
Nathanael Schärli (SCG, University of Bern)
and

Andrew P. Black (CSE, Oregon Health & Science University)

A Browser for Incremental
Programming

Nathanael Schärli (SCG, University of Bern)
and

Andrew P. Black (CSE, Oregon Health & Science University)

A Browser for Incremental
Programming

Nathanael Schärli (SCG, University of Bern)
and

Andrew P. Black (CSE, Oregon Health & Science University)

A Browser for Incremental
Programming

m!

2

• What we do in Smalltalk!

• One of the Extreme Programming (XP)
practices

• Characterized by some patterns of work that
should be familiar to you:

What is Incremental Programming?

3

• Programming with limited knowledge

• Working in multiple contexts

• Refactoring

• Testing

• Understanding how classes collaborate

• Understanding what is still missing

Incremental work patterns

3

• Programming with limited knowledge

• Working in multiple contexts

• Refactoring

• Testing

• Understanding how classes collaborate

• Understanding what is still missing

Incremental work patterns

– Generic protocols, absence of declarations

3

• Programming with limited knowledge

• Working in multiple contexts

• Refactoring

• Testing

• Understanding how classes collaborate

• Understanding what is still missing

Incremental work patterns

– Generic protocols, absence of declarations

– Multiple windows, tiling browsers

3

• Programming with limited knowledge

• Working in multiple contexts

• Refactoring

• Testing

• Understanding how classes collaborate

• Understanding what is still missing

Incremental work patterns

– Generic protocols, absence of declarations

– Multiple windows, tiling browsers

– Refactoring Browser

3

• Programming with limited knowledge

• Working in multiple contexts

• Refactoring

• Testing

• Understanding how classes collaborate

• Understanding what is still missing

Incremental work patterns

– Generic protocols, absence of declarations

– Multiple windows, tiling browsers

– Refactoring Browser

– SUnit

3

• Programming with limited knowledge

• Working in multiple contexts

• Refactoring

• Testing

• Understanding how classes collaborate

• Understanding what is still missing

Incremental work patterns

– Generic protocols, absence of declarations

– Multiple windows, tiling browsers

– ?

– Refactoring Browser

– SUnit

3

• Programming with limited knowledge

• Working in multiple contexts

• Refactoring

• Testing

• Understanding how classes collaborate

• Understanding what is still missing

Incremental work patterns

– Generic protocols, absence of declarations

– Multiple windows, tiling browsers

– ?

– ?

– Refactoring Browser

– SUnit

4

• Provide information about completeness of
classes and collaborations between classes that is

° statically computed,

° always accessible, and

° always up-to-date

• Why not? This information is in the code

° My PowerBook is 50 times faster than a Dorado

How should we support
Incremental Programming?

5

How to present it?

5

How to present it?
• Virtual Categories

5

How to present it?
• Virtual Categories

5

How to present it?
categorization of methods by the browser, based
on their characteristics; always up-to-date• Virtual Categories

6

-requires-
• all messages sent to this class for which there is no

method defined or inherited
-supplies-

• all messages required by some other class for which
methods are provided in this class

-overrides-
• methods defined in this class that override inherited

methods
- sending super -

• methods that perform super sends

Four Categories:

7

supplies & overrides

7

supplies & overrides

7

supplies & overrides

7

supplies & overrides

8

Extended Example/Demonstration

DemoList

DemoEmptyList DemoConsList

printOn:
size

head
rest
do:

head
rest
do:

isEmptyisEmpty

• Creating a new sub-tree of classes

9

• Feedback from the browser helps us find:

° which methods are “core” and which are “support”

° how the sub- and superclasses depend on each other

• When extending code, the browser helps avoid:

° introducing inter -level errors

° accidentally incomplete classes

Understanding and
Modifying Existing Hierarchies

10

• A common pattern used to increase reuse in a
data type implementation [Black ECOOP inh wk 2002]

° e.g., the abstract superclass Collection defines 110
support methods

• they don’t access the state of any collection directly
• instead, they depend on 4 core methods
– add:, atRandom:, do: and remove:ifAbsent:
- 3 are defined as self subclassResponsibility
- atRandom: is not defined at all

• The browser finds these 4 required methods amongst
the 110!

