
The Emerald Programming
Language and its Development

The Emerald Programming
Language and its Development

Andrew P. Black
Norman C. Hutchinson

Eric Jul
Henry M. Levy

What is Emerald?

• Object-based programming language

• Static types, parametric polymorphism

• Mobile objects (and mobile processes)

• Efficient implementation

• Designed and implemented 1984-1987

2

What is Emerald?

2

• Like Java, except that:

+ Objects are mobile

+ Objects can be persistent

+ Remote invocation has the same
semantics as Local Invocation

+ Parameterized types (from the beginning)

+ No inheritance

2007

• Objects have won

° Object-oriented languages are mainstream

° Distributed objects are the dominant paradigm for
internet computing

• J2EE, .Net, CORBA, SOAP, …

° It wasn’t always like this!

3

1984

• Objects were hot!

° but people were skeptical
about performance

4

1984

• Objects were hot!

° but people were skeptical
about performance

• Objects were not accepted
even for non-distributed
computing

° Simula was “way out there”, C++ wasn’t yet available, Java
wouldn’t be born for 15 years

° Smalltalk was “hip,” but only if you had a Dorado

4

At the University of Washington

5

At the University of Washington

5

• We had just started running Eden: the first
Object-oriented distributed operating system

At the University of Washington

5

• We had just started running Eden: the first
Object-oriented distributed operating system

At the University of Washington
• We had just started running Eden: the first

Object-oriented distributed operating system

° it worked!

° performance was unimpressive

6

BSD Unix Kernel + ACCENT IPC BSD Unix Kernel + ACCENT IPC

A CB
Eden
kernel

Eden
kernel

At the University of Washington
• We had just started running Eden: the first

Object-oriented distributed operating system

° it worked!

° performance was unimpressive

6

BSD Unix Kernel + ACCENT IPC BSD Unix Kernel + ACCENT IPC

A CB

300 ms

Eden
kernel

Eden
kernel

At the University of Washington
• We had just started running Eden: the first

Object-oriented distributed operating system

° it worked!

° performance was unimpressive

6

BSD Unix Kernel + ACCENT IPC BSD Unix Kernel + ACCENT IPC

A CB
Eden
kernel

Eden
kernel

137 ms

The People

Andrew
Black

Norm
Hutchinson

Eric Jul Henry
(Hank) Levy

Andrew
Black

Norm
Hutchinson

Eric Jul Henry
(Hank) Levy

The People

8

Fall 1983: The Coffee Shop

9

• Hank asked Eric and Norm for a cup of coffee

• He also asked:

° What’s wrong with Eden?

° What would you do differently?

° Why don’t you do it?

Getting to Oz

Hank Levy, Norm Hutchinson, Eric Jul
April 27, 1984

For the past several months, the three of us have been discussing the possibility of building a new object-based system. Carl Binding frequently attended our meetings, and occasionally Guy Almes, Andrew Black, or Alan Borning sat in also. This system, called Oz, is an outgrowth of our experience with the Eden system. In this memo we try to capture the background that led to our current thinking on Oz. This memo is not a specification but a brief summary of the issues discussed in our meetings.

Starting in winter term, 1984, we began to examine some of the strengths and weaknesses of Eden. Several of the senior Eden graduate students had been experimenting with improving Eden's performance. Although they were able to significantly decrease Eden invocation costs, performance was still far from acceptable. Certainly some of the performance problem was due to Eden's current invocation semantics, some was due to implementation of invocation, and some was due to the fact that Eden is built on top of the Unix system.

In addition to performance problems, Eden suffered from the lack of a clean interface. That is, the Eden programmer needs to know about Eden, about EPL (Eden Programming Language -- an preprocessor-implemented extension to Concurrent Euclid), and about Unix to build Eden applications. Also, there was at that time no Eden user interface. Users built Eden applications with the standard Unix command system.

