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The Expression
Problem

Oliveira & Cook (ECOOP

2012):

“The “expression problem”. (EP)
138, 10, 46] is now a classical
problem in programming languages.

It refers to the difficulty of writing
data abstractions that can be easily

extended with both new operations
and new data variants.”
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What zs the Expression Problem?

e Consider a simple implementation of
(immutable) lists

Operations
first rest ISEmpty

.| ConsList
2l return e return | false
ol &
S |
~ =|EmptyList error error true

D)

Portland State

IIIIIIIIII

Monday, 6 July 2015



Algebraic data types:

* Organize program by columns

Operations
first rest ISEmpty
.| ConsList
. return e return | false
» S((e )
o ©
-
O _
~ | EmptyList error error true
O
c - ~ S
S S 2.2
3 3 £ 9
= = sal=
o= 2 2| o=
12 7
i= L
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Algebraic data types:

* Organize program by columns

- easy to add a new column, but hard to add a

necw row
Operations
first rest ISEmpty
.| ConsList
. return e return | false
» S((e )
o ©
-
O _
~ | EmptyList error error true
O
= - ~ S
S E 2.2
3 3 £ 9
= = sal=
o= 2 2| &=
12 7
i= 2
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Objects

* Organize program by rows

Operations

Repres-

entations

first
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Objects

* Organize program by rows

- easy to add a new row; but hard to add a new
column

Operations

first

Repres-
entations
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Example: add an operation

* One new function with algebraic data, but
two new methods in two classes with objects

Operations

return e

entations
e
=
-
@

Repres-

iISEmpty
function

first function
rest function
print function
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Why is this “difficult™

* An editing problem
- assumption: adding methods to two classes
involves editing two files
* A packaging problem
- assumption: the class is the smallest unit of
modularity, so editing a class breaks modularity
* A typing problem

- assumption: fields of the objects have been
given types that allow just the base operations
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Some History ...

Oliveira & Cook (ECOOP

2012):

“The “expression problem” (EP)
138, 10, 46] is now a classical
problem in programming
languages.”
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38. Reynolds, J.C.: User-defined types and

procedural data structures as complementary
approaches to type abstraction. In: Schuman,
S.A. (ed.) New Directions in Algorithmic
Languages, pp. 157-168 (1975)

. Cook,W.R.: Object-oriented programming

versus abstract data types. In:Proceedings of
the REX School/Workshop on Foundations of
Object-Oriented Languages. pp. 151-178.
Springer-Verlag (1991)

46. Wadler, P.: The Expression Problem. Email

(Nov 1998), discussion on the Java
Genericity mailing list
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Some History ...

Krishnamurthi et al. captured the

. Krishnamurthi, S., Felleisen, M., and
1SSuUc:

Friedman, D. P. 1998. Synthesizing object-
oriented and functional design to promote re-

“ A recursive l)/ a’eﬁn ed set Of data use. In ECOOP’98 — Object-Oriented
b 15 10 Programming, E. Jul, Ed. LNCS vol. 1445.
must be processed by several different Springer, pp. 91-113.
tools. In anticipation of future
extensions, the data spectfication and
the tools should therefore be

tmplemented such that it is easy to

1. add a new variant of data and

gaf/’u st the exi1 sting tools 46. Wadler, P.: The Expression Problem. Email

dccom’z'ngly, and (Nov 19.98), d1.s§:uss%on on the Java
Genericity mailing list

2. extend the collection of tools.”
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Some History ...
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Some History ...

Krishnamurthi et al. captured the

. Krishnamurthi, S., Felleisen, M., and
1SSUcC:

Friedman, D. P. 1998. Synthesizing object-
oriented and functional design to promote re-
use. In ECOOP’98 — Object-Oriented
Programming, E. Jul, Ed. LNCS vol. 1445.
Springer, pp. 91-113.

“A recursively defined set of dat

must be processed by several differen
tools. In anticipation of future
extensions, the data spectfication and

the tools should therefore be

tmplemented such that it is easy to

1. add a new variant of data and

adjust the existing tools 46
accordingly, and m

2. extend the collection of tools_
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Some History ...

Wadler made this “problem” famous
in 1998 (by coining a catchy name)

“The Expresion Problem delineates a
central tension in language design.
Accordingly, it has been widely discussed,
including Reynolds (1975), Cook (1990),
and Krishnamurthi, Felleisen and
Friedman (1998); the latter includes a
more extensive list of references. It bas
also been discussed on this maziling list by
Corky Cartwright and Kim Bruce. Tet I
know of no widely-used language that
solves The Expression Problem while
satisfying the constraints of independent
compilation and static typing.”
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38.

