A Browser for Incremental
Programming

Nathanael Schirli (SCG, University of Bern)

and

Andrew P. Black (CSE, Oregon Health & Science University)

A Browser for Incremental
Programming

Nathanael Schirli (SCG, University of Bern)

and

Andrew P. Black (CSE, Oregon Health & Science University)

A Browser for Incremental
Programming

Nathanael Schirli (SCG, University of Bern)

and

Andrew P. BlackXCSE, Oregon Health & Science University)

What 75 Incremental Programming?

e What we do in Smalltalk!

* One of the Extreme Programming (XP)
practices

e Characterized by some patterns of work that
should be familiar to you:

Incremental work patterns

* Programming with limited knowledge
* Working in multiple contexts

* Refactoring

* Jesting

* Understanding how classes collaborate

* Understanding what is still missing

Incremental work patterns

* Programming with limited knowledge
— Generic protocols, absence of declarations

* Working in multiple contexts

* Refactoring

* Jesting

* Understanding how classes collaborate

* Understanding what is still missing

Incremental work patterns

* Programming with limited knowledge
— Generic protocols, absence of declarations

* Working in multiple contexts
— Multiple windows, tiling browsers

* Refactoring

* Testing

* Understanding how classes collaborate

* Understanding what is still missing

Incremental work patterns

* Programming with limited knowledge
— Generic protocols, absence of declarations

* Working in multiple contexts
— Multiple windows, tiling browsers

* Refactoring

— Refactoring Browser
* 'Jesting

* Understanding how classes collaborate

* Understanding what is still missing

Incremental work patterns

* Programming with limited knowledge
— Generic protocols, absence of declarations

* Working in multiple contexts
— Multiple windows, tiling browsers
* Refactoring

— Refactoring Browser
* Testing
— SUnit
* Understanding how classes collaborate

* Understanding what is still missing

Incremental work patterns

* Programming with limited knowledge
— Generic protocols, absence of declarations

* Working in multiple contexts
— Multiple windows, tiling browsers
* Refactoring

— Refactoring Browser

* Testing
— SUnit

* Understanding how classes collaborate
iy

* Understanding what is still missing

Incremental work patterns

* Programming with limited knowledge
— Generic protocols, absence of declarations

* Working in multiple contexts
— Multiple windows, tiling browsers
* Refactoring

— Refactoring Browser
* 'Jesting
— SUnit
* Understanding how classes collaborate
-7
* Understanding what is still missing
i

How should we support
Incremental Programming?

* Provide information about completeness of
classes and collaborations between classes that is

o statically computed,
o always accessible, and
o always up-to-date
 Why not? This information zs in the code

o My PowerBook is 50 times faster than a Dorado

How to present it?

How to present it?

* Virtual Categories

How to present it?

* Virtual Categories

X Traits Browser: Boolean Ho
Eernel-Objects = | Booleat = --all -- = & =
Eernel-Classes = DependentsaArray © logical operations = and: —
Eernel-Methods Eventhiessagelet controlling ifFalse:
Eernel-Frocesses Eventhiodel CoOpving ifFalseifTrue:
Eernel-Magnitudes Falze printing ifTrue:
Eernel-Numbers Messagelend Imisc ifTrue:ifFalse:
Eernel-5TH0 Remnany | MModel -Tequires- not
TraitsPaperEzampls| | MorphObjsctOut or!
Collections-Abstract Citniset = |

Collections-Unordere _ 1« inst. 7 | class

ifTrue: alternativeBlock =
"If the receiver is false (i.e., the condition is false), then the walue is the
falze alternative, which is nil. Otherwise answet the result of evaluating
the argument, alternativeBlock, Create an error notification if the
receiver is nonBoolean, Execution doss not actually reach here becavse
the expression is cotnpilsd in-line”

self subclassResponsibility

How to present it?

! . categorization of methods by the browser, based
°
VII' tual Categor 1€S own thelr characteristies; always wp-to-date
b4 Traits Browser: Boolean Ho

Eernel-Objects = | Booleat = --all -- =
Eernel-Classes = Dependentsarray © logical operations : —
Eernel-Methods Eventhiessagelet controlling ifFalse:
Eernel-Frocesses Eventhiodel CoOpving ifFalseifTrue:
Eernel-Magnitudes Falze printing ifTrue:
Eernel-Numbers Messagelend i ifTrue:ifFalse:
Eernel-5To0 Remnaty | Model not
TraitsPaperEzampls| | MorphObjsctOut or!
Collections-Abstract Citniset = |
Collections-Unordere _ 1« inst. 7 | class — —

ifTrue: alternativeBlock
"If the receiver is false (i.e., the condition is false), then the walue is the
falze alternative, which is nil. Otherwise answet the result of evaluating
the argument, alternativeBlock, Create an error notification if the
receiver is nonBoolean, Execution doss not actually reach here becavse
the expression is cotnpilsd in-line”

self subclassResponsibility

Four Categories:

