
method lit(x:Number) �> Exp { baseExp.lit(x) }

8

factory method bool(b:Boolean) �> Exp {
10 method x �> Boolean { b }

method eval �> Value { x }
12 method pretty �> String { b.asString }

}
14 factory method iff(c:Exp, t:Exp, f:Exp) �> Exp {

method eval �> Value {
16 if (c.eval) then { t.eval } else { f.eval }

}
18 method pretty �> String {

"if ({c.pretty}) then {t.pretty} else {f.pretty}"
20 }

}
22

def e3plus4:Exp = sum(lit 3, lit 4)
24 def e2plus6:Exp = sum(lit 2, lit 6)

def ett:Exp = bool(true)
26 def ifExpr:Exp = iff(ett, e3plus4, e2plus6)

print "{ifExpr.pretty} = {ifExpr.eval}"
28 // prints: if (true) then 3 + 4 else 2 + 6 = 7

Figure 3: The exp+pretty+bool module, which extends the
module exp+pretty with a new data variant for booleans.

“easy” dimension. Lines 3–7 give local (unqualified) names
to features imported from baseExp. The factory method bool
(line 9) defines the data variant for boolean literals, and the
factory method iff (line 14) defines the data variant for if-
then-else expressions. Here there is no typing problem, be-
cause the types baseExp and Exp are identical, and Grace
uses structural, rather than nominal, types.

What of the creation code — can this be reused? The
absence of global constants from Grace makes it fairly easy
to do so. Modules that create instances of the composite
structure must contain a statement like

import "exp_base" as exp

If this is changed to
import "exp_and_pretty_and_bool" as exp

then the balance of the creation code can be re-purposed
without change. If we wish to strictly observe the require-
ment not to change the source code, then an alternative
(which we will not follow here) is to rename the source files.
In either case, the module must be recompiled.

3.4 Object Algebras
Oliveira and Cook addressed the issues of complex paramet-
ric types and the reusability of creation code using Object

module "objectAlgebra"
2 dialect "staticTypes"

import "exp_base" as exp
4 type Exp = exp.Exp

6 // define the Object Algebra machinery
type IntAlg<A> = {

8 lit(x:Number) �> A
sum(e1:A, e2:A) �> A

10 }
factory method intFactory �> IntAlg<Exp> {

12 method lit(x:Number) �> Exp { exp.lit(x) }
method sum(a:Exp, b:Exp) �> Exp { exp.sum(a, b) }

14 }
method mk3Plus4<A>(v:IntAlg<A>) �> A {

16 v.sum(v.lit(3), v.lit(4))
}

18 // compare the above with the normal expression:
// def e3Plus4:Exp = sum(lit 3, lit 4)

20

// add pretty�printing to expressions "retroactively"
22 type Pretty = { pretty �> String }

factory method prettyFactory �> IntAlg<Pretty> {
24 factory method lit(x:Number) {

method pretty �> String { x.asString }
26 }

factory method sum(a:Pretty, b:Pretty) {
28 method pretty �> String { "{a.pretty} + {b.pretty}" }

}
30 }

32 // demonstration
def x = mk3Plus4(intFactory)

34 // print "{x.pretty} = {x.eval}"
// fails: no method 'pretty' in object x

36 def s = mk3Plus4(prettyFactory)
// print "{s.pretty} = {s.eval}"

38 // fails: no method 'eval' in object s
print "{s.pretty} = {x.eval}"

40 // prints: 3 + 4 = 7

Figure 4: The objectAlgebra module, which is a translation
of Oliveira and Cook’s solution to the expression problem.

Algebras [6]. Their basic idea is to abstract over the creation
of the composite structure: rather than actually building the
tree for an expression, they instead define a method that will
build the tree on demand. This “tree maker” method is pa-
rameterized by the factory method that will build the tree
nodes with necessary operations. Object Algebras rely on
parametric types, but not on self types or F-bounds.

Figure 4 shows Oliveira and Cook’s code translated into
Grace. The module objectAlgebra shows extension in the op-
eration dimension. Lines 11–17 abstract over the base code
imported on line 2. The factory method intFactory encapsu-
lates all of the data variants: it constructs an “algebra” with
a method for each of the data variants in the base. Method

Monday, 6 July 2015



30

Object Algebras

• Oliveira and Cook. “Extensibility for the 
masses”. ECOOP 2012
- Avoids typing issues (beyond type parameters) 

and permits re-use of creation code.