The Core/Support Split

11

• When we look at a subclass of Collection, e.g., Bag, we can
distinguish:

° the 4 supplied methods,

° 10 methods that override the inherited methods, either to
disable them or to improve their efficiency, and

° 7 additional methods that widen the interface of Bag
beyond that of Collection

The Core/Support Split (2)

12

• The browser tells us some surprising things
about Squeak’s core classes:

° Fraction is abstract
• it implements the support method printOn:, whereas

it should implement the core method printOn:Base:

° Bitmap is abstract
• the programmer sends an error message

primitiveFail, which he forgot to define

° Debugger, CharacterSet, Morph (and nearly all
of its subclasses): all are abstract

Accidentally Abstract Classes

13

• Why are these errors present in a code base that
has been used by thousands of users for many
years?

° It is not because a bad
programmer wrote BitMap

• It is because even good programmers will make
mistakes unless they have good tools

Accidentally Abstract Classes (2)

13

• Why are these errors present in a code base that
has been used by thousands of users for many
years?

° It is not because a bad
programmer wrote BitMap

• It is because even good programmers will make
mistakes unless they have good tools

Accidentally Abstract Classes (2)

14

- sending super - is easy
• look for the bytecode for super sends

-overrides- is easy
• compare this class’s selectors with its superclass’s

protocol
-supplies- is easy once one knows requires

• compare this class’s selectors with the requires set of
other classes

-requires- is most definitely not easy
• implementing requires in real-time required a lot of

careful thinking and more careful programming!

Implementation

15

• Pseudocode:

Behavior >> requires

self reachableMethods selfMessages

difference:

(self allReallyImplementedSelectors)

What’s in the requires category?

15

• Pseudocode:

Behavior >> requires

self reachableMethods selfMessages

difference:

(self allReallyImplementedSelectors)

What’s in the requires category?
We had to invent and formalize

a definition of reachability

15

• Pseudocode:

Behavior >> requires

self reachableMethods selfMessages

difference:

(self allReallyImplementedSelectors)

What’s in the requires category?

15

• Pseudocode:

Behavior >> requires

self reachableMethods selfMessages

difference:

(self allReallyImplementedSelectors)

What’s in the requires category?

Cannot infer this from bytecode.

15

• Pseudocode:

Behavior >> requires

self reachableMethods selfMessages

difference:

(self allReallyImplementedSelectors)

What’s in the requires category?

15

• Pseudocode:

Behavior >> requires

self reachableMethods selfMessages

difference:

(self allReallyImplementedSelectors)

What’s in the requires category?

allSelectors \ those not really implemented (subclass-
Responsibility, shouldNotImplement, requirement, etc.)

16

• Recognizing self-sends requires a full parse of the
method text

• A change in, say, Object, might change the
required methods of every class in the system!

• Squeak images contain > 60 000 methods

• We decided that we needed to cache the self-
sends for every method when it is compiled

Recognizing self-sends

17

• Even with these caches for self- and super sends,
the first implementation took over 3 minutes to
ascertain the required methods of a class!

A problem of scale

18

• The caches should be arranged “backwards”

° for each message, cache the methods that self-send it

• We don’t need to know the requires set, all we
need to know is whether it is empty

° Does a subclass override a" of the methods that self-
send a message required by the superclass?

• if not, we immediately know that it is also required in the
subclass

Two key insights

19

• is far too complex to put
on a slide

° that’s what the paper is for!

• Computing the required set
now takes less than 100 ms
— fast enough to provide
“real-time” feedback

The Complete Algorithm…

19

• is far too complex to put
on a slide

° that’s what the paper is for!

• Computing the required set
now takes less than 100 ms
— fast enough to provide
“real-time” feedback

The Complete Algorithm…

20

• To do lists

° Trellis’s “grass catcher” was also the product of changing
a single method

° More commonly, as with Eclipse’s “Tasks” window, to
do lists are updated only on global recompilation.