10.

Reynolds, J.C.: User-defined types and
procedural data structures as complementary
approaches to type abstraction. In: Schuman,
S.A. (ed.) New Directions in Algorithmic
Languages, pp. 157-168 (1975)

Cook,W.R.: Object-oriented programming
versus abstract data types. In:Proceedings of
the REX School/Workshop on Foundations of
Object-Oriented Languages. pp. 151-178.
Springer-Verlag (1991)

46. Wadler, P.: The Expression Problem. Email

(Nov 1998), discussion on the Java
Genericity mailing list
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Some History ...

Wadler made this “problem” famous  38.Reynolds, J.C.: User-defined types and

in 1998 (by. coining a catchy name) procedural data structures as complementary
approaches to type abstraction. In: Schuman,
“Tlge Expresjon Problesa deljnedtes a S.A. (ed) New Directions in Algorithmic

Languages, pp. 157-168 (1975)

central tension in language agan.
Accordingly, it bas been widely dMgssed,
including Reynolds (1975), Cook (1990
and Krishnamurthi, Felleisen and
Friedman (1998); the latter includes a
more extensive list of references. It bas
also been discussed on this maziling list by
Corky Cartwright and Kim Bruce. Yet 1
know of no widely-used language that
solves The Expression Problem while
satisfying the constraints of independent
compilation and static typing.”
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Why wait until 19987

* Simula ’67, C++
- have algebraic data as well as objects
e Smalltalk 8o

- classes are not the unit of modularity

e Visitor Pattern (name Visitor coined 1993)

- solves the problem, at the cost of pre-planning
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Why wait until 19987
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Why wait until 19987

‘;:_.{) Java
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Why wait until 19987




Back to the future ...

* How was this “problem” solved in Smalltalk?

Classes named by global variables
methods are the unit of compilation & packaging

a package contains both new classes (and their
methods) and extensions to existing classes (zew

methods)

loading a package into a Smalltalk system:

» changes some existing classes (overrides and adds
methods, adds instance variables)

» introduces some new classes
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Why does this work?

 (Classes are (mutable) objects
- adding (or changing) a method mutates the class
* (Classes are named by global variables

- loading a new version of a class definition changes
the value of the global variable, and recompiles all
existing methods

* Objects created by a methods in a class

* No modular type-checking
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Why doesn’t it work in Java?

* (lasses are not objects, and are immutable

- Classes can be changed only by editing the

source and recompiling

e Classes have global names, and cannot be
renamed, assigned, or aliased

* Objects created by a language built-in new

* Modular type-checking

Portland State
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Java Smalltalk

e = nhew EmptyList e .= EmptyList new

0 = e.append(23) 0 :.=€ ++ 23
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Java Smalltalk

e = nhew EmptyList e .= EmptyList new

0 = e.append(23) 0 :.=€ ++ 23

Data (row) extensibility is easy: add a new package
defining a new class (but also must change
creation code)
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Java Smalltalk

e = nhew EmptyList e .= EmptyList new
0 = e.append(23) 0 :.=€ ++ 23
Data (row) extensibility is easy: add a new package

defining a new class (but also must change
creation code)

Operation extensibility is impossible: can't
change an existing class without editing the
source.
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* What about subclassing?

- idea: subclass all of the original classes to
create new variants with the additional
operations.

- Wadler focussed on generalizing the Java type
system to make it possible to write those
subclasses.

* But this doesn't help!

- We still have to change all the creation code to use
the new classes instead of the existing classes.

Portland State

Monday, 6 July 2015

IIIIIIIIII

21



(srace

* new, simple O-O language

- designed for teaching novice programmers the
concepts of object-oriented programming

® block-structured within a module
* modules are objects

* no global variables

- modules are imported under a name chosen by
the c/zent

Portland State
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Oliveira and Cook’s Example

exp_base Operations

eval

N

= |

= lit(n) n

)

=

2

O

fis): sum(es, e2) | es.eval + ez.eval

oz
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Oliveira and Cook’s Example

exp+pretty Operations
eval pretty
=
-% lit(n) n "fn}"
=
2
O "{e1.pretty} +
54% sum(ei, e2) | es.eval + es.eval O

Portland State
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dialect "staticTypes" Oliveira and Cook’s code

f hei ] :
type Value = Object rom their paper, translated into Grace

type Exp = { eval —> Value }

factory method lit(i:Number) —> Exp { exp_base.grace
method x —> Number { i}
method eval —> Value { x }
}
factory method sum(a:Exp, b:Exp) —> Exp {
method | —> Exp { a}
methodr —> Exp { b }
method eval —> Value { l.eval + r.eval }