- Basic idea: abstract over creation by defining a 
method that builds the structure on demand

- Argument to that method is the “Object 
Algebra” — a factory object
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objectAlgerbra.grace (1)module "exp_and_pretty_and_bool"
dialect "staticTypes"

2 import "exp_and_pretty" as baseExp
type Exp = baseExp.Exp

4 type Value = Object

6 method sum(l:Exp, r:Exp) �> Exp { baseExp.sum(l, r) }
method lit(x:Number) �> Exp { baseExp.lit(x) }

8

factory method bool(b:Boolean) �> Exp {
10 method x �> Boolean { b }

method eval �> Value { x }
12 method pretty �> String { b.asString }

}
14 factory method iff(c:Exp, t:Exp, f:Exp) �> Exp {

method eval �> Value {
16 if (c.eval) then { t.eval } else { f.eval }

}
18 method pretty �> String {

"if ({c.pretty}) then {t.pretty} else {f.pretty}"
20 }

}
22

def e3plus4:Exp = sum(lit 3, lit 4)
24 def e2plus6:Exp = sum(lit 2, lit 6)

def ett:Exp = bool(true)
26 def ifExpr:Exp = iff(ett, e3plus4, e2plus6)

print "{ifExpr.pretty} = {ifExpr.eval}"
28 // prints: if (true) then 3 + 4 else 2 + 6 = 7

Figure 3: The exp+pretty+bool module, which extends the
module exp+pretty with a new data variant for booleans.

“easy” dimension. Lines 3–7 give local (unqualified) names
to features imported from baseExp. The factory method bool
(line 9) defines the data variant for boolean literals, and the
factory method iff (line 14) defines the data variant for if-
then-else expressions. Here there is no typing problem, be-
cause the types baseExp and Exp are identical, and Grace
uses structural, rather than nominal, types.

What of the creation code — can this be reused? The
absence of global constants from Grace makes it fairly easy
to do so. Modules that create instances of the composite
structure must contain a statement like

import "exp_base" as exp

If this is changed to
import "exp_and_pretty_and_bool" as exp

then the balance of the creation code can be re-purposed
without change. If we wish to strictly observe the require-
ment not to change the source code, then an alternative
(which we will not follow here) is to rename the source files.
In either case, the module must be recompiled.

3.4 Object Algebras
Oliveira and Cook addressed the issues of complex paramet-
ric types and the reusability of creation code using Object

module "objectAlgebra"
2 dialect "staticTypes"

import "exp_base" as exp
4 type Exp = exp.Exp

6 // define the Object Algebra machinery
type IntAlg<A> = {

8 lit(x:Number) �> A
sum(e1:A, e2:A) �> A

10 }
factory method intFactory �> IntAlg<Exp> {

12 method lit(x:Number) �> Exp { exp.lit(x) }
method sum(a:Exp, b:Exp) �> Exp { exp.sum(a, b) }

14 }
method mk3Plus4<A>(v:IntAlg<A>) �> A {

16 v.sum(v.lit(3), v.lit(4))
}

18 // compare the above with the normal expression:
// def e3Plus4:Exp = sum(lit 3, lit 4)

20

// add pretty�printing to expressions "retroactively"
22 type Pretty = { pretty �> String }

factory method prettyFactory �> IntAlg<Pretty> {
24 factory method lit(x:Number) {

method pretty �> String { x.asString }
26 }

factory method sum(a:Pretty, b:Pretty) {
28 method pretty �> String { "{a.pretty} + {b.pretty}" }

}
30 }

32 // demonstration
def x = mk3Plus4(intFactory)

34 // print "{x.pretty} = {x.eval}"
// fails: no method 'pretty' in object x

36 def s = mk3Plus4(prettyFactory)
// print "{s.pretty} = {s.eval}"

38 // fails: no method 'eval' in object s
print "{s.pretty} = {x.eval}"

40 // prints: 3 + 4 = 7

Figure 4: The objectAlgebra module, which is a translation
of Oliveira and Cook’s solution to the expression problem.