• Browser extensions

° decoration of names to indicate local properties such as
overrides or sends to super, e.g., in VisualWorks

° Star Browser allows the definition of intentional
classifications that are recomputed when necessary

Related Work

21

• Other visualizations of the self-send information

° e.g., Blueprint-like diagrams

• Two directions for extension:

° Help in understanding other kinds of collaboration

• e.g., delegation, aggregation, Mudpie’s package
dependencies

° A pluggable browser framework

• what are the key features?

Future Work

22

• The Browser is Feasibl!

° with careful design and implementation, it is feasible to
provide real-time feedback even for global properties
such as required methods

• The Browser is Useful

° Simplifies Intentional Programming

° Makes it easier to understanding existing classes

° Clarifies the relationship between sub- and superclasses

° Exposes many bugs in existing code

Conclusion

23

Questions!

24

Object

printOn:

…

…

Collection

printOn:
printElementsOn:

Bag
tally
array
printOn:

Which methods are reachable?

24

Object

printOn:

…

…

Collection

printOn:
printElementsOn:

Bag
tally
array
printOn:

Which methods are reachable?

24

Object

printOn:

…

…

Collection

printOn:
printElementsOn:

Bag
tally
array
printOn:

Which methods are reachable?

24

Object

printOn:

…

…

Collection

printOn:
printElementsOn:

Bag
tally
array
printOn:

Which methods are reachable?

printOn: s
s nextPutAll: 'Bag'.
super printOn: s.

24

Object

printOn:

…

…

Collection

printOn:
printElementsOn:

Bag
tally
array
printOn:

Which methods are reachable?

printOn: s
s nextPutAll: 'Bag'.
super printOn: s.

printOn: s
s put: ${.
s printElementsOn: s.
s put: $}…

24

Object

printOn:

…

…

Collection

printOn:
printElementsOn:

Bag
tally
array
printOn:

Which methods are reachable?

printOn: s
s nextPutAll: 'Bag'.
super printOn: s.

printOn: s
s put: ${.
s printElementsOn: s.
s put: $}…

24

Object

printOn:

…

…

Collection

printOn:
printElementsOn:

Bag
tally
array
printOn:

Which methods are reachable?

printOn: s
s nextPutAll: 'Bag'.
super printOn: s.

printOn: s
s put: ${.
s printElementsOn: s.
s put: $}…

24

Object

printOn:

…

…

Collection

printOn:
printElementsOn:

Bag
tally
array
printOn:

Which methods are reachable?

printOn: s
s nextPutAll: 'Bag'.
super printOn: s.

24

Object

printOn:

…

…

Collection

printOn:
printElementsOn:

Bag
tally
array
printOn:

Which methods are reachable?

printOn: s
s nextPutAll: 'Bag'.
super printOn: s.

printOn: s
super printOn: s.
s nextPut: ${.
s printElementsOn: s.
s nextPut: $}…

24

Object

printOn:

…

…

Collection

printOn:
printElementsOn:

Bag
tally
array
printOn:

Which methods are reachable?

printOn: s
s nextPutAll: 'Bag'.
super printOn: s.

printOn: s
super printOn: s.
s nextPut: ${.
s printElementsOn: s.
s nextPut: $}…

printOn: s
…

self className

…

25

fastenVerySecurely

| temp |

self hook.

temp := self

temp button.

self class new clipTo: self

Which messages are self-sent?

25

fastenVerySecurely

| temp |

self hook.

temp := self

temp button.

self class new clipTo: self

Which messages are self-sent?

This is a self-send,
and we recognize it

25

fastenVerySecurely

| temp |

self hook.

temp := self

temp button.

self class new clipTo: self

Which messages are self-sent?

25

fastenVerySecurely

| temp |

self hook.

temp := self

temp button.

self class new clipTo: self

Which messages are self-sent?

This is a self-send, but
we don’t recognize it

25

fastenVerySecurely

| temp |

self hook.

temp := self

temp button.

self class new clipTo: self

Which messages are self-sent?

This is a self-send, but
we don’t recognize it