This combination of issues led us to consider building a better integrated system from scratch. Performance was at the top of our priorities. To date, object systems have a reputation of being slow and we don't think this is inherently due to their support for objects. We want to build a distributed object-based system with performance comparable to good message passing systems. To do this, we would have to build a low-level, bare-machine kernel and compiler support. In addition, we would like our system to have an object-based user interface as well as an object-based programming interface. Thus, users should be able to create and manipulate objects from a display.

Our first discussions concentrated on low-level kernel issues. In the Eden system, there are two types of processes and two levels of scheduling. Applications written in EPL contain multiple lightweight processes that coexist within a single Unix address space. These processes are scheduled by a kernel running within that address space. This kernel gains control through special checks compiled into the application. At the next level, multiple address spaces (Unix processes) are scheduled by the Unix system.

Our first decision was that our system would provide both lightweight processes that share

10

Getting to Oz

Hank Levy, Norm Hutchinson, Eric Jul
April 27, 1984

For the past several months, the three of us have been discussing the possibility of building a new object-based system. Carl Binding frequently attended our meetings, and occasionally Guy Almes, Andrew Black, or Alan Borning sat in also. This system, called Oz, is an outgrowth of our experience with the Eden system. In this memo we try to capture the background that led to our current thinking on Oz. This memo is not a specification but a brief summary of the issues discussed in our meetings.

Starting in winter term, 1984, we began to examine some of the strengths and weaknesses of Eden. Several of the senior Eden graduate students had been experimenting with improving Eden's performance. Although they were able to significantly decrease Eden invocation costs, performance was still far from acceptable. Certainly some of the performance problem was due to Eden's current invocation semantics, some was due to implementation of invocation, and some was due to the fact that Eden is built on top of the Unix system.

In addition to performance problems, Eden suffered from the lack of a clean interface. That is, the Eden programmer needs to know about Eden, about EPL (Eden Programming Language -- an preprocessor-implemented extension to Concurrent Euclid), and about Unix to build Eden applications. Also, there was at that time no Eden user interface. Users built Eden applications with the standard Unix command system.

This combination of issues led us to consider building a better integrated system from scratch. Performance was at the top of our priorities. To date, object systems have a reputation of being slow and we don't think this is inherently due to their support for objects. We want to build a distributed object-based system with performance comparable to good message passing systems. To do this, we would have to build a low-level, bare-machine kernel and compiler support. In addition, we would like our system to have an object-based user interface as well as an object-based programming interface. Thus, users should be able to create and manipulate objects from a display.

Our first discussions concentrated on low-level kernel issues. In the Eden system, there are two types of processes and two levels of scheduling. Applications written in EPL contain multiple lightweight processes that coexist within a single Unix address space. These processes are scheduled by a kernel running within that address space. This kernel gains control through special checks compiled into the application. At the next level, multiple address spaces (Unix processes) are scheduled by the Unix system.

Our first decision was that our system would provide both lightweight processes that share

Getting to Oz

Hank Levy, Norm Hutchinson, Eric Jul

April 27, 1984

For the past several months, the three of us have been discussing the possibility of building

a new object-based system. Carl Binding frequently attended our meetings, and occasionally

Guy Almes, Andrew Black, or Alan Borning sat in also. This system, called Oz, is an

outgrowth of our experience with the Eden system. In this memo we try to capture the

background that led to our current thinking on Oz. This memo is not a specification but a

brief summary of the issues discussed in our meetings.

Starting in winter term, 1984, we began to examine some of the strengths and weaknesses

of Eden. Several of the senior Eden graduate students had been experimenting with

improving Eden's performance. Although they were able to significantly decrease Eden

invocation costs, performance was still far from acceptable. Certainly some of the

performance problem was due to Eden's current invocation semantics, some was due to

implementation of invocation, and some was due to the fact that Eden is built on top of the

Unix system.

In addition to performance problems, Eden suffered from the lack of a clean interface.

That is, the Eden programmer needs to know about Eden, about EPL (Eden Programming

Language -- an preprocessor-implemented extension to Concurrent Euclid), and about Unix

to build Eden applications. Also, there was at that time no Eden user interface. Users built

Eden applications with the standard Unix command system.