Algebras [6]. Their basic idea is to abstract over the creation
of the composite structure: rather than actually building the
tree for an expression, they instead define a method that will
build the tree on demand. This “tree maker” method is pa-
rameterized by the factory method that will build the tree
nodes with necessary operations. Object Algebras rely on
parametric types, but not on self types or F-bounds.

Figure 4 shows Oliveira and Cook’s code translated into
Grace. The module objectAlgebra shows extension in the op-
eration dimension. Lines 11–17 abstract over the base code
imported on line 2. The factory method intFactory encapsu-
lates all of the data variants: it constructs an “algebra” with
a method for each of the data variants in the base. Method

Monday, 6 July 2015



32

objectAlgerbra.grace (2)

module "exp_and_pretty_and_bool"
dialect "staticTypes"

2 import "exp_and_pretty" as baseExp
type Exp = baseExp.Exp

4 type Value = Object

6 method sum(l:Exp, r:Exp) �> Exp { baseExp.sum(l, r) }
method lit(x:Number) �> Exp { baseExp.lit(x) }

8

factory method bool(b:Boolean) �> Exp {
10 method x �> Boolean { b }

method eval �> Value { x }
12 method pretty �> String { b.asString }

}
14 factory method iff(c:Exp, t:Exp, f:Exp) �> Exp {

method eval �> Value {
16 if (c.eval) then { t.eval } else { f.eval }

}
18 method pretty �> String {

"if ({c.pretty}) then {t.pretty} else {f.pretty}"
20 }

}
22

def e3plus4:Exp = sum(lit 3, lit 4)
24 def e2plus6:Exp = sum(lit 2, lit 6)

def ett:Exp = bool(true)
26 def ifExpr:Exp = iff(ett, e3plus4, e2plus6)

print "{ifExpr.pretty} = {ifExpr.eval}"
28 // prints: if (true) then 3 + 4 else 2 + 6 = 7

Figure 3: The exp+pretty+bool module, which extends the
module exp+pretty with a new data variant for booleans.

“easy” dimension. Lines 3–7 give local (unqualified) names
to features imported from baseExp. The factory method bool
(line 9) defines the data variant for boolean literals, and the
factory method iff (line 14) defines the data variant for if-
then-else expressions. Here there is no typing problem, be-
cause the types baseExp and Exp are identical, and Grace
uses structural, rather than nominal, types.

What of the creation code — can this be reused? The
absence of global constants from Grace makes it fairly easy
to do so. Modules that create instances of the composite
structure must contain a statement like

import "exp_base" as exp

If this is changed to
import "exp_and_pretty_and_bool" as exp

then the balance of the creation code can be re-purposed
without change. If we wish to strictly observe the require-
ment not to change the source code, then an alternative
(which we will not follow here) is to rename the source files.
In either case, the module must be recompiled.

3.4 Object Algebras
Oliveira and Cook addressed the issues of complex paramet-
ric types and the reusability of creation code using Object

module "objectAlgebra"
2 dialect "staticTypes"

import "exp_base" as exp
4 type Exp = exp.Exp

6 // define the Object Algebra machinery
type IntAlg<A> = {

8 lit(x:Number) �> A
sum(e1:A, e2:A) �> A

10 }
factory method intFactory �> IntAlg<Exp> {

12 method lit(x:Number) �> Exp { exp.lit(x) }
method sum(a:Exp, b:Exp) �> Exp { exp.sum(a, b) }

14 }
method mk3Plus4<A>(v:IntAlg<A>) �> A {

16 v.sum(v.lit(3), v.lit(4))
}

18 // compare the above with the normal expression:
// def e3Plus4:Exp = sum(lit 3, lit 4)

20

// add pretty�printing to expressions "retroactively"
22 type Pretty = { pretty �> String }

factory method prettyFactory �> IntAlg<Pretty> {
24 factory method lit(x:Number) {

method pretty �> String { x.asString }
26 }

factory method sum(a:Pretty, b:Pretty) {
28 method pretty �> String { "{a.pretty} + {b.pretty}" }

}
30 }

32 // demonstration
def x = mk3Plus4(intFactory)

34 // print "{x.pretty} = {x.eval}"
// fails: no method 'pretty' in object x

36 def s = mk3Plus4(prettyFactory)
// print "{s.pretty} = {s.eval}"

38 // fails: no method 'eval' in object s
print "{s.pretty} = {x.eval}"

40 // prints: 3 + 4 = 7

Figure 4: The objectAlgebra module, which is a translation
of Oliveira and Cook’s solution to the expression problem.