-requires-
e all messages sent to this class for which there is no
method defined or inherited
-supplies-
e all messages required by some other class for which
methods are provided in this class

-overrides-

e methods defined in this class that override inherited
methods

-sending super-
e methods that perform super sends

supplies &

X Traits Browser: Boolean
Eernel-Objects = | Boolean = --all -
Eernel-Classes = DependentsArray | logical operations
Eernel-Methods Eventhlessageliet controlling
Eernel-Processes Eventhiodel Copying
Eernel-Magnitudes Falze printing
Esrnel-Numbers Messagebend tisc

Eernel-2T40 Retnnaty | Model -requires-

TraitsPaperExatmple| MorphObijectOnt
Collections-Abstract| |(Ohiact =
Collections-Unorders _ | « | ingt, | 7 0 class

ifTrue: alternativeBlock

and:
ifFalse:

ifFalseifTrue:

ifTrue:

ifTrue:ifFalse:

not

"If the receiver is false (i.e., the condition is false), then the walue is the
false alternative, which is nil, Othetrwise answetr the result of evaluating
the argument, alternativeBlock, Create an error notification if the
receiver is nonbBoclean, Execution does not actually reach hetre because

the expression is compiled in-line.”

self subclassResponsibility

supplies & overrides

X Traits Browser: True Mo
Eernel-Objects = | MorphObjectOut = --all - = B =
Eernel-Classes = Object = logical operations = and: =
Eernel-Methods ObjectOnt controlling ifFalse.
Eernel-Processes ObjectTracer printing ifFalseif Trae.
Eernel-Magnitudes ObjectViewet -supplies- ifTrue.
Eernel-Numbets ProtoDbject ifTrueifFalse.
Eernel-sTS0 Retmnan | True not
TraitsPapetrExample UndefinedObject of!
Collections-Abstract b |

Collections-Unordere _ |« inst, | 7 class

ifTrue: alternativeBlock -
"Answet the value of alternativeBlock, Execution does not actually
treach hete because the expression is compilsd in-line”

TalternativeBlock wvalue

supplies & overrides

X Traits Browser: True guge
Eernel-Objects = | MorphObjectOut = --all - = =
Eernel-Classes = Object = logical operations =
Eernel-Methods ObjectOnt controlling

Eernel-Processes ObjectTracer printing

Eernel-Magnitudes ObjectViewet -supplies-

Eernel-Numbets ProtoDbject

Eertiel-5Ta0 Eemmnan | True

TraitsPapetrExatnpls) | UndefinsdObject
Collections-Atstract
Collections-TUnordets 4= inst, ¥ «class

-

printOn: aStream

astream nextPutAll true’

supplies &

X Traits Browser: True
Eernel-Objects = | MorphObjectOut = --all - =
Eernel-Classes = Object = logical operations
Eernel-Methods ObjectOnt controlling
Eernel-Processes ObjectTracer printing
Eernel-Magnitudes ObjectViewet -supplies-
Eernel-Numbets ProtoDbject

Eernel-5Ta0 Eetnnan Trus
TraitsPaperExatnpls UndefitiedObiect
Collections-Abstract
Collections-Unordere _ 0 « | dnst, 7 class

-

SELE IR

Object> printOn: aStream
"Append to the argumment, astreatn, a sequence of characters that
identifies the receiver.”

T gell printMNameOn: astreatn

Extended Example/Demonstration

* Creating a new sub-tree of classes

DemolList
printOn:

/ - v\
DemoEmptyList DemoConsList
head ISEmpty head ISEmpty
rest rest
do: do:

Understanding and
Moditying Existing Hierarchies

* Feedback from the browser helps us find:

o which methods are “core” and which are “support”

o how the sub- and superclasses depend on each other
* When extending code, the browser helps avoid:

o introducing inter-level errors

o accidentally incomplete classes

The Core/Support Split

* A common pattern used to increase reuse in a
data type implementation {Black ECOOP inh wk 2002}

° e.g, the abstract superclass Collection defines 110
support methods

- they don’t access the state of any collection directly
- instead, they depend on 4 core methods
— add:, atRandom:, do: and remove:if Absent:
- 3 are defined as self subclassResponsibility

- atRandom: is not defined at all

 The browser finds these 4 required methods amongst
the 110!