This combination of issues led us to consider building a better integrated system from

scratch. Performance was at the top of our priorities. To date, object systems have a

reputation of being slow and we don't think this is inherently due to their support for objects.

We want to build a distributed object-based system with performance comparable to good

message passing systems. To do this, we would have to build a low-level, bare-machine

kernel and compiler support. In addition, we would like our system to have an object-based

user interface as well as an object-based programming interface. Thus, users should be able

to create and manipulate objects from a display.

Our first discussions concentrated on low-level kernel issues. In the Eden system, there are

two types of processes and two levels of scheduling. Applications written in EPL contain

multiple lightweight processes that coexist within a single Unix address space. These

processes are scheduled by a kernel running within that address space. This kernel gains

control through special checks compiled into the application. At the next level, multiple

address spaces (Unix processes) are scheduled by the Unix system.

Our first decision was that our system would provide both lightweight processes that share

10

Getting to Oz

Hank Levy, Norm Hutchinson, Eric Jul
April 27, 1984

For the past several months, the three of us have been discussing the possibility of building a new object-based system. Carl Binding frequently attended our meetings, and occasionally Guy Almes, Andrew Black, or Alan Borning sat in also. This system, called Oz, is an outgrowth of our experience with the Eden system. In this memo we try to capture the background that led to our current thinking on Oz. This memo is not a specification but a brief summary of the issues discussed in our meetings.

Starting in winter term, 1984, we began to examine some of the strengths and weaknesses of Eden. Several of the senior Eden graduate students had been experimenting with improving Eden's performance. Although they were able to significantly decrease Eden invocation costs, performance was still far from acceptable. Certainly some of the performance problem was due to Eden's current invocation semantics, some was due to implementation of invocation, and some was due to the fact that Eden is built on top of the Unix system.

In addition to performance problems, Eden suffered from the lack of a clean interface. That is, the Eden programmer needs to know about Eden, about EPL (Eden Programming Language -- an preprocessor-implemented extension to Concurrent Euclid), and about Unix to build Eden applications. Also, there was at that time no Eden user interface. Users built Eden applications with the standard Unix command system.

This combination of issues led us to consider building a better integrated system from scratch. Performance was at the top of our priorities. To date, object systems have a reputation of being slow and we don't think this is inherently due to their support for objects. We want to build a distributed object-based system with performance comparable to good message passing systems. To do this, we would have to build a low-level, bare-machine kernel and compiler support. In addition, we would like our system to have an object-based user interface as well as an object-based programming interface. Thus, users should be able to create and manipulate objects from a display.

Our first discussions concentrated on low-level kernel issues. In the Eden system, there are two types of processes and two levels of scheduling. Applications written in EPL contain multiple lightweight processes that coexist within a single Unix address space. These processes are scheduled by a kernel running within that address space. This kernel gains control through special checks compiled into the application. At the next level, multiple address spaces (Unix processes) are scheduled by the Unix system.

Our first decision was that our system would provide both lightweight processes that share

10

11

Goals for Emerald
1. To implement a high-performance distributed

object system
2. To demonstrate high-performance objects
3. To simplify distributed programming
4.To exploit information hiding
5. To accommodate failure
6. To support object location explicitly
7. To minimize the size of the language,

implementing everything possible as objects

How We Worked

• Self-organizing team, with personal responsibilities
It will be Norm’s job to see that local invocations execute as
fast as local procedure calls, and Eric’s to make sure that
remote invocations go faster than Eden’s

• Incremental Implementation
• First compiler was for mini-language, produced macro-

calls, run thru m4 then assembled and linked with “kernel”
• added features, switched to VAX assembly with JSR to

kernel procedures

12

Compiler,–Runtime integration

• All local objects and runtime kernel shared an
address space

° shared knowledge of all basic data structures

° compiled code did not call kernel procedure to interpret
an object structure: it reached in and twiddled the bits
directly.