Algebras [6]. Their basic idea is to abstract over the creation
of the composite structure: rather than actually building the
tree for an expression, they instead define a method that will
build the tree on demand. This “tree maker” method is pa-
rameterized by the factory method that will build the tree
nodes with necessary operations. Object Algebras rely on
parametric types, but not on self types or F-bounds.

Figure 4 shows Oliveira and Cook’s code translated into
Grace. The module objectAlgebra shows extension in the op-
eration dimension. Lines 11–17 abstract over the base code
imported on line 2. The factory method intFactory encapsu-
lates all of the data variants: it constructs an “algebra” with
a method for each of the data variants in the base. Method
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objectAlgerbra.grace (2)

…
3 + 4 = 7
$

module "exp_and_pretty_and_bool"
dialect "staticTypes"

2 import "exp_and_pretty" as baseExp
type Exp = baseExp.Exp

4 type Value = Object

6 method sum(l:Exp, r:Exp) �> Exp { baseExp.sum(l, r) }
method lit(x:Number) �> Exp { baseExp.lit(x) }

8

factory method bool(b:Boolean) �> Exp {
10 method x �> Boolean { b }

method eval �> Value { x }
12 method pretty �> String { b.asString }

}
14 factory method iff(c:Exp, t:Exp, f:Exp) �> Exp {

method eval �> Value {
16 if (c.eval) then { t.eval } else { f.eval }

}
18 method pretty �> String {

"if ({c.pretty}) then {t.pretty} else {f.pretty}"
20 }

}
22

def e3plus4:Exp = sum(lit 3, lit 4)
24 def e2plus6:Exp = sum(lit 2, lit 6)

def ett:Exp = bool(true)
26 def ifExpr:Exp = iff(ett, e3plus4, e2plus6)

print "{ifExpr.pretty} = {ifExpr.eval}"
28 // prints: if (true) then 3 + 4 else 2 + 6 = 7

Figure 3: The exp+pretty+bool module, which extends the
module exp+pretty with a new data variant for booleans.

“easy” dimension. Lines 3–7 give local (unqualified) names
to features imported from baseExp. The factory method bool
(line 9) defines the data variant for boolean literals, and the
factory method iff (line 14) defines the data variant for if-
then-else expressions. Here there is no typing problem, be-
cause the types baseExp and Exp are identical, and Grace
uses structural, rather than nominal, types.

What of the creation code — can this be reused? The
absence of global constants from Grace makes it fairly easy
to do so. Modules that create instances of the composite
structure must contain a statement like

import "exp_base" as exp

If this is changed to
import "exp_and_pretty_and_bool" as exp

then the balance of the creation code can be re-purposed
without change. If we wish to strictly observe the require-
ment not to change the source code, then an alternative
(which we will not follow here) is to rename the source files.
In either case, the module must be recompiled.

3.4 Object Algebras
Oliveira and Cook addressed the issues of complex paramet-
ric types and the reusability of creation code using Object

module "objectAlgebra"
2 dialect "staticTypes"

import "exp_base" as exp
4 type Exp = exp.Exp

6 // define the Object Algebra machinery
type IntAlg<A> = {

8 lit(x:Number) �> A
sum(e1:A, e2:A) �> A

10 }
factory method intFactory �> IntAlg<Exp> {

12 method lit(x:Number) �> Exp { exp.lit(x) }
method sum(a:Exp, b:Exp) �> Exp { exp.sum(a, b) }

14 }
method mk3Plus4<A>(v:IntAlg<A>) �> A {

16 v.sum(v.lit(3), v.lit(4))
}

18 // compare the above with the normal expression:
// def e3Plus4:Exp = sum(lit 3, lit 4)

20

// add pretty�printing to expressions "retroactively"
22 type Pretty = { pretty �> String }

factory method prettyFactory �> IntAlg<Pretty> {
24 factory method lit(x:Number) {

method pretty �> String { x.asString }
26 }

factory method sum(a:Pretty, b:Pretty) {
28 method pretty �> String { "{a.pretty} + {b.pretty}" }

}
30 }

32 // demonstration
def x = mk3Plus4(intFactory)

34 // print "{x.pretty} = {x.eval}"
// fails: no method 'pretty' in object x

36 def s = mk3Plus4(prettyFactory)
// print "{s.pretty} = {s.eval}"

38 // fails: no method 'eval' in object s
print "{s.pretty} = {x.eval}"

40 // prints: 3 + 4 = 7

Figure 4: The objectAlgebra module, which is a translation
of Oliveira and Cook’s solution to the expression problem.