10

The Core/Support Split (2)

®* When we look at a subclass of Collection, e.g., Bag, we can
distinguish:

o the 4 supplied methods,

o 10 methods that override the inherited methods, either to
disable them or to improve their efficiency, and

° 7 additional methods that widen the interface of Bag
beyond that of Collection

II

Accidentally Abstract Classes

* The browser tells us some surprising things
about Squeak’s core classes:

° Fraction is abstract

* it implements the support method printOn:, whereas
it should implement the core method printOn:Base:

° Bitmap is abstract

» the programmer sends an error message
primitiveFail, which he forgot to define

° Debugger, CharacterSet, Morph (and nearly all

of its subclasses): all are abstract

12

Accidentally Abstract Classes (2)

 Why are these errors present in a code base that
has been used by thousands of users for many
years?

o It is not because a bad
programmer wrote BitMap

* It is because even good programmers will make
mistakes unless they have good tools

13

Accidentally Abstract Classes (2)

 Why are these errors present in a code base that
has been used by thousands of users for many
years?

CW decompress iromByteArrayiat,

; size ar 2/3/2001 16:11
o It is not because a bad -

programmer wrote BitMap ezt browse full (b)

* It is because even good programmers will make
mistakes unless they have good tools

13

Implementation

-sending super- is easy
* look for the bytecode for super sends

-overrides- is easy

e compare this class’s selectors with its superclass’s
protocol

-supplies- is easy once one knows requires

e compare this class’s selectors with the requires set of
other classes

-requires- is most definitely not easy

e implementing requires in real-time required a lot of
careful thinking and more careful programming!

14

What’s in the requires category?
| gory

¢ Pseudocode:

Behavior >> requires
self reachableMethods selfMessages
difference:

(self allReallyImplementedSelectors)

I5

What’s in the requires category?

we had to tnvent and formalize
a definition of reachability

¢ Pseudocode:

Behavior >> requires

self(reachableMethodsself Messages

difference:

(self allReallyImplementedSelectors)

I5

What’s in the requires category?
| gory

¢ Pseudocode:

Behavior >> requires
self reachableMethods selfMessages
difference:

(self allReallyImplementedSelectors)

I5

What’s in the requires category?

cannot tnfer this from bytecode.

¢ Pseudocode:

Behavior >> requires

self reachableMethod

y'self Messages

(self allReallyImplementedSelectors)

difference:

I5

What’s in the requires category?
| gory

¢ Pseudocode:

Behavior >> requires
self reachableMethods selfMessages
difference:

(self allReallyImplementedSelectors)

I5

What’s in the requires category?

¢ Pseudocode:

Behavior >> requires
self reachableMethods selfMessages

difference:

(sel allReallyImplemen‘redS@

allSelectors \ those not really tmplemented (subclass-
Responsibility, shouldNotImplement, requirement, etc.)

I5

Recognizing self-sends

* Recognizing self-sends requires a full parse of the
method text

* A change in, say, Object, might change the
required methods of every class in the system!

* Squeak images contain > 60 000 methods

e We decided that we needed to cache the self-
sends for every method when it is compiled

16

A problem of scale

* Even with these caches for self- and super sends,
the first implementation took over 3 minutes to
ascertain the required methods of a class!

7

Two key insights

* The caches should be arranged “backwards”

o for each message, cache the methods that self-send it

* We don’t need to know the requires set, all we
need to know is whether it is empty

o Does a subclass override 2/ of the methods that self-
send a message required by the superclass?

« if not, we /mmediately know that it is also required in the
subclass

18

The Complete Algorithm...

* is far too complex to put
on a slide

o that’s what the paper is for!

* Computing the required set
now takes less than 100 ms
— fast enough to provide
“real-time” feedback

I9

Th
e Complete Algorith
m

o
is far
i tf)o complex t
a slide O put

thanael sohartt and Andrew , Black

gofnware ComE” osition GO aiversity o B swirzerland

oo schoot science & ngineerin: oregon el and seience U sersity. US

o that
S

uchof 12 4% cganes WP e of STl SO M o pmgmm\mgm s ndmo\s
s inerod V\cedn\o(c T 20 7055 25 e §1 T

1 utroductio®

C O m .
u t compu®
ot mm\\ Teupires st
e r E A -

\m\\\‘y\c pro gammr:i o examive; 08 d e :\\ dc uf A\)p
of the SYHED sl The Bm\w ¢ was 1oV \mom\ o wher Y st 0t \m(\\lc::
s it has peen 10! ed