• Compiler and runtime must agree on the data
layout:

13

14

• Put compiler writer and kernel implementor in
the same office

• Define all the basic data structures in a single file

- in VAX assembler for the compiler

- in C for the runtime kernel

• Single file ingeniously written so it could be
treated as C with assembly language comments,
or as assembly language with C comments.

15

• We were implementing many of the practices
that would later become part of XP:
- team room
- informative workspace
- incremental development
- constant testing
- short (daily) release cycles
- leave optimization until last
- acceptance tests run often (daily)
- defer building functionality until it’s needed

16

Early eXtreme Programming

Technical Innovations

• Object constructors
• Conformity-based typing
• Contravariance
• AbCons
• Separating locatics from

semantics
• Call-by-move & -visit
• Overloading by arity

• F-bounded polymorphism
• type:type
• attachment
• Separation of type and

implementation
• Any and None
• location primitives
• unavailability handlers

17

Emerald’s Object Model

• Strong encapsulation

° one type, many implementations

° clients can’t tell the difference

° both end-user programers and compiler-writers benefit
• Immutable objects as well as Mutable objects
• Object constructors replace classes
• Objects are not fragmented
• The unit of mobility

° an object and all of the objects attached to it

18

One model, three implementations

19

global

local

direct 32-bit data

address

address

data

 L Rtag

data

 G Rtagdata pointer

 G Rtag

19

global

local

direct 32-bit data

address

address

data

 L Rtag

data

 G Rtagdata pointer

 G Rtag

resident/non-resident

19

global

local

direct 32-bit data

address

address

data

 L Rtag

data

 G Rtagdata pointer

 G Rtag

19

global

local

direct 32-bit data

address

address

data

 L Rtag

data

 G Rtagdata pointer

 G Rtag

local/global

19

Object Constructors

• a statement that, when executed, creates an
object

– “magic”, like new

• Syntax:
object name
	
 private state declarations
	
 operation declarations
end name

20

Example from Emerald Compiler

21

Example from Emerald Compiler

21

Example from Emerald Compiler

21

Parameterized Constructor

object constructor from previous slide

22

Parameterized Constructor

object constructor from previous slide

22

Parameterized Constructor

object constructor from previous slide

22

Concurrency

• Processes and Monitors

° inspired by Per Brinch Hansen’s Concurrent Pascal

° and Holt’s Concurrent Euclid, used in Eden.

• All assignments to variables must be within a
monitor!

• Objects could have two parts:

° Non-monitored: concurrency ok, assignment not allowed

° Monitored part: sequential access, updates allowed

23

Emerald Processes (= threads)

• Every object (in principle) has a process:

object doSomething
 process
 ... do something …
 end process
end doSomething

• Processes are not first class citizens

24

Distribution

• “Sea” of objects — divided into disjoint sets

• An object is on one and only one Node at a time

• A Node can crash and become unavailable — this is
a normal and expected event.

• Each node is represented by a Node object

• Locate X returns the node where X was

• Immutable objects are omnipresent!

° Immutability is a distributed programmer’s secret weapon.

25

Mobility

Mobility for two reasons:

° performance: co-location for performance. One example is
call-by-move where parameter moves to callee’s site.

° availability: e.g., moving multiple copies of a replication
manager to different nodes.

Reflected in two different kinds of mobility:
move X to Y just performance hint, can’t fail

fix X at Y must commit or fail

26

On-the-fly process mobility

object Kilroy
 process
 const origin ← locate self
 const up ← origin.getNodes
 for n in up
 move self to n.getTheNode
 end for
 end process
end Kilroy

• Object moves itself to
all available nodes

• On the original
MicroVAX
implementation:
25 moves/second,
40 ms/move while a
remote invoke was
28ms

• The process moves
along with the object

27

Implementing Mobility

• Possibly-mobile objects have guids
– guids eagerly replaced by direct local addresses

• Stack segments are treated like objects

• Hence, objects and processes (activation records)
can be moved from machine to machine
– all the cleverness was in making it fast