)

// Demonstration:

def threePlusFour:Exp = sum(lit 3, lit 4)
print "{threePlusFour} = {threePlusFour.eval}"
// prints: an object =7

Portland State 25
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dialect "staticTypes" OliVCiI‘ d and COOk’S code

type Value = Object from their paper, translated into Grace

type Exp = { eval —> Value }

factory method lit(i:Number) —> Exp { exp_base.grace
method x —> Number { | }
method eval —> Value { x }
}
factory method sum(a:Exp, b:Exp) —> EXxp {
method | —> Exp { a}
methodr —> Exp { b}
method eval —> Value { l.eval + r.eval }

}

// Demonstration:

def threePlusFour:Exp = sum(lit 3, lit 4)
print "{threePlusFour} = {threePlusFour.eval}"

//pl’anS an 0bj€Ct — 7 $ apbmg exp_base_grace
self.sum[0x0x7fc6cbclb9f8] = 7

$
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(3raceful solution

dialect "static Types"”
import "exp base" as baseExp
type Exp = baseExp.Exp & type { pretty —> String }

factory method lit(i:-Number) —> Exp {

inherits baseEXpllt(l) eXp+prettygrace
method pretty { x.asString }

}
factory method sum(a:Exp, b:Exp) —> EXp {

inherits baseExp.sum(a, b)
method pretty { "{l.pretty} + {r.pretty}" }
]

// Demonstration:

def threePlusFour:Exp = sum(lit 3, lit 4)
print "{threePlusFour.pretty} = {threePlusFour.eval}"
// prints: 3 +4=7

26
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(5raceful solution

dialect "static Types"”
import "exp base" as baseExp
type Exp = baseExp.Exp & type { pretty —> String }

factory method lit(i:-Number) —> Exp {

method pretty { x.asString }

}

factory method sum(a:Exp, b:Exp) —> Exp {
inherits baseExp.sum(a, b)
method pretty { "{l.pretty} + {r.pretty}" }

}

// Demonstration:
def threePlusFour:Exp = sum(lit 3, lit 4)

print "{threePlusFour.pretty} = {threePlusFour.eval}"
// prints: 3 +4=7

$ apbmg exp+pretty.grace
self.add [0x0x7f9d40523c58] = 7

3 +4 =7
$
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Oliveira and Cook's Example

exp and pretty Operations
eval pretty

=

% ||t(n) N Il{n}ll

=

2

O "{e1.pretty} +
§ sum(e1, e2) | es.eval + ez, eval fes.pretty)”
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Oliveira and Cook's Example

exp+pretty+bool Operations
eval pretty
lit(n) n n}"
=
S sum(ei, €2) | ei.eval + ez eval |'{e1.pretty} + {e2.pretty}"
Qe
5
& bool(b) b {b}"
a,
=
if(c.eval)then "If {c.pretty} then
Iff(c, th, el) {th.eval) else {th.pretty} else
{el.eval} {el.pretty}"

Portland State

Monday, 6 July 2015
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dialect "staticTypes"

import "exp_and_pretty" as baseExp
type Exp = baseExp.Exp

type Value = Object

exp+pretty+bool.grace

method sum(l:Exp, r:Exp) —> Exp { baseExp.sum(l, r) }
method lit(x:Number) —> Exp { baseExp.lit(x) }

factory method bool(b:Boolean) —> Exp {
method x —> Boolean { b }
method eval —> Value { x }
method pretty —> String { b.asString }
)
factory method iff(c:Exp, t:Exp, f:Exp) —> Exp {
method eval —> Value {
if (c.eval) then { t.eval } else { f.eval }
}
method pretty —> String {
"if ({c.pretty}) then {t.pretty} else {f.pretty}"

}
}

def e3plus4:Exp = sum(lit 3, lit 4)

def e2plus6:Exp = sum(lit 2, lit 6)

def ett:Exp = bool(true)

def ifExpr:Exp = iff(ett, e3plus4, e2plusb)
print "{ifExpr.pretty} = {ifExpr.eval}"

// prints:  if (true) then 3 + 4 else 2 + 6 =7 29
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dialect "staticTypes"

import "exp_and_pretty" as baseExp
type Exp = baseExp.Exp

type Value = Object

exp+pretty+bool.grace

method sum(l:Exp, r:Exp) —> Exp { baseExp.sum(l, r) }
method lit(x:Number) —> Exp { baseExp.lit(x) }

factory method bool(b:Boolean) —> Exp {
method x —> Boolean { b }
method eval —> Value { x }
method pretty —> String { b.asString }
)
factory method iff(c:Exp, t:Exp, f:Exp) —> EXp {
method eval —> Value {
If (c.eval) then { t.eval } else { f.eval }
}
method pretty —> String {
"if ({c.pretty}) then {t.pretty} else {f.pretty}"