Algebras [6]. Their basic idea is to abstract over the creation
of the composite structure: rather than actually building the
tree for an expression, they instead define a method that will
build the tree on demand. This “tree maker” method is pa-
rameterized by the factory method that will build the tree
nodes with necessary operations. Object Algebras rely on
parametric types, but not on self types or F-bounds.

Figure 4 shows Oliveira and Cook’s code translated into
Grace. The module objectAlgebra shows extension in the op-
eration dimension. Lines 11–17 abstract over the base code
imported on line 2. The factory method intFactory encapsu-
lates all of the data variants: it constructs an “algebra” with
a method for each of the data variants in the base. Method
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Independent Extensibility

• Adding pretty uses inheritance, while adding 
bool uses composition.
- If both the original extensions used 

inheritance, we couldn't guarantee that we 
could combine them

mk3Plus4 on line 16 is a “lifting” of the normal expres-
sion construction code (given in the comment on line 19);
to actually build an expression tree, it is necessary to ap-
ply mk3Plus4 to a suitable object algebra. On line 33, it is
applied to intFactory; the resulting structure x has lit nodes
and sum nodes that understand just the eval method. Con-
sequently, they don’t understand pretty, as suggested by the
comments on lines 34 and 35.

The extension to pretty-printing is shown in lines 23–
30, which define a second object algebra, prettyFactory; on
line 36 it is used to build an expression tree. As suggested
by the comments on lines 37 and 38, this tree comprises
nodes that understand just the pretty method. Consequently,
attempts to eval it will fail. However, once we have built both
the evaluable tree x and the pretty-printable tree s, we can
achieve our goal by using each for its intended purpose, as
shown on line 39.

Of course, it is possible to create an algebra with more
than one operation, and in practice programmers will proba-
bly do so. But the extensibility of object algebras comes by
adding new operations in new algebras; an individual algebra
is no easier to extend than the class that it subsumes.

Extension in the data dimension is straightforward but
verbose. In addition to defining the new variant structures
bool and iff, it is also necessary to define a new algebra type
that extends IntAlg with factory methods for the new variants,
and two more object algebra factories: intBoolFactory as
an extension of intFactory, and intBoolPrettyFactory as an
extension of prettyFactory. The details can be found in the
original article [6].

In a theoretical sense, using object algebras to defer con-
struction of the expression tree does allow the creation code
to be reused. But in practice, programmers will not write
their creation code using object algebras unless they are ex-
pecting to have to extend their code. Thus, I do not be-
lieve that object algebras provide for unanticipated exten-
sion. They achieve reuse only at the cost of requiring pre-
planning. Moreover, the cost is large: because a different
tree is built for each operation, operations that update the
tree must be simulated by simulating a store.

4. Independent Extensibility
An additional requirement is sometimes imposed on the
expression problem: independent extensibility [10]. One of
the referees of this article wrote:

In real life, a much more common scenario than Fig. 1
followed by Fig. 2 followed by Fig. 3 would be like
this. Some party A defines exp_and_pretty. Another
party B independently defines exp_and_bool. A third
party C finds those and wants to combine them to
exp_and_pretty_and_bool. This should be possible so
that C need only define pretty for bool (in addition
to importing the two previous modules). Can Grace
handle that?

The answer is yes; the solution can be found in the
independentExtensability subdirectory at the previously-
referenced URL. However, the Grace solution is not fully
general: it works only when parties A and B happen to
make their extensions in orthogonal dimensions, A adding
a new operation and B adding new data. This is because
Grace uses inheritance to add extensions in the operation di-
mension, and composition to add them in the data dimen-
sion. If both A and B added new operations, then combin-
ing them would require some form of multiple inheritance,
which Grace presently lacks.