28

X stack Segment 2

activation record of
operation in C

X stack Segment 1

activation record of
operation in B

Object
A

Object
C

Object
B

Process X stack base

activation record of
operation in A

Taber

29

X stack Segment 2

activation record of
operation in C

Object
A

Object
C

X stack Segment 1

activation record of
operation in B

Object
B

Process X stack base

activation record of
operation in A

Taber Roskilde

30

Emerald’s Type System

• Types were an assumption, not a conclusion:

° our experience was with Algol 60, Simula, Concurrent
Euclid, Pascal, …

° we “knew” that type declarations and compile-time
checking would improve performance

• Challenges:
° permit the definition of typed collections in the

language

° Array.of [Integer] vs. Set.of [Mailer]

° work in an “open world”

31

“Wirthian” Type Systems

• Classified objects by implementation, not by
behavior

° types were concrete data structures:
one type ⇒ one implementation

• Assumed a closed world

° new kinds of objects could not arrive over the network
at runtime

• Programs that could not be proved type-correct
at compile time could never be run

32

Emerald’s Type System
• Types were sets of operation signatures

° we called them abstract types: the implementations of
the operations were irrelevant to the type

° inspired by abstract Edentypes and Smalltalk protocols

• Assumed an “open world” — accept objects
compiled on the other side of the world

° If we can’t type-check it now, we’ll check it when it
arrives

° Regardless, the same type system and the same checking
rules apply

33

Type equality was the wrong question

• Does a given object support enough operations
to be used in a particular context (characterized
by the operations that could be invoked on it)?

⇒ Does the object possess a superset of the operations
that could be invoked in the current context?

• Hence: conformity-based typing, now more
usually called “subtyping”

34

Did types improve efficiency?
• We forbade primitive types from being re-

implemented

° Boolean, Character, Integer, Real, String and Vector were
built-in and could not be re-implemented

° So, the compiler could deduce the implementation from
the type

° This meant that operations on these type could be
inlined

• This was a hack, but paid-off

° We broke our own rule that type had nothing to do
with implementation

35

• For non-primitives, the abstract type of an
expression told us nothing at a! about its
implementation!

° How to do efficient operation lookup?

° Couldn’t use table-lookup as in Simula

• Dataflow analysis could help eliminate operation
invocation in many cases

° context-dependent, not type-dependent

• For the rest, we invented AbCons: vectors that
map operations on the type to methods

Non-primitive types

36

from Black et al., Distribution and Abstract Types in Emerald. IEEE TSE 1987

Parametric Polymorphism

• Open-world assumption meant that we needed a
run-time representation for types

° Obvious choice: make types objects

• Now types can parameterize operations

• Type constructors are just operations
° Pair.of [Integer] is a perfectly normal operation

invocation

° We can evaluate it at compile time, because Pair is
immutable, and of is a function

38

What made Emerald fast?

• Single address space

• Performance-oriented networking design

• Choice between eager and lazy evaluation

° do as much at compile-time as possible, and defer the
rest: you may never have to do it at all!

° once you have to do it, do as much as you can as early as
you can

39

Whatever happened to Emerald?

• Widely influential, even though not widely
adopted as a language.

• Examples:

° ANSI Smalltalk standard uses a lattice of conforming
protocols

° Mobile objects appear in several OSs: SOS, Guide,
Network Objects

° ANSA network architecture ➨OSF RPC ➨ ISO 10746
ODP

40

Later Influences

• Java RPC and Jini

° “more Emerald-like than we realized at the time” — Jim
Waldo

• Walsh’s Taxy mobility system

• Gaggles

• Multicast invocations

41

Retrospective

• Location independence

° does not absolve the programmer from placing objects
correctly.

• Mobile and Persistent objects

° have not caught on. Why? 25 years too early? Did we
need proof-carrying code?

• Static typing

° May have been a mistake

° Small benefit, big headaches

42

43

Not everyone was impressed…

43

Not everyone was impressed…