}
}

def e3plus4:Exp = sum(lit 3, lit 4)

def e2plus6:Exp = sum(lit 2, lit 6)

def ett:Exp = bool(true)

def ifExpr:Exp = iff(ett, e3plus4, e2plusb)
print "{ifExpr.pretty} = {ifExpr.eval}"

// prints: if (true) then 3 + 4 else 2 + 6 =7

then 3 + 4 else 2 + 6 =7

29
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Object Algebras

* Oliveira and Cook. “Extensibility for the
masses”. ECOOP 2012

- Avoids typing issues (beyond type parameters)

and permits re-use of creation code.

- Basic idea: abstract over creation by defining a
method that builds the structure on demand

- Argument to that method is the “Object
Algebra” — a factory object

Portland State

Monday, 6 July 2015
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objectAlgerbra.grace (1)

dialect "staticTypes"
import "exp_base" as exp
type Exp = exp.Exp

// define the Object Algebra machinery

type IntAlg<A> = {
lit(x:Number) —> A
sum(el:A, e2:A) —> A

}

factory method intFactory —> IntAlg<Exp> {
method lit(x:Number) —> Exp { exp.lit(x) }
method sum(a:Exp, b:Exp) —> Exp { exp.sum(a, b) }

}

method mk3Plus4<A>(v:IntAlg<A>) —> A {
v.sum(v.lit(3), v.lit(4))

}

// compare the above with the normal expression:
// def e3Plus4:Exp = sum(lit 3, lit 4)

Portland State 31
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// add pretty—printing to expressions "retroactively”

type Pretty = { pretty —> String }
factory method prettyFactory —> IntAlg<Pretty> { .
factory method lit(x:Number) { objectAlgerbra.grace (2)

method pretty —> String { x.asString }
}
factory method sum(a:Pretty, b:Pretty) {
method pretty —> String { "{a.pretty} + {b.pretty}" }

}
}

// demonstration

def x = mk3Plus4(intFactory)

// print "{x.pretty} = {x.eval}"

// fails: no method 'pretty' in object x
def s = mk3Plus4(prettyFactory)
// print "{s.pretty} = {s.eval}"

// fails: no method 'eval’ in object s
print "{s.pretty} = {x.eval}"

/ prints: 3+4=7

Portland State 32
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// add pretty—printing to expressions "retroactively”

type Pretty = { pretty —> String }
factory method prettyFactory —> IntAlg<Pretty> { .
factory method lit(x:Number) { objectAlgerbra.grace (2)

method pretty —> String { x.asString }
|
factory method sum(a:Pretty, b:Pretty) {
method pretty —> String { "{a.pretty} + {b.pretty}" }

]
]

// demonstration

def x = mk3Plus4(intFactory)

// print "{x.pretty} = {x.eval}"

// fails: no method 'pretty' in object x
def s = mk3Plus4(prettyFactory)
// print "{s.pretty} = {s.eval}"

// fails: no method 'eval’ in object s
print "{s.pretty} = {x.eval}"

// prints: 3 +4=7
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Independent Extensibility

In real life, a much more common scenario than Fig. 1
followed by Fig. 2 followed by Fig. 3 would be like
this. Some party A defines exp_and_pretty. Another
party B independently defines exp_and_bool. A third
party C' finds those and wants to combine them to
exp_and_pretty_and_bool. This should be possible so
that C' need only define pretty for bool (in addition

to importing the two previous modules). Can Grace
handle that?

e Adding pretty uses inheritance, while adding
bool uses composition.

- If both the original extensions used
inheritance, we couldn't guarantee that we
could combine them
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party C finds those and wants to combine them to not fuuy
exp_and_pretty_and_bool. This should be possible so general
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to importing the two previous modules). Can Grace
handle that?

e Adding pretty uses inheritance, while adding
bool uses composition.

- If both the original extensions used
inheritance, we couldn't guarantee that we
could combine them
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Conclusions

e Wadler's version of the expression problem
is unsolvable

* Wadler saw it as a challenge for type systems

* ] see it as a challenge for even more
fundamental features of a language:

- global constants vs local namespaces

- presence of built-in “non-objects”,

- client object creation with method request or
primitive
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