5. Conclusion
Wadler’s interest in the expression problem was based on
his search for expressive type systems. But, typing aside,
the problem gives us insights into the dangers of global
constants. It is not just Java’s type system that is problematic;
even more fundamental is Java’s use of a global namespace
for classes, and the fact that classes are immutable. This
means that it is impossible to reuse creation code written in
the “normal” way, in which objects are created by newing a
class. In contrast, Grace’s lack of a global namespace means
that all creation code must be written relative to a local name,
which can later be re-defined. Thus, Grace permits extension
without pre-planning.
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Independent Extensibility

• Adding pretty uses inheritance, while adding 
bool uses composition.
- If both the original extensions used 

inheritance, we couldn't guarantee that we 
could combine them

mk3Plus4 on line 16 is a “lifting” of the normal expres-
sion construction code (given in the comment on line 19);
to actually build an expression tree, it is necessary to ap-
ply mk3Plus4 to a suitable object algebra. On line 33, it is
applied to intFactory; the resulting structure x has lit nodes
and sum nodes that understand just the eval method. Con-
sequently, they don’t understand pretty, as suggested by the
comments on lines 34 and 35.

The extension to pretty-printing is shown in lines 23–
30, which define a second object algebra, prettyFactory; on
line 36 it is used to build an expression tree. As suggested
by the comments on lines 37 and 38, this tree comprises
nodes that understand just the pretty method. Consequently,
attempts to eval it will fail. However, once we have built both
the evaluable tree x and the pretty-printable tree s, we can
achieve our goal by using each for its intended purpose, as
shown on line 39.

Of course, it is possible to create an algebra with more
than one operation, and in practice programmers will proba-
bly do so. But the extensibility of object algebras comes by
adding new operations in new algebras; an individual algebra
is no easier to extend than the class that it subsumes.

Extension in the data dimension is straightforward but
verbose. In addition to defining the new variant structures
bool and iff, it is also necessary to define a new algebra type
that extends IntAlg with factory methods for the new variants,
and two more object algebra factories: intBoolFactory as
an extension of intFactory, and intBoolPrettyFactory as an
extension of prettyFactory. The details can be found in the
original article [6].

In a theoretical sense, using object algebras to defer con-
struction of the expression tree does allow the creation code
to be reused. But in practice, programmers will not write
their creation code using object algebras unless they are ex-
pecting to have to extend their code. Thus, I do not be-
lieve that object algebras provide for unanticipated exten-
sion. They achieve reuse only at the cost of requiring pre-
planning. Moreover, the cost is large: because a different
tree is built for each operation, operations that update the
tree must be simulated by simulating a store.

4. Independent Extensibility
An additional requirement is sometimes imposed on the
expression problem: independent extensibility [10]. One of
the referees of this article wrote:

In real life, a much more common scenario than Fig. 1
followed by Fig. 2 followed by Fig. 3 would be like
this. Some party A defines exp_and_pretty. Another
party B independently defines exp_and_bool. A third
party C finds those and wants to combine them to
exp_and_pretty_and_bool. This should be possible so
that C need only define pretty for bool (in addition
to importing the two previous modules). Can Grace
handle that?

The answer is yes; the solution can be found in the
independentExtensability subdirectory at the previously-
referenced URL. However, the Grace solution is not fully
general: it works only when parties A and B happen to
make their extensions in orthogonal dimensions, A adding
a new operation and B adding new data. This is because
Grace uses inheritance to add extensions in the operation di-
mension, and composition to add them in the data dimen-
sion. If both A and B added new operations, then combin-
ing them would require some form of multiple inheritance,
which Grace presently lacks.

5. Conclusion
Wadler’s interest in the expression problem was based on
his search for expressive type systems. But, typing aside,
the problem gives us insights into the dangers of global
constants. It is not just Java’s type system that is problematic;
even more fundamental is Java’s use of a global namespace
for classes, and the fact that classes are immutable. This
means that it is impossible to reuse creation code written in
the “normal” way, in which objects are created by newing a
class. In contrast, Grace’s lack of a global namespace means
that all creation code must be written relative to a local name,
which can later be re-defined. Thus, Grace permits extension
without pre-planning.
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Conclusions
• Wadler's version of the expression problem 

is unsolvable

• Wadler saw it as a challenge for type systems

• I see it as a challenge for even more 
fundamental features of a language:
- global constants vs local namespaces

- presence of built-in “non-objects”, 

- client object creation with method request or 
primitive  
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