‘
" eading 02 ol toven 22

as been &
o Y sma\\ ale diadect® ~omne form & P ackag®

ast e o
O P ting B o1, o e ol pac
(44 consu\\ct\\ass\l‘u:mm&d ol AT Y aion o 0 oweser
\hcway'm\\'h\chwdag\h\o\u«r gt s e o dsoT a5 by
re a 14 ° r ° e s s et a ety B mannally "ol s
tl m e’, f OVI e e eanme: ¢ copeept of egrated DY dopraent 2V opment 1

now t
d
kes less than 1o

hat the S ma\m\mm\sem-o ow be call a—he amo\'f:d\ bcsx\swf
at s\m\\;\(avironments BT e createdd O otber programmi® T
 ample, M & Viswal Age(m-Savn\ﬂmm\-muanymmgu‘m of

preprint uibmitted ©© ESUG 2003 Academic Track 12 August 2002

9

Related Work

® Jo do lists

o Trellis’s “grass catcher” was also the product of changing
a single method

o More commonly, as with Eclipse’s “Tasks” window, to
do lists are updated only on global recompilation.

e Browser extensions

o decoration of names to indicate /oca/ properties such as
overrides or sends to super, e.g., in Visual Works

o Star Browser allows the definition of intentional
classifications that are recomputed when necessary

20

Future Work

* Other visualizations of the se/f-send information
o e.g, Blueprint-like diagrams
* Two directions for extension:

o Help in understanding other kinds of collaboration

- e.g, delegation, aggregation, Mudpie’s package

dependencies
o A pluggable browser framework

- what are the key features?

21

Conclusion

e The Browser is Feasible

o with careful design and implementation, it 7s feasible to
provide real-time feedback even for global properties
such as required methods

* The Browser is Usefu/

o Simplifies Intentional Programming
o Makes it easier to understanding existing classes
o (Clarifies the relationship between sub- and superclasses

o Exposes many bugs in existing code

22

(Questions!

23

Which methods are reachable?

Object

printOn:

Collection

printOn:
printElementsOn:

T

Bag

tally
array
printOn:

24

Which methods are reachable?

Object

Collection

bl

(PRAtON.__
printElementsOn:

T

Bag

tally
array

printOn:

24

Which methods are reachable?

Object

printOn:

Collection

printOn:
printElementsOn:

T

Bag

tally
array
printOn:

24

Which methods are reachable?

Object

printOn: s
s nextPutAll: 'Bag'.

super printOn: s.

printOn:

Collection

printOn:

printElementsOn:

T

Bag
tally

24

Which methods are reachable?

Object

printOn:

~N

(printOn: s
s put: ${.
s printElementsOn: s.

Collection

s put: $}...
_

printOn: s
s nextPutAll: 'Bag'.

super printOn: s.

printOn:
printElementsOn:

T

Bag

tally

24

Which methods are reachable?

Object

~N

(printOn: s
s put: ${.
s printElementsOn: s.

Collection

s put: $}...

printOn: s
s nextPutAll: 'Bag'.

super printOn: s.

printOn:
———— /printEIementsOn:
——

Bag
tally

24

Which methods are reachable?

Object

printOn:

~N

(printOn: s
s put: ${.
s printElementsOn: s.

Collection

s put: $}...
_

printOn: s
s nextPutAll: 'Bag'.

super printOn: s.

printOn:
printElementsOn:

T

Bag

tally

24

Which methods are reachable?

Object

printOn: s
s nextPutAll: 'Bag'.

super printOn: s.

printOn:

Collection

printOn:

printElementsOn:

T

Bag
tally

24

Which methods are reachable?

Object

printOn:

Collection

T
(printOn: s)
super printOn: s.
s nextPut: ${.
s printElementsOn: s.
s nextPut: $}...
printOn: s 2 -

s nextPutAll: 'Bag'.
super printOn: s.

printOn:

printElementsOn:

_— lomeenencon.

Bag

tally
array

printOn:

24

Which methods are reachable>

(printOn: s
Object
self className
printOn: @—
H—-‘
Collection
printOn:
———— / printElementsOn:
(printOn: s) /AN
super printOn: s.
s nextPut: ${.
s printElementsOn: s.
_ s nextPut: $}... Bag
printOn: s i - tally
s nextPutAll: 'Bag'. array
super printOn: s. printOn:

24

Which messages are self-sent?

fastenVerySecurely
| temp |
self hook.
temp := self
temp button.

self class new clipTo: self

25

Which messages are self-sent?

fastenVerySecurely

| temp | This is a self-send,
and we recognize it

self hook.

temp := self

temp button.

self class new clipTo: self

25

Which messages are self-sent?

fastenVerySecurely
| temp |
self hook.
temp := self
temp button.

self class new clipTo: self

25

Which messages are self-sent?

fastenVerySecurely
| temp |

self hook.
temp := self This is a self-send, but

we don't recognize it
Ctemp button,

self class new clipTo: self

25

Which messages are self-sent?

fastenVerySecurely
| temp |

self hook.
temp := self This is a self-send, but

we don't recognize it
Ctemp button,
@ss new clipT@/

25

